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Abstract
Patient-derived xenografts (PDX) involve transplanting patient cells or tissues
into immunodeficient mice, offering superior disease models compared with
cell line xenografts and genetically engineered mice. In contrast to traditional
cell-line xenografts and genetically engineered mice, PDX models harbor the
molecular and biologic features from the original patient tumor and are gener-
ationally stable. This high fidelity makes PDX models particularly suitable for
preclinical and coclinical drug testing, therefore better predicting therapeutic
efficacy. Although PDX models are becoming more useful, the several factors
influencing their reliability and predictive power are not well understood. Sev-
eral existing studies have looked into the possibility that PDX models could be
important in enhancing our knowledgewith regard to tumor genetics, biomarker
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discovery, and personalized medicine; however, a number of problems still need
to be addressed, such as the high cost and time-consuming processes involved,
together with the variability in tumor take rates. This review addresses these
gaps by detailing themethodologies to generate PDXmodels, their application in
cancer research, and their advantages over other models. Further, it elaborates
on how artificial intelligence and machine learning were incorporated into PDX
studies to fast-track therapeutic evaluation. This review is an overview of the
progress that has been done so far in using PDX models for cancer research and
shows their potential to be further improved in improving our understanding of
oncogenesis.
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1 INTRODUCTION

The ability to accurately represent human diseases is criti-
cal to biomedical research. In this endeavor, animalmodels
have proven to be excellent instruments for dissecting
complicated biological processes and assessing therapeu-
tic approaches.1 From Alcmaeon of Croton’s pioneering
studies on canine intelligence to the current rush to create
COVID-19 vaccines, animal models have played an impor-
tant part in innovations that have considerably improved
human and animal health.2 The serendipitous interven-
tion of the state of the art scientific and technological
realities of 21st century, namely, artificial intelligence (AI),
machine learning (ML), deep learning (DL), organ-on-
chips systems (OOC), 3D and 4D bioprinting, omics tech-
niques, and so on, has provided us with a fresh paradigm
in terms of utilizing animal models for medical research.3
In the olden days, scientific experiments were carried

out either in wild or domesticated animals, whereas the
urge for refined data and the complexity of newly devel-
oped diseases and conditions warranted animal models of
specific nature. This led to the generation of customized
animal models to meet the precise requirements of the
research problem. Indeed, the modern research era has
witnessed the advent of genetically identical, genetically
engineered or reprogrammed, immunodeficient, patient-
derived xenograft (PDX) and humanized PDX animal
models for various research requirements.4
This review aims to discuss the roads that led to the gen-

eration of PDX models, the methods employed to develop
PDX models, their applications in basic and translational
research, role of AI in PDX models, advantages, limita-
tions, and challenges associated with them. PDX are the
models of a diseasewhere the cells or tissues from a patient

are entrenched into an immunodeficient mouse. The his-
tory of PDXs goes back to the 1970s when Rygaard and
Poulsen developed the first PDX mouse model from the
tumor excised from a 74-year-old colonic adenocarcinoma
patient by injecting the minced tissue subcutaneously in
nude mice.5 Multiple studies carried out in the 1980s,
investigated the chemotherapeutic responses in PDXmod-
els, and the results correlated with the responses observed
in patients of the tumor origin. PDX models, due to their
“humanized” feature, were involved in preclinical studies
and clinical trials to test novel compounds.6 Furthermore,
the primary xenograft model derived from small cell lung
carcinoma (SCLC) exhibited a similar gene expression
pattern to that of the patient’s SCLC tumor sample that
substantiates the validity of the PDX model for basic and
translational research.7
In the past decade, the PDX model has excelled

to become an invaluable asset to the cancer research
community for its umpteen applications, which include
tumor genetics, biomarker discovery, metastatic progres-
sion studies, personalized therapy, and above all for
minutely mimicking the in vivo cancer biology.8–12 This
examination will delve further into the construction and
deployment of PDXmodels. We embark on a tour through
the history of PDX technology and its status in cancer
research. Furthermore, this review will offer light on the
emerging role of AI and ML in optimizing PDX develop-
ment and analysis, enabling a new degree of efficiency and
accuracy. Finally, we will demonstrate how PDX models
can be used in a variety of ways to advance basic, transla-
tional, and personalized cancer research. This study aims
to provide a critical and current perspective on the enor-
mous promise of PDX models as we work to overcome the
difficult obstacle of cancer.
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2 METHODS OF GENERATING PDX
MODELS

The establishment of PDX models is a laborious process,
as it is not only time consuming but also requires quite
a lot of funding and personnel.13 The correct coordina-
tion between clinicians, surgeons, and researchers is of
paramount importance as it involves time-sensitive steps
that can affect the fate of the success rate of the PDX
model.14 A typical workflow for establishing a PDX model
as depicted in Figure 1 is to select the patients’ fulfilling
the specific criteria and obtain consent as per the Institu-
tional Review Board protocol. A schematic representation
of the procedure is described in Figure 2. Upon obtain-
ing the tumor sample through the right medical procedure
from the clinician, the sample must be transported to the
research facility swiftly.14 The researchersmust keep them-
selves ready with all the required materials and reagents
and on receiving the tissue, must process it and implant
it in the mice and/or must store it for further analysis.
The model thus developed is characterized on a molecular
and histopathological basis and confirmed with the parent
tumor.15–17 The final process is proper sample annotation
and documentation for each step during the establishment
of PDX modeling.18

2.1 Assessment and preparation of
tumor tissue

Screening is done to identify potential tumor specimens
for PDX development since all cancer patients cannot be
sampled.10 Only study interest and hypothesis drive sam-
ple screening.19 Researchers usually select the tumor for
which there are no current therapies available or for which
there is no existing model to study.20 Some laboratories
focus on generating PDX libraries to better understand
the heterogeneity and genomic characteristics of particular
cancer and its subtypes.21–23 Libraries can also be gener-
ated by creatingmodels from the same patients throughout
their disease course, which provide insight into tumor
progression and mechanism/mode of resistance.24 The
sample collection is a very tedious process that involves
coordinated efforts from clinical to clerical staff. The sam-
ple collection must be performed aseptically under all
circumstances to avoid contamination in cell culture or
during engraftment of the sample in mice.25 The sample
can either be solid or liquid. It is better to choose non-
invasive tissue acquisition like core needle biopsies, for
which the lesion size should be in the range of 1.5−2 cm
to allow for at least 2 cores of 10 mm each in length.26
A typical punch biopsy produces a 3−4 mm cylindrical
tissue core, which is often used for obtaining cutaneous

