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Transcription factors regulate expression by binding selectively to sequence sites in cis-regulatory regions of genes. It
is therefore reasonable to assume that genes regulated by the same transcription factors should all contain the
corresponding binding sites in their regulatory regions and exhibit similar expression profiles as measured by, for
example, microarray technology. We have used this assumption to analyze genome-wide yeast binding-site and
microarray expression data to reveal the combinatorial nature of gene regulation. We obtained IF–THEN rules
linking binding-site combinations (binding-site modules) to genes with particular expression profiles, and thereby
provided testable hypotheses on the combinatorial coregulation of gene expression. We showed that genes associated
with such rules have a significantly higher probability of being bound by the same transcription factors, as indicated
by a genome-wide location analysis, than genes associated with only common binding sites or similar expression.
Furthermore, we also found that such genes were significantly more often biologically related in terms of Gene
Ontology annotations than genes only associated with common binding sites or similar expression. We analyzed
expression data collected under different sets of stress conditions and found many binding-site modules that are
conserved over several of these condition sets, as well as modules that are specific to particular biological responses.
Our results on the reoccurrence of binding sites in different modules provide specific data on how binding sites may
be combined to allow a large number of expression outcomes using relatively few transcription factors.

[Supplemental material is available online at www.genome.org and http://www.lcb.uu.se/∼hvidsen/binding_sites/.]

One of the major challenges faced by molecular biology is to
dissect the regulatory circuitry of living cells. Knowing the pre-
cise role of regulatory proteins such as transcription factors is key
to understanding transcriptional regulation of genes (Holstege et
al. 1998). The ability of these proteins to selectively bind specific
DNA motifs (i.e., transcription factor binding sites) in the regu-
latory regions of genes is essential for the complex regulation
observed in living organisms. As the amount of available se-
quence data is increasing, it has become possible to analyze the
regulatory regions of DNA in search for putative regulatory mo-
tifs (e.g., Brazma et al. 1998; Vilo et al. 2000). Currently the most
common approach involves searching for statistically overrepre-
sented sequence motifs (e.g., Roth et al. 1998; Liu et al. 2001;
Thompson et al. 2003). Many approaches have assumed that the
influence of different transcription factors on gene expression is
additive, leading to simple analytical models of gene regulation
(Bussemaker et al. 2001; Liu et al. 2001). However, other studies
have indicated that the synergistic effect of several transcription
factors affecting regulation of a gene is nonadditive (e.g., Gu-
haThakurta and Stormo 2001). Therefore, algorithms have been
developed based only on the assumption that genes regulated by
the same transcription factors (i.e., coregulated) also exhibit simi-
lar expression profiles obtained, for example, by the microarray

technology (i.e., coexpressed). This includes algorithms that clus-
ter genes into classes of coexpressed genes and then mine their
sequences for common motifs (DeRisi et al. 1997; Roth et al.
1998; Vilo et al. 2000; Berman et al. 2002; Gasch and Eisen 2002).

Pilpel et al. (2001) found that genes sharing pairs of binding
sites are significantly more likely to be coexpressed than genes
with only single binding sites in common. This result is in agree-
ment with the hypothesis that a limited number of transcription
factors combine in various ways in order to respond to a much
larger number of environmental conditions or stress factors. Se-
gal et al. (2003a,b) and recently Beer and Tavazoie (2004) further
developed this idea to find combinations of regulatory mecha-
nisms that best explain expression data. We present an alterna-
tive approach using “rule learning” to perform a comprehensive
analysis of the combinatorial nature of gene regulation by con-
structing rules that identify sets of binding sites (i.e., binding-site
modules) associated with particular gene expression profiles. It is
important to note that the only assumption required for this
approach is that genes that are regulated by the same transcrip-
tion factors should contain common binding sites and exhibit
similar expression. However, this is a very powerful assumption
that allows investigation of coregulation through genome-wide
sequence and expression data analysis.

The rough set theory (Pawlak 1991) and Boolean reasoning
(Brown 1990) constitute a mathematical framework for inducing
rules from examples. We used this framework, as implemented
in the Rosetta system (Komorowski et al. 2002), for the analy-
sis of sequence motif and expression data with the objective

5Corresponding authors.
E-mail fidelis@llnl.gov; fax (925) 424-6605.
E-mail jan.komorowski@lcb.uu.se; fax 46 18 471 66 98.
Article and publication are at http://www.genome.org/cgi/doi/10.1101/
gr.3760605.

Methods

856 Genome Research
www.genome.org

15:856–866 ©2005 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/05; www.genome.org



of elucidating the combinatorial nature of coregulation in
yeast. The method extracts IF–THEN rules of minimal binding-
site combinations (IF-part) shared by genes with a common
expression profile (THEN-part) (see Table 1 for an example).
The rules hence describe general, underlying relationships in
an easily understandable format, providing hypotheses on com-
binatorial coregulation that may later be experimentally vali-
dated.

To test the methodology, we used the binding-site database
previously analyzed by Pilpel et al. (2001) containing informa-
tion on 43 known binding sites (see Fig. 4 below) and 313 puta-
tive motifs and their occurrences in the promoters of all genes in
the yeast genome. These known and putative binding sites have
been identified by Hughes et al. (2000) as overrepresented motifs
in DNA sequences using a Gibbs sampling algorithm, and these
data were used in this paper without further processing. We also
used expression profiles of yeast genes under six different sets of
conditions: cell cycle (Cho et al. 1998), sporulation (Chu et al.
1998), diauxic shift (DeRisi et al. 1997), heat and cold shock
(Eisen et al. 1998), pheromone (Roberts et al. 2000), and DNA-
damaging agents (Jelinsky et al. 2000). Our results demonstrate
that we are indeed able to find binding-site combinations asso-
ciated with several coexpressed genes. Furthermore, these bind-

ing-site modules are to a large degree in agreement with experi-
mental binding data published by Lee et al. (2002). We also find
evidence for functional binding-site modules by evaluating our
results using annotations from Gene Ontology (Ashburner et al.
2000). The extensive reoccurrence of binding sites in the discov-
ered modules indicates the combinatorial nature of gene regula-
tion as a response to the studied stress conditions.

Results

Discovering potential regulatory modules

We used a framework for rule induction to investigate the rela-
tionship between binding sites and expression profiles in yeast.
For each gene we found minimal sets of binding sites that were
highly discriminatory of that particular gene and any other gene
with a similar expression profile (see Fig. 1 and Methods). Iden-
tical rules found from several different genes were removed prior
to evaluation. In the present study we placed no restriction on
the order of or distance between individual binding sites in such
binding-site modules. As an example, we will use the following
rule induced from the cell cycle data set (see Table 1 for specifics
on this rule and our Web site for all rules):

Table 1. Example of an induced rule: a rule combining binding sites RAP1, SWI5, and MCM1�

RULE: IF RAP1 and SWI5 and MCM1� THEN similar expression in cell cycle, sporulation, diauxic shift, heat and cold shock, and
DNA-damaging agents (see Fig. 2)

Gene
symbol Biological process Molecular function Cellular component

Possible transcription
factors (P < 0.01)

RPL16B Protein biosynthesis RNA binding, structural
constituent of ribosome

Cytosolic ribosome (sensu
Eukarya), large ribosomal
subunit

FHL1, GAT3, PDR1, RAP1,
RGM1, YAP5

RPL26A Protein biosynthesis RNA binding, structural
constituent of ribosome

Cytosolic ribosome (sensu
Eukarya), large ribosomal
subunit

FHL1, RAP1

RPS18A Protein biosynthesis Structural constituent of
ribosome

Cytosolic ribosome (sensu
Eukarya), eukaryotic 43S
pre-initiation complex,
eukaryotic 48S initiation
complex, mall ribosomal
subunit