tumor tissues.27 Endoscopic procedures arewidely used for
gastrointestinal tract cancers from which 2−3 mm3 cores
can be procured.28,29 In the case of hematological malig-
nancies, a minimum of 5 mL of noncoagulated peripheral
blood or bonemarrow aspirate would be required to gener-
ate a sufficient number of mononuclear cells (MNC). The
solid tumor tissue is collected in culture media (RPMI or
DMEM), saline (0.9% sodium chloride), antibiotics, and
antimycotics. In cases where the samples cannot be pro-
cessed immediately, storing the samples to maintain tissue
viability is paramount. Hypothermsol™ can be used to pre-
serve tumor cell viability for up to 48 h. The sample from
the autopsy should be retrieved within 8−12 h from the
time of death as there will be a rapid loss of cell viability
post-mortem.30 The liquid samples frompleural or pericar-
dial effusions, bone marrow aspirates, and ascites contain
viable cells, which have shown better take rates in com-
parison with solid tumor engraftment. The samples are
immediately treated with heparin (1 mL heparin/liter of
fluid) to avoid clotting and for easy maneuvering while
processing. Whole blood (leukemia and circulating tumor
cells CTCs) and bonemarrow are directly collected in anti-
coagulant coated tubes.31 The sample once collected is
extremely precious and used wisely and to its maximum.32
When there is an ample amount of tissue, it can be
fixed in 10% buffered formalin or 4% paraformaldehyde
or an equivalent fixative for IHC (immunohistochemistry)
analysis, snap frozen in liquid nitrogen for genomics or
biochemical assays.33–35 The tissue can be processed into
a single-cell suspension and cryopreserved or viably freez-
ing as an intact tissue. For leukemia samples, it is necessary
to process the blood to obtain MNC for viable storage
of cells that are further treated for cell purifications or
direct engraftment. It is highly recommended to collect
a normal tissue specimen alongside the tumor sample
for comparative analysis and negative controls.33–36 In the
case of nonhematological cancers, blood is usually con-
sidered a normal tissue specimen, and for germline DNA,
hematological malignancies, buccal swabs, and fingernail
clippings are used as normal tissue specimens. For DNA
sequencing, blood or buccal samples would be ideal; how-
ever, for transcriptomics, a nontumorigenic part of the
same tissue should be used as the mRNA expression is
highly tissue specific. The tumors obtained via surgeries
are usually heterogenous and need thorough processing
to remove the necrotic part of the tumor and any cysts to
increase the take rate of tumor in mice.37 For the initial
processing of the whole tumor tissue, surgeons or patholo-
gists may help with and handover the tumorigenic part of
the tissue to the technician in the collection media. The
viable content of the tumor region contains both tumor
cells and stromal components, which will have a differ-
ent color, morphology, shape, and consistency, usually
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F IGURE 1 Schematic illustration of the overall process involved in the generation of PDX models. The tumor biopsy recovery methods
for different types of tumors are shown here. The recovered samples will be subjected for further processing before engraftment. The
processed tumor will be validated with an appropriate method, followed by engraftment in animal model. Some portion of the tissue/cells will
be stored for further use (Created using BioRender).
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F IGURE 2 Specific procedure involved in grafting to establish PDX model. The validation of patient derived xenograft in mouse models
is done through acquisition of patient tumor and further propagation of PDX models for the development of preclinical research and
individualized treatment strategies. (Created using BioRender).

less opaque and firmer in comparison with the adjoining
healthy tissue.38 Necrotic tissue is quite distinguishable
because of its location mostly being in the center of huge
tumors. The appearance of necrotic tissue ranges from
opaque or white to very dark or blackish color and con-
cerning the texture, it can be brittle or as hard as a rock or
in a liquid state. The stromal component is distinct being
translucent and elastic in nature.39 The healthy tumor is
vascularized and appears pink or reddish in color, which
is selected and cut into 3 mm3 in size.40–42 The fragments
are prepared to be used for injection into mice, for bank-
ing, snap frozen to perform genomic analysis, and are
formalin-fixed to perform histology. The size of the tis-
sue will tell us if all the above-mentioned usages can be
done with the tissue obtained. The surgically isolated sam-
ple or biopsies that are <1 g is usually implanted without
any further processing to increase its take rate and larger
fragments are cut into 2−3 mm3 sections and implanted.43
Despite the cons of single-cell suspension, there seem to
be more advantages linked to it, the tumor cell viability is
easily accessed and specific subpopulations of a heteroge-
neous tumor type can be studied by targeted isolation and
cell implantation into mice.43 The added advantage is that
single-cell suspensions can be injected via subcutaneous
(SC) and orthotopic (OT) and they can be cultured in vitro
to generate novel cell lines. The processing of the liquid
sample is entirely different from how solid tumors are pro-
cessed. In hematological tumors, samples are liquid-like
blood and bone marrow aspirates from which MNCs are
isolated by Ficoll density gradient centrifugation, followed
by red blood cells (RBCs) lysis for implantation intomice to

generate PDXmodels. In highlymetastatic tumors, the cir-
culating tumor cells (CTCs) can be isolated that are found
in the blood stream that can be isolated from peripheral
blood.31 The isolation of CTCs is enriched using commer-
cially available special enrichment buffers that help in the
selection of tumor cells. The CTCs and tumor cells are
implanted into the mice using IV injections.44,45 The sam-
ples from procedures like effusions and ascites collection
are directly subjected to centrifugation, for isolating the
tumor cells, the cell pellet obtained from centrifugation
is treated with RBC lysis buffer multiple times and the
resulting cell population is injected into the mice via SC
or orthotopic (OT).

2.2 Validation of established PDXmodel

The success of the generation of the PDX model is cer-
tified only after verifying the genomic, molecular, and
histopathological characteristics of the established tumor
with the parent or patient tumor.46 To verify the genomic
profile of mice tumor and its human counterpart various
techniques from DNA sequencing to species-specific and
gene-specific PCRs are done.47 Sequencing data show
the evolutionary path of recurrent tumors, explaining
therapy failure and tumor resistance. The tumor patients’
normal tissue negative control is crucial for distinguishing
germline and somatic variations. Multiple platforms
like whole genome sequencing, exome sequencing,
transcriptome sequencing, single-cell RNA sequencing,
and targeted sequencing assays like MSK-IMPACT can



6 of 25 JANITRI et al.

capture genomic data, so a database is needed to con-
solidate and analyze the data and provide comparative
cross-species and longitudinal data analysis.23,48,49 The
patient’s tissue, F0 generation, and serially transplanted
existing generation like F1, F2, F3, and so on must be
routinely processed for H and E staining and reviewed by
a board-certified pathologist to confirm that the lesions
match and correspond to the tumor of interest. Staining
is necessary to rule out nonspecific lesions caused by an
inflammatory reaction at the implantation site, unrelated
tumors, or spontaneous tumors of host or human origin.50
While host tumors need treatment, inflammatory reac-
tions are frequently granulomas or abscesses and can
be separated from them. Although most mouse tumors
are lymphomas, fusiform cell sarcomas and mammary
gland tumors have been identified. As indicated, the EBV
infects cells at the implantation site, causing nonlymphoid
lymphomas. B cells can be removed in immunocompetent
mice but develop cancerous in immunocompromised
mice.51,52 After histological inspection, tumor cells must
be differentiated to determine their ability to differentiate
throughout successive passagings. Serial passaging can
cause the tumor to lose its ability to differentiate like the
parent tumor and change morphologically and geneti-
cally. Due to tumor heterogeneity and host characteristics,
distinct PDXmodels from the same specimenwill have dif-
ferent F0 generations.53 The human and PDX specimens’
histology should reflect the universal histological pattern
for the tumor of interest, and particular biomarkers must
be checked across specimens. Whatever the case, all cre-
ated PDXs must be histopathologically analyzed every few
passages and H and E staining and other IHC slides must
be stored and noted for future reference and review.48,54

3 APPLICATIONS OF PDXMODELS

PDX models are superior to both, cell line xenografts and
genetically engineeredmousemodels. In theory, the gener-
ation and characterization of PDX models that retain crit-
ical molecular and biological properties of their tumor of
origin as well as represent the full spectrum of heterogene-
ity of various cancers would represent an exceptionally
powerful tool for translational research.55 This is especially
important in the context of pre- and coclinical studies, as
the predictive potential of PDXmodels will aid in effective
drug selection.56,57 The potential power of PDXs is based on
the fact that they are biologically stable. If they are main-
tained in vivo by directly passaging from mouse to mouse,
their characteristics will closely resemble the primary
tumor for several generations. Therefore, PDX models can
be biologically and molecularly investigated at a greater
depth than any given patient sample, allowing for a bet-

ter understanding of themolecularmechanisms governing
oncogenesis.58 Furthermore, as they are in theory an
unlimited resource, PDXs can be challenged with numer-
ous candidate therapeutics, or treatment regimens, in a
relatively short time frame that cannot be accomplished
in the clinic (Table 1). Herein, we will briefly discuss
the broad applications of the PDX model in translational
research in both molecular and drug-based investigations.

3.1 Molecular applications of the PDX
model

The principle of molecular cancer research is to unravel
the complexity associated with the origins and progres-
sion of cancer. This improved understanding allows for
improved prediction and ultimately, better therapeutics to
treat a wide range of cancers.59 In this regard, the PDX
model is a great tool as it can be used to generate both in
vivo and ex vivo data and some of the most common uses
of this model are summarized below.

3.1.1 Interrogation of clonal evolution

Intratumoral heterogeneity is common in solid tumors due
to the evolution of genetically diverse subclones.60,61 In
this regard, PDX models are ideal tools as closely mimic
human cancers and this allows for the investigation of the
molecular, cellular and subclonal characteristics of vari-
ous cancer types.62,63 For example, using a PDX model
it has been shown that a minor cell subpopulation is
capable to drive tumor growth. This subpopulation had
enhanced proliferative ability andwas capable to overcome
the microenvironmental constraints when compared with
other cells within the tumor.64,65 In another study, acute
lymphoblastic leukemia PDXswere used to identify a small
population of unfavorable dormant cells that were treat-
ment resistant and could accurately mimic the patients’
primary cells.66,67 In acute myeloid leukemia PDXmodels,
the relationship between clonal architecture and func-
tional heterogeneity was investigated and it was shown
that there was variable engraftment potential, with the
successful xenografts predominantly comprising a single
genetically defined subclone.67,68 Last, a basal-like primary
breast cancer tumor, a PDXmodel derived from this tumor,
and the resulting brain metastasis from a patient was
assessed using deep genomic analyses. Interestingly, when
compared with the primary tumor, the brain metastatic
sample contained de novo mutations and deletions.69 Fur-
thermore, while the PDX retained themutations present in
the primary tumor, it was genetically similar to the brain
metastasis sample.70
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TABLE 1 Selected examples of therapeutic strategies assessed using PDX models with details of the cancer type, specific target(s), and
mouse models used.

Cancer type Drug or combination Target Mouse References
Acute myelogenous leukemia CSL362 monoclonal

antibody with cytarabine
and daunorubicin

CD123 NSG 71

Acute myelogenous leukemia Brequinar Dihydroorotate
dehydrogenase

SCID 72

Acute myelogenous leukemia R406 Syk NOG 73

Acute myelogenous leukemia Selinexor (KPT-330) XPO1 NSG 74

Multiple myeloma BI-505 antibody ICAM-1 SCID 75

B cell acute lymphoblastic
leukemias

CHZ868 (JAK2 inhibitor)
and dexamethasone

JAK2 NSG 76

BRAF mutant cancer PD0325901 MEK Nude 77

Breast carcinoma Dinaciclib CDK NOD/SCID 78

Breast carcinoma FRAX597 (PAK2
inhibitor) and
fulvestrant

PAK2 and ER NSG 41

Breast carcinoma ICG-001 (Wnt inhibitor)
and doxorubicin

Wnt signaling NSG 79

Breast carcinoma decitabine DNA methyltransferases NOD/SCID 80

Cholangiocarcinoma Ponatinib, dovitinib, and
BGJ398

FGFR NSG 81

Chordomas Erlotinib and gefitinib EGFR Nude 82

Colon cancer Cetuximab and
pimasertib

EGFR/MEK NOD/SCID 83

Colon cancer FP3 VEGF Nude 84

Colon cancer Cetuximab and
bevacizumab

EGFR/VEGF Nude 85

Colorectal cancer DEL-22379 Erk NOD/SCID 86

Colorectal cancer Anti-RSPO3 (antibody) RSPO3 Nude 87

Esophageal squamous cell
carcinoma

Trastuzumab Her2 Nude and SCID 88

Gastric cancer Luteolin cMet Nude 89

Gastric cancer Trastuzumab and
cetuximab

Her2/EGFR Nude 81

Gastric cancer AZD5363 AKT Nude 90

Lung adenocarcinoma Cetuximab EGFR NOD/SCID 91

Lung squamous cell carcinoma BGJ398 and cisplatin AKT and ERK NSG 92

Lung cancer Erlotinib and
thalidomide

EGFR, TNF, and NF-kB NOD/SCID 93

Lung cancer BDA-366 Bcl2 BH4 domain Nude 94

Lymphoma Pyruvinium pamoate Glutathione NOG 95,96

Medulloblastoma Fingolimod (FTY720) – Nude 96

Melanoma Salmonella A1-R – Nude 97

Melanoma Karonudib (TH1579) MTH1 NOG 98

Melanoma Vemurafenib and
fatostatin

SREBP-1 Nude 99

Melanoma TH287 and TH588 MTH1 NOG 100

Multiple cancers CFI-400945, inhibitor PLK4 NSG and SCID 101

(Continues)
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TABLE 1 (Continued)

Cancer type Drug or combination Target Mouse References
Melanoma CCT196969, CCT241F161 pan-RAF and SFKs Nude 102