FHL1, GAT3, HIR2, RAP1,
RGM1, YAP5

RPL30 Protein biosynthesis, rRNA
processing, mRNA
splicing, regulation of
translation

Structural constituent of
ribosome

Cytosolic ribosome (sensu
Eukarya), cytoplasm, large
ribosomal subunit

FHL1, GAT3, RAP1, SFP1

RPL18A Protein biosynthesis Structural constituent of
ribosome

Cytosolic ribosome (sensu
Eukarya), large ribosomal
subunit

FHL1, MAL13, RAP1, YAP5

RPL14A Protein biosynthesis RNA binding, structural
constituent of ribosome

Cytosolic ribosome (sensu
Eukarya), large ribosomal
subunit

FHL1, GAT3, GRF10(Pho2),
GTS1, RAP1

SST2 Signal transduction,
adaptation to pheromone
during conjugation with
cellular fusion

GTPase activator activity Plasma membrane DIG1, FHL1, RAP1, STE12

RPS24A Protein biosynthesis Structural constituent of
ribosome

Cytosolic ribosome (sensu
Eukarya), eukaryotic 43S
pre-initiation complex,
eukaryotic 48S initiation
complex, small ribosomal
subunit

FHL1, GAT3, PDR1, RAP1,
RGM1, SMP1, YAP5

The rule was found in five of the six gene expression data sets. All genes containing the three binding sites in their promoter regions are listed in the
table together with their annotations as to the Gene Ontology biological process, molecular function, and cellular component, and the transcription
factors they bind according to Lee et al. (2002) (P-value < 0.01). The gene expression profiles for all genes in this table are shown in Figure 2. All the
induced rules and their evaluation with Gene Ontology and binding data can be found at our Web site.
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IF RAP1 AND SWI5 AND MCM1� THEN expression similar to
RPL18A

Figure 2A shows the expression profiles of RPL18A and all the
other six genes containing the three binding sites RAP1, SWI5,
and MCM1� in the cell cycle expression data. (Table 1 lists eight
genes containing these three binding sites, but the expression
profile for one of them was not available from the cell cycle data
set.) We evaluated rules using the concept of coverage and accu-
racy. Coverage indicates the generality of the rules (i.e., the num-
ber of genes with similar expression to RPL18A and containing
binding sites RAP1, SWI5, and MCM1�), while accuracy indicates
the exactness of the rule (i.e., the fraction of genes that contain
the specified binding sites RAP1, SWI5, and MCM1� that, in fact,
have similar expression). Since one of the seven genes in Figure
2A has an expression profile that differs from that of RPL18A,
coverage is 6 and accuracy is 6/7. Obviously, rule induction may
produce a large number of very specific rules (i.e., rules with low
coverage), indicating that no general relationship could be found
between binding-site occurrences and expression data for these
genes. Other rules will cover many genes with a large diversity in
their expression profiles (i.e., rules with low accuracy), violating
the assumption that genes regulated by the same transcription
factors through common binding sites should be coexpressed.
Only when we find binding-site combinations common

to several genes with similar expression may we expect a high
probability for actual coregulation.

In order to get a good estimate of our ability to discover
biologically interesting binding-site modules, we induced rules
using only the 43 known transcription factor binding sites in
yeast (Pilpel et al. 2001). The number of rules induced from each
expression data set is given in column 3 in Table 2. Figure 3
shows the distribution of the number of binding sites in rules
induced from all expression data sets. The fact that our rule-
learning algorithm finds minimal binding-site combinations is
attractive in general (i.e., the principle of Occam’s razor stating
that the simplest model explaining the data should always be
chosen) and may be particularly relevant in biology, where, for
example, energy-expensive solutions would not be favored by
evolution. Our data indicate that typically between two and four
binding sites are sufficient to ensure coexpression in yeast, and
that combinations of more than five are very rare. These findings
are in good agreement with Segal et al. (2003b) and Beer and
Tavazoie (2004).