Multiple myeloma P5091 USP7 SCID 103

Multiple myeloma and solid
tumors

CB-5083 p97 Nude and
SCID-Beige

26

Neuroblastoma MLN8237 and ABT-199 Aurora kinase and
BCL-2

SCID 104

Non-Hodgkin lymphoma Anti-CD47 antibody and
rituximab

CD47 NSG 105

Chronic myelogenous
leukemia

NSC23766 Rac NOD/SCID 106

Pancreatic adenocarcinoma BKM120 PI3K inhibitor NSG 107

Pancreatic cancer IGF1-IONP-Dox IGF1R Nude
mice/SCID

108

Pancreatic cancer Trametinib and
dasatinib

MEK/Tyrosine kinase
Src

NSG 109

Pancreatic cancer Phenformin Mitochondrial complex I Nude 110

Prostate cancer EPI-001 Androgen receptor NTD
domain

NOD/SCID 111

Prostate cancer Bicalutamide Androgen SCID 112

Renal cell carcinoma PT2399 HIF-2 Nude 113

Sarcoma Salmonella A1-R and
doxorubicin

– Nude 114

Small cell lung cancer GSK2879552 LSD1 Nude 115

Pancreatic cancer Trametinib and
MRTX1133

KRAS Nude 116

Mesothelioma Gemcitabine _ Nude 117

Pancreatic cancer Gemcitabine,
5-fluorouracil

_ Nude 118

Mesonephric adenocarcinoma Paclitaxel, cisplatin _ Nude 119

3.1.2 Cancer cell initiation, proliferation,
and drug resistance

High-throughput genome sequencing has identified
countless somatic mutations in cancers; however, there is
a poor understanding of the functional impact of many
of these mutations.120 In this regard, PDX models can be
used to determine which specific mutations have a direct
impact on tumor formation and those that confer resis-
tance to therapy.121 Cancer cell proliferation is a common
hallmark assessed to determine the effect of a specific
mutation122; however, it is important to note that cancer
cells in a PDX model do not follow the standard linear
growth rate and instead have an exponential dynamic
growth rate that increases over time. Importantly, this
information has direct implications for the interpretation
of translational studies.123 Furthermore, the identifica-
tion of key cellular mechanisms involved in cancer cell
initiation and proliferation has benefitted from the use

of PDX models.124 This is seen in the context of cancer
stem cells (CSCs), also known as tumor initiating cells
(TICs). CSCs are a small neoplastic cell population with
stem cell properties that can perpetuate themselves via
auto-restoration and are considered a major cause of
therapeutic resistance.125,126 Indeed, it has been shown in
a xenograft model that CD133+ human brain TICs were
able to initiate tumors in vivo, which provided insight into
human brain tumor pathogenesis as well as supporting the
neoplastic role of CSC in solid tumors.127,128 Traditionally,
genetically modified cancer cell line xenograft models are
used to validate in vitro results of the intrinsic molecular
mechanisms involved in tumorigenesis.129 However, this
model is not adequate as it does not accurately recapit-
ulate malignancy and in vitro genetic manipulation and
expansion of primary tumor cells are challenging. These
challenges can be overcome by using PDX models and the
functional significance of this is seen by investigations of
microRNAs (miRNAs). miRNAs are widely recognized as
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important post-transcriptional regulators of gene expres-
sion and a B-Cell Acute Lymphoblastic Leukemia PDX
model was used to investigatemiRNA-126.130 It was shown
that miRNA-126 played a key role in cancer progression by
targeting p53-dependent pathways leading to the evasion
of cell-cycle arrest and apoptosis. Last, it was seen that
antagonizing miRNA-126 in human patient samples was
sufficient to reduce the disease burden in its PDX model
by triggering apoptosis.131

3.2 Preclinical cancer research uses of
the PDXmodel

Historically, the use of immortalized cell lines has been
the cornerstone of preclinical cancer research.132 However,
this model system has been underwhelming in its ability
to evaluate the heterogeneity in a patient’s tumor or to
successfully identify novel therapeutics. Indeed, this is evi-
dent asmany investigational phase III studies of anticancer
drugs with positive tumor responses in mouse models,
do not correlate with clinical trials in patients ultimately
resulting in failure.133,134 As stated earlier, PDX models
retain the heterogeneity of patient tumors, allowing for
investigating the efficacy of therapies. While PDX models
are versatile tools in preclinical research themain reported
uses will be discussed in the following sections.

3.2.1 Identification of cancer biomarkers

Cancer-specific biomarkers are an important component
of cancer research as they can aid in successful diagnosis
and assessing the prognosis of specific cancer, and in some
cases, identify novel and effective therapeutic targets.135
The impact of the PDX model has been shown by Brad-
ford et al.136 when they performed whole-transcriptome
profiling of 79 PDX models across a range of differ-
ent cancer types. They aimed to identify independent
tumor and stromal biomarkers and using this information,
explore the interaction between these two compartments.
Indeed, they reported a potential interaction between two
hypoxia-associated genes, human MIF and mouse Ddx6.
Interestingly, it has been established that the efficacy of
anticancer drugs is influenced by the tumor–stroma inter-
action, and this novel use of the PDX model has the
potential to improve preclinical drug efficacy studies by
further exploring resistance mechanisms. The prognostic
value of the stem cell markers, CD133 and CD44, has been
investigated in PDXmodels of cancers such as hepatocellu-
lar carcinoma.137,138 In addition, in a bladder cancer PDX,
the overexpression of cell division cycle 25C (CDC25C) has
been shown to be a predictive biomarker and is there-

fore a novel molecular target.139 Interestingly, Gardner
et al.140 generated small-cell lung cancer PDX models
that were paired chemo-naive and chemo resistant. Using
this model, they reported that EZH2 was a biomarker
of chemoresistance as EZH2 was able to epigenetically
silence SLFN11.140 Recently, it has been shown using triple
negative breast cancer PDXmodels that DNAmethyltrans-
ferase is an effective predictive biomarker of the efficacy
of the United States Food and Drug Administration (US
FDA)-approved drug decitabine and further highlights the
importance of identifying biomarkers predictive of thera-
peutic response,whichwill allow for improved patient care
and prognosis.80

3.2.2 Investigation of experimental
anticancer therapeutic approaches

PDX models are useful in investigating and establish-
ing experimental anticancer therapeutic approaches.141
For example, a study has investigated using trans-
differentiation-derived induced neural stem cells as a
therapeutic intervention in glioblastoma PDX models.142
These cells were genetically engineered to contain both
optical reporters and tumoricidal gene products and were
found to target glioblastoma cancer cells. In addition,
when this methodology was used to deliver the anti-
cancer drug, TRAIL, there was decreased growth of
glioblastoma PDX models.143 The benefit of the pancre-
atic cancer PDX models allowed for preclinical evaluation
of precise fluorescence-guided surgery (FGS), which can
significantly aid in surgery and therefore improve the
outcome for patients with recalcitrant cancers.144 This
technique can attach different fluorescent colors to cancer
and stroma cells, respectively, therefore allowing for their
identification and complete resection including stroma.
Therefore, this method significantly prevented local recur-
rence, which the standard bright-light surgery or single-
color FGS could not.145 In addition, this method was
further evaluated in a PDX model of colon cancer with
fluorophore-conjugated anti-CEA antibody.146,147 Interest-
ingly, a pancreatic cancer PDXmodel was utilized to inves-
tigate the efficacy of an IGF1 receptor-directed nanopar-
ticle conjugated to the chemotherapeutic drug, Doxoru-
bicin. This was a novel approach as stromal barriers and
theTMEplay a role in poor drug delivery and this approach
takes advantage of the fact that IGF1R is highly expressed
in both pancreatic cancer cells and stromal fibroblasts.108
In another study, a head and neck squamous cell carci-
noma PDX model was used to evaluate the potent anti-
cancer effects of encapsulating a PI3Kα inhibitor, BYL719,
into P-selectin-targeted nanoparticles. Importantly, results
showed that the treatment resulted in significant inhibi-
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tions of tumor growth and increased radio-sensitization
at a dose that was seven-fold lower than oral admin-
istration. Last, radiation studies using PDXs have been
limited in their scope and number when compared with
chemotherapeutic agent studies, as reviewed by148

3.2.3 Evaluation of anticancer therapeutic
strategies

There is currently a high attrition rate in the field of anti-
cancer agents with only 5% being approved by the US
FDA despite promising preclinical anticancer effects. It
has therefore been suggested that the current models for
drug testing (cell line xenograft or genetically engineered
mouse) fail to capture the effects of tumor heterogeneity
as well as the influence of the human stromal microen-
vironment leading to high failure rate.149 It is therefore
unsurprising that preclinical drug testing is one of themost
well-described uses of PDX models. These models allow
for an early indication of drug safety, efficacy, and evalua-
tion of an appropriate treatment dosage beforemoving into
an animal model. Indeed, PDX model-based anticancer
drug development in specific cancers has been discussed
comprehensively.38,150–153 Here, we give a summary of the
preclinical uses of the PDX model, and a summary of rep-
resentative drugs, or drug combinations and their targets
are shown.

3.2.4 Combinational approaches

The idea of combined targeting of two or more onco-
signalling pathways is a promising strategy for cancer
therapy.154 The rationale is that specific targeted cancer
therapies often lead to the selection of resistant popu-
lations. Therefore, by selecting therapies with differing
but complimentary mechanisms of action and combin-
ing them, the resistant populations can be reduced.155
Indeed, multiple studies have used PDX models to show
the value of this strategy. For example, the combination
of disulfiram, a drug used to treat alcoholism, and copper
was assessed for its efficacy against B-ALL. In the study,
the authors found that the treatment reduced tumor cell
growth while sparing normal peripheral blood MNCs.35
Another example is the use of CDK4/6 inhibitors that can
resensitize PDX tumors to HER2-targeted therapies and
delay tumor recurrence.156 Similar results have been seen
with the Aurora kinase A inhibitor MLN8237 and ABT-199
acting synergistically to counter MYCN-amplified neurob-
lastomas PDX models.104 The combination of CDK4/6-
PI3K inhibition in PIK3CA mutant breast cancer PDXs
has also shown promise.157 The anti-CD47 antibody in

combination with rituximab was synergistic and led to
the promotion of phagocytosis, which allowed for the
elimination of lymphoma in both disseminated and local-
ized non-Hodgkin lymphoma PDX models.105 Last, it was
found that chemo-resistant triple-negative breast cancer-
derived PDX’s expressed high levels of Wnt10B related
molecules. When the combination of ICG-001, a Wnt sig-
naling inhibitor, and doxorubicin were administered in
the PDX model there was efficient repression of lung
dissemination as a result of shedding from the original
shedding.79,158

3.3 Coclinical trials and precision
medicine

The most compelling data highlighting the power of the
PDX model is in predicting the potential benefits of both
conventional and novel anticancer therapeutics for can-
cer patients. Asmentioned previously, the high failure rate
in cancer drug development is a major issue as this con-
sumes a considerable number of resources with very little
public benefit.159 The current preclinical drug screening
models have poor predictive potential as they do not select
specific patients or fully capture the complexity seen in
patient tumor samples. The PDX model is a useful tool
in this regard as it is theoretically an unlimited source of
patient tumor sample with the potential to be expanded
and manipulated in vivo and ex vivo.160 Several studies
have used the PDX model to study drug responses in sev-
eral cancers and have seen that there is a high level of
correlation between the drug response rates in PDX mod-
els and patients in the clinic.161–163 For example, clinical
patient data and the renal cell cancer PDXmodel matched
as they showed positive responses to sirolimus, sunitinib,
and dovitinib while showing no response to erlotinib.164,165
Indeed, conventional chemotherapy studies in several can-
cers, including breast, colorectal, and pancreatic cancer,
have also shown the same trend in which the PDX model
and clinical data had comparable responses to the standard
clinical chemotherapy agents such as paclitaxel, carbo-
platin, gemcitabine, and adriamycin.166,167 This has led to
suggestions that PDX models could be employed in “co-
clinical trials” inwhich a preclinical trial can be conducted
on a mouse PDXmodel in parallel with a patient undergo-
ing a clinical trial treatment.168 Therefore, this workflow
allows for the incorporation of patient selection strategies
based onmolecular abnormalities and the identification of
novel biomarkers of sensitivity or resistance to anticancer
agents169 (Figure 3). Based on this, novel combination
strategies can be proposed. For example, Heid et al.170
performed a coclinical assessment of tumor cellularity in
pancreatic cancer. Owonikoko et al.171 also reported that
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F IGURE 3 Schematic representation involved in coclinical trial workflow for precision medicine. The PDX model thus generated is
further processed for developing precision medicine and personalized care that involves integrating preclinical studies followed by clinical
trials. This approach enables the identification of biomarkers and genetic profiles to predict patient responses.
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PDX faithfully replicated clinical outcomes in phase II
coclinical trial of arsenic trioxide in relapsed small-cell
lung cancer.

4 ADVANTAGES OF PDXMODELS

PDX models have prominent advantages in pre- and
coclinical studies compared with the genetically engi-
neeredmodels and cell line-derived xenograft models. The
specific advantages of PDX models are discussed in the
following sections.

4.1 Applying genetic engineering
methods

Genetic engineering techniques such as gene knock-out
and knock-in strategies are used to introduce the tumori-
genic factors in CDX andGEMs and it is worth noting that,
it is highly unlikely to recreate the entire set of factors in
the model organisms.172 The PDX models circumvent the
use of genetic engineering techniques since they contain
most of the factors in vivo required for tumorigenesis.