Evaluation using experimental binding interactions
and Gene Ontology

With the current knowledge of combinatorial coregulation there
is little information allowing us to validate potential regulatory

Figure 1. A schematic description of the method and the rule learning algorithm. (A) Rules are induced from one gene at a time by first identifying
similarly expressed genes and then by learning minimal binding-site combinations unique to these coexpressed genes. Filtered rules are finally evaluated
using Gene Ontology and binding data by Lee et al. (2002). (B) The rule learning algorithm starts by building a Boolean function describing which
binding sites are needed to discern one gene from genes with different expression profiles. This discernibility function is then simplified using a genetic
algorithm in order to find minimal binding-site combinations (reducts) satisfying the function. Rules are constructed from the minimal combinations and
filtered using accuracy and coverage. The examples given in B are constructed from the small table in A. The obtained reduct (RAP1, MCM1�, SWI5)
is the minimal combination needed to discern RPL18A from genes with a different expression. Note that the set of similarly expressed genes in A is
indiscernible from the differentially expressed gene SST2 with respect to the binding-site data. The set is thus said to be rough, and the resulting rule
has an accuracy that is <1.
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modules directly. However, Lee et al. (2002) experimentally iden-
tified binding between 106 known transcription factors and pro-
moters in yeast. We evaluated whether genes containing binding
sites specified by a rule (i.e., genes matching a rule) also seem to
be bound by the same transcription factors according to this
study. Also, genes that are coregulated may to some degree be
related by the biological roles they play. Therefore, we used Gene
Ontology (Ashburner et al. 2000) to evaluate whether the poten-
tial coregulated genes discovered by our method actually have a
significant relationship in terms of known annotations to bio-
logical processes, cellular components, and molecular function.
Haverty et al. (2004) recently used a similar evaluation scheme
on yeast regulatory networks constructed using transcription fac-
tors found in the TRANSFAC library (Wingender et al. 2000).

We evaluated genes matching the same rule by only using
binding interactions at P < 0.01 as reported by Lee et al. (2002).
For each rule and each transcription factor, we used the hyper-
geometric distribution to calculate the probability of the tran-
scription factor binding the observed or greater number of genes
by chance (i.e., the P-value) (see Methods). As an example, all
genes matching the rule in Table 1 seem to be bound by both
transcription factors FHL1 and RAP1, while five of eight genes
are bound by GAT3. The corresponding Bonferroni-corrected
(see Methods) P-values in the cell cycle data set are 2.38�10 for

FHL1, 3.38�8 for RAP1, and 2.96�5 for
GAT3 (it should be pointed out that only
RAP1 has a clearly identified correspond-
ing binding-site motif; see Case Studies
for further discussion). Of course, it may
be argued that one would expect genes
with similar expression or genes associ-
ated with any arbitrarily chosen known
binding site(s) to be bound by at least
some of the same transcription factors.
Hence, we selected a relatively strict sig-
nificance level of P < 0.01 for defining a
rule to be significant. Furthermore, we
tested whether the fraction of significant
rules extracted from each data set was
significantly higher than what we ob-
serve when investigating corresponding
sets of randomly selected genes with
only similar expression profiles, com-
mon binding sites, or neither similar ex-
pression nor common binding sites (see
Methods). Hence, we obtained P-values
both for the individual rules (available
at http://www.lcb.uu.se/∼hvidsten/
binding_sites/) and for the whole set
of rules extracted from each data set
(Table 2).

Table 2 indicates that the fraction
of significant rules, as defined using the
binding data by Lee et al. (2002), are sig-
nificantly higher than what is observed
in any randomization test (P < 0.001) for
all expression data sets except sporula-
tion. It is interesting to note that the
randomization test selecting genes with
common binding sites produced signifi-
cant results considerably more often
than the test with similarly expressed

genes. Also, both these tests produced significant results much
more often than genes selected randomly without any further
requirements. However, the obtained significance levels for
genes with common binding sites have to be considered as rela-
tively low when taking into account that we investigated only
known sites. This indicates that the occurrence of sequence mo-
tifs in promoter regions, even those corresponding to known
binding sites, is not sufficient to conclude that these sites are in
fact involved in regulation, at least not under the specific expres-
sion conditions investigated here. However, when the require-
ment of coexpression is added (rules we derive require both com-
mon binding sites and similar expression), the experimental evi-
dence for coregulation is significantly higher. The most notable
example is that of the rules induced from the cell cycle expres-
sion data. Of these rules, 54% are significant, which is consider-
ably higher than for most other expression conditions and more
than three times higher than that of randomly selected binding-
site combinations. In this context it is interesting to notice that
Lee et al. (2002) did not include any stress conditions in their
chromatin immunoprecipitation (ChIP)-based binding experi-
ments. Hence, some of the regulatory mechanisms related to, for
example, sporulation may not have been registered in this study,
explaining at least some of the differences in scores between the
different expression data sets.

Figure 2. Expression profiles for the genes containing the three binding sites RAP1, SWI5, and
MCM1�. The rule linking these binding sites to the expression profiles shown was induced from five
expression data sets (i.e., all except pheromone). Each set of graphs is labeled with the expression
condition set and with the list of genes for which expression profiles were available. Table 1 lists all
eight genes with Gene Ontology annotations and transcription factor bindings. Each graph shows how
the expression level of one gene varies over different measurement points. In A, B, and C, these
measurement points correspond to time points, while in D and E, they also correspond to other
relevant conditions: see individual publications for details. The central genes (i.e., genes for which a
rule was induced) are underlined. Genes that did not satisfy the similarity criterion are written in
parentheses, and their expression profiles are plotted with a dashed line.
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By providing an organized controlled vocabulary for de-
scribing gene and protein roles in terms of their molecular func-
tion, biological process, and cellular component (Ashburner et al.
2000), Gene Ontology lends itself as means for evaluating the
rules we derive. For each rule and each Gene Ontology term, we
used the hypergeometric distribution to calculate the probability
of the term being used to annotate the observed or greater num-
ber of genes by chance (i.e., P-value) (see Methods). Using the
rule in Table 1 as an example, only SST2 does not share common
annotations with all the other genes matching this rule. For the
cell cycle data set, the Bonferroni-corrected (see Methods) P-
values associated with observing this are 2.35�4 for the biological
process protein biosynthesis, 2.36�6 for the molecular function
structural constituent of ribosome, and 5.66�7 for the cellular com-
ponent cytosolic ribosome (sensu Eukarya). Again, we might suspect
that any genes containing common known binding sites or hav-
ing similar expression profiles might also share biological roles.
Consequently, we designate a rule as significant if at least one
Gene Ontology term obtains P < 0.01 and compare the fraction
of significant rules from each data set with what was observed for
randomly selecting genes with similar expression profiles, com-
mon binding sites, or neither similar expression nor common
binding sites (see Methods).

Table 3 indicates a significant relationship (the correspond-
ing P-values are smaller than 0.006) with the Gene Ontology

annotations for all expression data sets and in all three parts of
Gene Ontology (i.e., molecular function, biological process, and
cellular component). Expression studies show that coexpressed
genes correlate more strongly with broad biological goals (i.e.,
biological process in Gene Ontology) than with tasks performed
by individual gene products (i.e., molecular function in Gene
Ontology) (Brown et al. 2000). In agreement with these findings,
our results (Table 3) in general show higher scores for biological
process than for molecular function and cellular component.
Furthermore, the randomization tests show that genes with simi-
lar expression or common binding sites more often are signifi-
cantly coannotated with a biological process than is the case for
molecular function and cellular component. In fact, for molecu-
lar function and cellular component, these two tests perform
only marginally better than the test selecting genes randomly
without further restrictions, while for biological process they per-
form considerably better. Hence, Table 3 provides further evi-
dence for the intuitive assumption that coregulated genes more
often participate in the same biological process than they per-
form the same molecular function or are active in the same lo-
cation (i.e., cellular component). Most importantly, none of the
randomization tests performs as well as the rules. It is by com-
bining the requirements of similar expression profile and com-
mon binding sites that the truly significant results are observed.
Using the two data sources in combination hence seems to be the
best approach to discover biologically important regulatory bind-
ing-site modules, confirming similar findings by other groups
(Pilpel et al. 2001; Segal et al. 2003b; Beer and Tavazoie 2004).