4.2 Microenvironment

Before the advent of PDX models, monolayer cell culture,
spheroids, and organoids were used in basic and trans-
lational research.173 Although these models generate a
considerate amount of data, they still lack the microen-
vironment of the tumor and interaction with the adjacent
tissues/organs, which might skew the behavior of the cells
and treatment responses.174,175 Hence, a seamless model is
expected to possess themaximumcharacteristic features of
an in vivo environment. The animal models (PDX, CDX,
and GEM) were preferred over the aforesaid models, due
to the simulation of a similar microenvironment.25,176,177 A
PDX model is considered more meritorious, as they con-
tain cells from the actual tumor from the patients and
mimic the tumor environment in vivo with a complete
set of oncogenic elements such as hypoxia, blood sup-
ply, heterogeneity of tumor cell subpopulation, and the
extracellular matrix.178

4.3 Gene expression pattern

Gene expression pattern decides the behavioral pattern of
the cell or tissue. Since the PDX models are expected to
mimic the human tumor microenvironment, it is impor-
tant to speculate the gene expression patterns between the

cancerous tissue from the patient and the tumor developed
in the PDXmodel. It has been shown that the gene expres-
sion pattern in primary SCLC and the xenograft model
were identical, while the expression of tumor-specific
genes is lost in the xenograft-derived cell lines.7 Thus, the
usage of PDXmodel organisms with matched gene expres-
sion pattern is expected to give precise predictive outcomes
in translational research.7

4.4 Patient-oriented response

The pre- and coclinical studies are aimed to obtain results
that match patient-oriented responses in clinical trials. It
is alarming that for cancer drugs, the results obtained with
cell culture models can not accurately predict the ther-
apeutic efficacy.149 PDX models are reported to provide
outcomes that are highly similar to those of the patients.21

5 CHALLENGES AND LIMITATIONS
OF PDXMODELS

Although PDX models have evolved with an exciting
opportunity for improving the values that are predicted in
preclinical and translational studies, some several limita-
tions and challenges need to be addressed to improve their
use in the medical field. Overcoming these issues could
increase the potentiality of the model that will increase
therapeutic applications.48,179

5.1 Immuno-challenged models lack
immune cells

In all the tumor types, immune cells play a vital role in
tumor progression and growth.180,181 PDX models chiefly
depend on themurine immunodeficiencymodels that lack
functional elements of immune systems. Therefore, the
cancer cells cannot reproduce the interaction between can-
cer cells and immune cells that exist in the patient tumor.
Thus, it makes the model highly challenging as it leads
to difficulty in predicting the efficacy of the drug and
also to analyze the mechanism of drug resistance.9,182–184
This lacuna was well documented in tumors such as
melanomawhere the treatment has been done by targeting
immunotherapy.185,186

5.2 Take rates are low

The take-up rates of transplanted tumors differ from
that of the tumors of origin.187 Currently, the statistical
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analysis reported that the take-up rates of the patient-
derived breast cancers are very low although it is found
to be enhanced take-up rates due to the development
of pre-exposed methods of estrogen in luminal type
tumors.188
Additionally, such low take-up rates and the long-term

incubation time in the transplanted mice are current chal-
lenges faced by researchers in using the PDX models for
pre- or coclinical studies. Although there are technical
advances that have improved the take rates, different types
of tumors and their subtypes within the same tumor type
have various success rates. This leads to the imbalanced
representation of tumor types that are more determined
by take rate than clinical incident rate. The limitations
of such problems of PDX models might be resolved by
the development of suitable mice for PDX models or any
suitable methods of tumor transplantation that enhance
the take rates.189 Another major limitation of the PDX
model is that there are chances that the tumors fail to
progress or to metastasize and thus do not retain all
the disease patterns observed in patients. To overcome
this issue, patient-derived orthotopic xenografts represent
a powerful tool to address the key point in preclinical
modeling.

5.3 Problems with the sampling size

Initially, the most appropriate tissue is vital to transplant
into the mice model and if the tumor size is larger, one
part of it should be taken for the PDX study. In this step,
there is a need for certified pathologists and other experts,
whichmight be amajor limitation. Additionally, the tissue
extracted must be analyzed immediately for the efficient
generation of PDX.190 Inmost cases, there is a requirement
for smaller size samples such as fine needle aspirations
necessary for transplantation for the application of person-
alized medicine. Thus, there is a limitation in studying the
PDX technique in a small specimen and thus should be
developed in this aspect.

5.4 Strategy for engraftment

Another challenge in using the PDX model is that there
should be a defined strategy for engraftment inmice, based
on the tumor types. In general, OT implantation has been
followed these days, but again special technique in the
surgical aspect is required based on the cancer type and
this takes a lot of time and effort. Of course, subcutaneous
implantation can be considered as it has a little higher
success rate with a simple procedure, but they do not cor-

roborate with the comparable microenvironment of the
primary tumor.191

5.5 Duration of treatment

Another challenge faced by the technologists is the dura-
tion of survival and treatment schedules of the patients
that are themajor criteria that must be satisfied in this cur-
rent scenario in the application of personalized medicine.
The normal developing time of the PDX model is from 2
to 8 months for any preclinical study, which is again an
extensive time for the patient to wait. And the duration
is the major limiting factor for individualized medicine.
These again might involve some failures and be consid-
ered the success rates while personalization thatmight still
take some time for the patient. Thus, discovering the suit-
able conditions for subtypes of cancer might elevate the
duration of PDX generation.192

5.6 Mouse–human engraftment ratio

The key aspect in the PDX research is to make use of the
mouse models that are an immune deficient strain for any
kind of engraftment and propagation as the mouse should
avoid rejection of the human tissue.193 For the same rea-
son, the research has avoided using the conventional type
of PDXmodel that involves the screening with agents such
as vaccines and checkpoints that blocks the antibodies of
the host system, and rather utilizing the humanized PDX
model that helps in transplanting the human hematopoi-
etic stem cells, which is the alternative option.41,194 Murine
fibroblasts differ from that of humans,195 which is why we
need a successful mouse model for the study.41

5.7 High cost

Of course, while everything is on one side, the finan-
cial aspect will stand single on the other side. To take
into consideration the financial cost of the PDX model,
highly immunodeficient mice are very expensive. Addi-
tionally, maintaining those mice in a clean environment
also takes a high cost, as the maintenance might take a
long time until the tumors are engrafted and PDX models
are developed.152 Another factor to consider is that cloned
animal and genome sequencing analysis costs a lot and
experimental preclinical expenses are also high enough to
proceed with the PDX models. So not all patients might
be able to afford these costs and hence PDXs remains
technically challenging and also time consuming.41,196,197
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F IGURE 4 Process chart describing the workflow for screening of drugs using Machine Learning. The machine learning workflow for
drug screening using patient-derived xenograft (PDX) models involves training algorithms on large datasets derived from PDX models to
predict drug responses.