Rule-related tightness of expression—comparison to single
binding sites

A legitimate question to ask is whether the discovered binding-
site modules that are often composed of more than one binding
site, are associated with tighter expression profiles than the single
sites in the modules. To answer this question, we computed the
average Euclidean distance between the central gene from which
each rule is induced and all the other genes matching that rule.
We then compared this expression tightness to what we observed
by sampling sets of genes from all genes containing each of the

Table 2. Evaluation of the induced rules using the binding data from Lee et al. (2002)

Expression data

Expression
similarity

thresholds
No. rules
unique/all

Binding data evaluation (significant fractions P < 0.01)

Rules
(P-value)

Random tests

Similar
expression

Common
motifs Random

Cell cycle 0.250 39/109 0.54 (0.000) 0.11 0.17 0.02
Sporulation 0.250 45/81 0.13 (0.708) 0.09 0.18 0.02
Diauxic shift 0.200 150/428 0.29 (0.000) 0.06 0.18 0.02
Heat and cold shock 0.125 52/123 0.52 (0.000) 0.18 0.18 0.02
Pheromone 0.150 53/91 0.39 (0.001) 0.14 0.17 0.02
DNA-damaging agents 0.200 59/116 0.35 (0.000) 0.10 0.17 0.02

A rule is said to be significant if at least one transcription factor binding any of the matching genes obtained a Bonferroni-corrected P-value of <0.01
(only experimental bindings at P < 0.01 from Lee et al. 2002 were considered). The table gives the fraction of significant rules for each data set, and
compares these values to what is observed when randomly selecting corresponding sets of genes with only similar expression, common binding sites,
or neither. All three random tests produce a P-value that is the probability of observing a higher value than the one reported for the rules. We show the
highest of these P-values in parentheses and mark the corresponding random test in bold if this P-value is >0. The table also gives the Euclidean distance
threshold (normalized by the number of measurement points) used to define similar expression profiles and the number of rules induced for each
expression data set (number of rules unique to that data set/all rules derived for that data set). Additional statistics on the standard deviation of the
random test scores and comparisons to a new binding data set (Harbison et al. 2004) may be found at our Web site.

Figure 3. The figure shows how the rules induced from all expression
data sets distribute over the number of binding sites included in the rules.
The results indicate that most often three binding sites are required to
obtain coexpression.

Hvidsten et al.

860 Genome Research
www.genome.org



single binding sites in the rule. For example, the seven genes
associated with the three binding sites RAP1, MCM1�, and SWI5
in the running example had an expression tightness of 0.19 in
the cell cycle data set. The probability (P-value) of sampling
seven genes with an equal or tighter expression similarity, con-
sidering only one of these sites, was 0.030 for RAP1 and 0.000 for
MCM1� and SWI5 (we performed 1000 samplings for each bind-
ing site). In fact, 72% of the rules induced from the cell cycle data
set had a significant increase in expression tightness (P < 0.05)
compared to any of the individual binding sites in the rule. Cor-
responding numbers were 58% for sporulation, 53% for diauxic
shift, 46% for heat and cold shock, 96% for pheromone, and 73%
for DNA-damaging agents (P-values for all rules may be found at
http://www.lcb.uu.se/∼hvidsten/binding_sites/). These results
show that it is very unlikely that the discovered binding-site
modules are simply binding sites occurring together by chance.

Reoccurrence of binding sites in identified modules

We obtained binding-site combinations by inducing rules start-
ing from each gene in each expression data set. Many of the 948
obtained binding-site combinations were identified for several
different genes and in several different expression data sets. Re-
moving repeating occurrences of such modules within specific
expression data sets reduces the number of combinations to 398,
while removing repeats over all expression data sets further re-
duces this number to 280 unique binding-site combinations.
Hence, most of the rediscovery was done inside data sets (reduc-
tion from 948 to 398 rules) by finding the same combinations
starting from several different genes. However, the same binding-
site combinations were also found under several different gene
expression conditions (reduction from 398 to 280 rules). The
expression data sets represent biological responses to different
environmental changes (e.g., heat and cold shock), and it seems
natural that these stress conditions result in different regulatory
modules being activated. On the other hand, a substantial frac-
tion of gene regulation may remain the same independent of
these external changes. Table 4 lists the binding-site combina-
tions identified under several different sets of expression condi-
tions, and hence possibly reflecting binding modules important
in all these biological settings. In total, 68 rules were found in
more than one expression data set, while the rest (212) were

found only in one. The second combination in Table 4 is our
running example from Table 1 including binding sites RAP1,
SWI5, and MCM1�; this module was associated with coexpressed
genes under five different expression conditions. Such combina-
tions may be of particular interest because of the large amount of
evidence accumulated from several expression studies conducted
under different biological conditions.

Another interesting case involves individual binding sites
that are members of binding-site combinations. Most binding
sites occur in several different modules (i.e., rules) and hence
seem to combine with binding sites for several different tran-
scription factors. Figure 4 illustrates which two binding sites oc-
cur together in at least one rule and to how many different com-
binations each binding site is predicted to belong. It is worth
emphasizing that this graph only shows pairs of binding sites
operating in the same binding-site modules and does not illus-
trate a regulatory network. The graph also highlights binding-site
pairs from modules that were found under more than one set of
expression conditions. The graph indicates the existence of a
certain core of binding sites that are particularly frequently used
and are involved in a large number of different binding-site com-
binations found for different biological responses. These might
be the underlying regulatory combinations making the cell work
under normal conditions (i.e., the cell cycle), while the more
peripheral combinations are activated as a response to particular
environmental changes (as given by the other five sets of expres-
sion conditions). It is also interesting to observe the topology of
the graph in Figure 4. The fact that the graph does not contain
subparts with high intraconnectivity and low interconnectivity
suggests that the regulatory system to a large degree combines
different binding sites in order to allow a relatively small number
of transcription factors to govern a much larger number of ex-
pression outcomes.

Including putative binding sites

The method used for the experimentally tested transcription fac-
tor binding sites may also be used for an extended binding-site
library containing both the known binding sites and the 313
putative motifs. Inducing rules from the cell cycle data resulted
in 1055 combinations (of which 656 were unique) including

Table 3. Evaluation of the induced rules using annotations from the three parts of Gene Ontology

Expression data

Gene Ontology evaluation (significant fractions P < 0.01)

Rule (P-values)
Random tests

Similar expression/common motifs/random

Molecular
function

Biological
process

Cellular
component

Molecular
function

Biological
process

Cellular
component

Cell cycle 0.31 (0.000) 0.46 (0.000) 0.41 (0.000) 0.05 0.04 0.01 0.13 0.18 0.03 0.03 0.04 0.00
Sporulation 0.26 (0.000) 0.54 (0.000) 0.44 (0.000) 0.08 0.04 0.01 0.19 0.17 0.02 0.05 0.03 0.00
Diauxic shift 0.30 (0.000) 0.43 (0.000) 0.44 (0.000) 0.04 0.05 0.02 0.11 0.17 0.03 0.02 0.03 0.00
Heat and cold shock 0.54 (0.000) 0.64 (0.006) 0.60 (0.000) 0.24 0.06 0.03 0.46 0.24 0.05 0.17 0.04 0.01
Pheromone 0.51 (0.000) 0.67 (0.000) 0.60 (0.000) 0.10 0.05 0.01 0.25 0.16 0.02 0.08 0.03 0.00
DNA-damaging agents 0.39 (0.000) 0.64 (0.000) 0.61 (0.000) 0.09 0.05 0.01 0.19 0.17 0.03 0.07 0.04 0.00