6 ROLE OFMODERN TECHNOLOGIES
IN PDXMODELS

6.1 Artificial intelligence(AI)

The integration of AI with PDX models is critical due
to PDX models’ great ability to recapitulate tumor het-
erogeneity and treatment responses.198,199 Researchers
can better comprehend tumor evolution and medication
responses by integrating AI and PDXmodels as depicted in
Figure 4. AI can also help in identifying and removing con-
taminated host sequences in PDX models, confirming the
accuracy of sequencing data andmutation calls.200,201 Fur-

thermore, the integration of AI in PDX models can assist
personalized therapy by allowing exact monitoring of car-
cinogenesis and biophysical tumor features in real-time,
potentially leading to advances in individualized treatment
methods and improved patient outcomes.202 Additionally,
AI has beenused to predict pathological complete response
in hormone receptor-positive/human epidermal growth
factor receptor 2-negative breast cancer patients following
neoadjuvant chemotherapy, assisting doctors in personal-
izing treatment plans.198,203 Several AI methods have been
proposed to extract human-centered rule-sets from black-
box models such as neural networks (NNs), allowing for a
better understanding of their decision-making processes.
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F IGURE 5 Pictorial representation of integrating advanced technologies in the validation of PDX models. Integrating advanced
technologies in PDX modeling offers a holistic approach by combining genomic, transcriptomic, and proteomic data to enhance the accuracy
of tumor biology representation. This integration allows for better prediction of therapeutic responses, personalized treatment strategies, and
accelerated drug development through real-time data analysis and multiomics approaches. (Created using BioRender).

The use of AI in pancreatic ductal adenocarcinoma has
also expanded, particularly in organ segmentation, AI-
aided diagnosis, and radiomics-based personalized treat-
ment, demonstrating the promise for earlier detection and
better decision-making in this aggressive tumor.204

6.2 Machine Learning (ML) and Deep
learning (DL)

The impact of ever evolving advanced technologies on
hottest biomedical research avenues like cancer treat-
ment and precession medicine is immeasurable and is
gaining momentum at a pace that was never expected
before. Specifically, the new age techniques of 3D bio-
printing, AI, that is, ML and DL have been subjected
to thorough investigations to assess their applicability
to construct computational models for anticancer drug
response predictions and many more (Figure 5).205,206
Employing such vigorous tools paves the way for explor-
ing novel perspectives for cognizing and characterizing

potential drug candidates for personalized cancer thera-
pies. PDXmodels are proven to be super-efficient tools and
immensely used in the domain of cancer research as they
mimic the heterogeneity of the actual tumors.207,208 Thus,
becoming ideal experimental models and also can signif-
icantly contribute to unraveling the intricacies of tumor
multifariousness, which is a fundamental factor influ-
encing the treatment outcomes.209,210 Various patients
with the same cancer type can express distinct molec-
ular profiles and responses to the given treatments. In
addition to that, precision medicine emphasizes the sig-
nificance of customizing treatments based on the specific
genetic, molecular, and environmental factors affecting
an individual’s disorder. PDX models, with their ability
to withhold the distinctive attributes of patient tumors
provide a powerful platform for testing the efficacy of dif-
ferent treatment regimens in a personalizedmanner. Since
these models necessitate grafting of human tumor tissues
into immunodeficient mice that can facilitate various drug
screening studies of pharmacological importance, it also
can aid in understanding the biology of tumors, elucidat-
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ing drug resistance mechanisms, evaluating and exploring
new therapies, and so on. The field of preclinical and
coclinical testing is currently undergoing a revolutionary
transformation a result of the integration of throughput
technologies like ML and DL in PDX model-based stud-
ies. The role of databases and repositories is instrumental
in terms of model building and processing in the domain
of ML and DL. These specialized and organized collec-
tions comprise of plethora of dataset that is served as
the substrate for the learning objectives of the computa-
tional algorithms.211 In ML, assembling the datasets (both
input and relevant output labels) is the foremost step that
forms the fundamental base line source that is used to
train ML algorithms in which it recognizes complex pat-
terns and relationships present in the data. Thus, formed
ML model is capable to prognosticate the similar and
unperceived data. DL is a sub-branch of ML that specifi-
cally flourishes on large-scale datasets for training complex
NNs. Eventually, the nature, multiplicity and range of
databases impact the efficacy ofMLandDLmodels, under-
lining the indispensable role of data in the dynamic realm
of AI. Gao et al., Koc et al., and Kim et al.212–215 have
used the various comprehensive PDX-based databases
and repositories, namely, Novartis Institutes for Biomed-
ical Research PDX Encyclopedia (NIBR PDXE), National
Cancer Institute (NCI) patient-derived models repository
(PDMR), PDX network (PDXNet) Portal, and so on, to
train ML models and to explore various objectives aiding
in development of efficient AI-drivenmodels in precession
medicine.

6.2.1 The NIBR PDXE

This extensive repository established by Novartis houses
an extensive collection of over 1000 PDX models. More
than 1000 PDX models have been established.212 It can
be employed in preclinical cancer drug development and
stands as a revolutionary enterprise in the landscape of
precision oncology.216

6.2.2 The NCI patient—PDMR

This repository was developed by the NCI, USA, which
consists of in vitro PDXs, patient-derived tumor cell cul-
tures and cancer-associated fibroblasts as well as patient-
derived organoids. This collection can be attributed as
an important asset majorly aiming for the application in
quantification of targets, pharmacodynamic assays, pre-
dictive marker development, and clinical trials for future
research in drug discovery.217

6.2.3 PDXNet portal

This particular database aims to empower collaborative
research by open sourcing the data and ensuring the easy
accessibility among scientific and nonscientific commu-
nity. Currently this portal comprises of resources from 334
new models across 33 cancer type. It is updated regularly
and efficiently applied to carry out studies on multiagent
treatment, decoding resistance mechanisms, sensitivity
determination, and preclinical trials.213,218
Optimal model complexity (OMC), which refers to the

critical balance between model simplicity and perfor-
mance in ML, is another key technical strategy that is
considered, especially in the context of PDX modeling.
In order to achieve the OMC, the model must be opti-
mized such that it is complex enough to detect unapparent
trends in the PDX data without being overly intricate
and over fitting to noise or discrepancies in the train-
ing set. A model is said to be over fit when it learns the
training set very well, including the noise/distortion in it,
which results in poor generalization on fresh data. On the
other hand, inadequate modeling occurs when a model is
overly simplistic or underperform to encompass the intri-
cacies in the PDX data leading to less-than-ideal predicted
accuracy. Locating the OMC usually requires calibrating
the hyper parameters, evaluating performance on valida-
tion datasets and conducting repetitive experiments with
diverse model complexities. Achieving the proper balance
guarantees that the ML model broadly applies to various
patient-specific experiences and hence enhancing the reli-
ability and precision of predictions inmedication response
and other biological contexts. Individual treatments rules
(ITRs) also known as personalized treatment rules are a set
of clinical recommendations based on the patient profiles
in order to maximize the efficacy of the given treatment by
personalizing it according to a subpopulation or an indi-
vidual since patients show differential responses for the
drugs,219,220 is yet another vertical of precision oncology
wherein PDXmodels and associated data clubbedwithML
can also be extrapolated to quantify them further prov-
ing the potency and flexibility of the application of ML in
precision oncology.

6.3 Cancer Risk Prediction Model
Knowledge Base database and its relation
with PDXmodels

The Cancer Risk Prediction Model Knowledge Base
(CRPMKB) plays a crucial role in providing a centralized
platform for storing and comparing cancer risk predic-
tionmodels. It contains detailed information on 802model
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data, allowing researchers to systematically compare the
accuracy of cancer risk predictions based on regional
differences, cancer types, and model types. CRPMKB cat-
egorizes model variables into environment, behavioral
lifestyle, biological genetics, and clinical examination,
highlighting the differences in variable distribution among
different cancer types. By conducting pathway enrich-
ment analyses on genes involved in specific cancer risk
prediction models, such as lung cancer, CRPMKB helps
identify significant pathways like p53 signaling and aryl
hydrocarbon receptor signaling, aiding in understanding
the biological mechanisms underlying cancer develop-
ment. Researchers can utilize CRPMKB for personalized
model applications and development, enhancing the accu-
racy of cancer risk predictions by creating more targeted
models based on specific demographic characteristics and
cancer types. The platform also offers functionalities like
data display, retrieval, submission, information sharing,
and platform management, making it a comprehensive
tool for data-driven research and personalized applications
of cancer risk prediction models.221 PDX models, which
implant patient tumor tissues into immunodeficient mice,
can be combinedwith CRPMKBmodels to improve cancer
research and personalized therapy. By adding PDX model
data into CRPMKB, researchersmay test and improve can-
cer risk prediction models based on experimental results
and real-world tumor behavior. The integration of PDX
model data with CRPMKB provides a more thorough
understanding of cancer biology, allowing for the discov-
ery of new biomarkers and treatment targets for specific
cancer types. Researchers can use data from PDX mod-
els to test the predictive accuracy of CRPMKB models,
resulting in the creation of more precise and personalized
cancer risk assessment systems. The link between PDX
models and CRPMKB accelerates translational research
by bridging the gap between preclinical studies and clin-
ical applications, ultimately enhancing patient outcomes
in cancer diagnosis and treatment.

6.4 OOC and 3D / 4D bioprinting

The applications of PDXmodels illustrate huge leap in the
domain of cancer research in the light of OOC systems and
3D/4D bioprinting technologies. OOC systems are engi-
neered microscale devices to emulate the structure and
functionality of specific organs contributing to an environ-
ment that closely resembles essential physiological traits.
OOCs provide an organ’s microenvironment to exam-
ine tumor–stroma interactions, medication responses and
cancer progression. These novel techniques aim to act in
synergy with the conventional in vitro research and in vivo
impediments. When used with PDX models, more realis-

tic representation of in vivo circumstances is facilitated by
OOC systems, which mimic the milieu of certain organs
including the tumor niche, blood arteries, and extracel-
lular matrix. According to Huh et al.,222 one example
of a device that can simulate the respiratory environ-
ment is a lung-on-a-chip. This innovative approach allows
researchers to examine lung metastasis and how the body
reacts to treatment in an environment that is very sim-
ilar to humans.222 Simultaneously, advancements in 3D
and 4D bioprinting technologies have a major impact on
improving the way in which tumor microenvironment is
represented in PDXmodels. The translational ability of tra-
ditional 2D cell cultures is hindered since they often fail to
encapsulate the stereographic complexity of malignancies.
In order to develop spatially defined and physiologi-
cally relevant tissue architectures, 3D bioprinting entails
the layer-by-layer deposition of bioinks comprising cells,
growth factors and biomaterials.223,224 It also allows the
creation of multicellular tumor spheroids or organoids in
a biomimetic extracellular matrix for use with Parkinson’s
disease PDX models.225 This method implies to metic-
ulous representation of the cellular heterogeneity and
tumor architecture. In addition to that, by using stimuli-
responsive materials that permits dynamic changes over
time 4D bioprinting an improved form of its predecessor
3D bioprinting introduces the temporal dimension with
which, tissue constructions may be created in a regulated
artificial environment that replicates the aggressive pro-
cesses of tumor development and response to therapy226,227
A dynamic change in approaches for cancer research
has taken place with the combination of 3D/4D bioprint-
ing technologies and OOC systems with PDX models.
The probability and possibility of discovering previously
unseen aspects of personalizedmedicine is becomingmore
and clearer as we continue to explore and exploit the
potential of these technologies.228

7 FUTURE DIRECTIONS

The interest in using the PDX model in cancer research
applications has been growing.150,229 From the literature
cited, it is evident that this model system has been
important in progressing various fields; however, there
are additional research areas that need to be improved
to further this exciting research model, for example, in
the field of implantation success rates. Currently, numer-
ous research groups are expanding the research on the
PDX model; however, there is a lack of standardization
amongst them concerning minimum sample size, preser-
vation media, additional supplements to aid engraftment,
and the site of engraftment. Despite these challenges,
there have been numerous success stories but this field
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of translational research will greatly benefit if the ability
to engraft all, including difficult-to-engraft tumors such
as prostate cancer, could be standardized and successful
protocols could be shared amongst research groups. The
use of this model system in high-throughput drug screen-
ing is extremely attractive especially with the potential
for ex vivo manipulation there is a significant chance of
modifications to the fundamental and unique biological
properties of the patient-specific tumor, thus negating the
translational value of the PDX model.7,230 Interestingly,
while it is well established that the PDXmodel represents a
genetically heterogeneous model at any given time, it will
only be able to provide a snapshot of a single time point of
this highly complex disease. Therefore, each PDX model
may not be able to fully represent the complex nature of
cancers. In addition, the most successful PDX models are
the forms of most aggressive phenotypes of this disease,
while this is counterintuitive, this is an interesting avenue
to pursue as these tumors are the most resistant to therapy
and are the ones most in need of novel therapeutic models
as they represent end-stage disease.231,232 As stated earlier,
the most significant benefit of this model is in its ability
to accurately predict the efficacy of therapeutic interven-
tions and therefore it needs to be incorporated into the drug
design pipeline.While tumor regression is the desired end-
point for most treatments, it is important to recognize that
different drugs, for example, anti-CSC drugs,may have dif-
ferent desired endpoints, for instance, growth delay and
latency to resistance development. Overall, the advantages
of the PDX model, such as its ability to retain tumor
characteristics provide it with many advantages in preclin-
ical tests of drug screening, biomarker development, and
coclinical trials.162,233 The advent and usage of advanced
AI/ML technologies, OOC, 3D/4D bioprinting and omics-
based tools such as NGS, allow for a comprehensive
analysis of complex data, visualization of tumor structure,
reconstruction, and so on, thus, comes out as a promis-
ing avenue in biomedical research.234–236 We believe the
PDX model is one of the appropriate and exciting preclini-
cal tools towiden the field of personalizedmedicine aswell
as understand the complex field of cancer.45,237
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