A rule is said to be significant if at least one Gene Ontology term used to annotate the matching genes obtained a Bonferroni-corrected P-value of <0.01.
The table gives the fraction of significant rules for each data set and each part of Gene Ontology, and compares these values to what is observed when
randomly selecting corresponding sets of genes with only similar expression, common binding sites, or neither. All three random tests produce a P-value
that is the probability of observing a higher value than the one reported for the rules. We show the highest of these P-values in parentheses and mark
the corresponding random test in bold if this P-value is >0. Additional statistics on the standard deviation of the random tests may be found at our Web
site.
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most of the rules found using the set of known sites (78 of 109)6

and 323 rules with at least two known binding sites also occur-
ring together in the previously found rules. The latter may be of
special interest in discovering new regulatory modules. Again
using the rule in Table 1 as an example (binding sites RAP1,
SWI5, and MCM1�), we found two new overlapping modules:

MCM1� AND RAP1 AND m_g-proteins_orfnum2SD_n12

MCM1� AND SWI5 AND m_metal_ion_transporters_orfnum2SD_
n17

The first module is associated with five genes (RPL11B, RPP1B,
RPL30, RPL14A, and RPL26A). Although only three of them are
found in Table 1, all of them have the same biological roles as the
genes in that table (biological process: protein biosynthesis; mo-
lecular function: structural constituent of ribosome; and cellular
component: cytosolic ribosome) and are possibly bound by one of
the same transcription factors (FHL1). This might be considered
as strong evidence that the sequence motif m_g-proteins_
orfnum2SD_n12 is involved in a regulatory module together
with MCM1� and RAP1. The second module is associated with a
totally different set of genes (MDJ1, SSQ1, VPS4, TFS1, ORT1)
with a less clear interpretation in terms of Gene Ontology anno-
tations (biological process: protein metabolism, three genes; mo-
lecular function: chaperone activity, two genes; and cellular com-
ponent: cytoplasm, four genes), and with no common transcrip-
tion factors according to Lee et al. (2002). Although this
combination might be more difficult to interpret, it illustrates
the power of (re-)combining binding sites to address a com-
pletely different set of genes.

Evaluating all rules induced from known and putative mo-
tifs, 26%, 30%, and 26% of the rules were significant according to
Gene Ontology annotations to molecular function, biological
process, and cellular component, respectively, while 20% were
significant according to the binding data (significance level 0.01
as before). These scores are considerably lower than the scores
obtained using only known binding sites, but still compare fa-
vorably to results obtained from randomly selected genes and
genes with only similar expression profiles or only common
known binding sites (see Tables 2 and 3). The fact that rules

induced from known binding sites score better may be consid-
ered as a further confirmation that these known binding sites
actually are active, and moreover, that the set of putative motifs
includes a considerable number of false positives. Furthermore,
90% of the rules induced from known and putative motifs had a
significant increase in expression tightness (P < 0.05) compared
to any of the individual motifs in the rules.

Case studies

Although in this work we focused on a statistical evaluation of
our method, we now look more closely at the biology behind two
of the discovered combinations. The following discussion is
based on the information available in the Saccharomyces Genome
Database (SGD) and the relevant literature.

The running example suggests a connection between RAP1,
MCM1�, and SWI5. The transcription factor RAP1 targets several
genes that encode ribosomal proteins and that have an extremely
high expression in rapidly growing yeast cells. However, RAP1 is
also known to be required for the transcription of several nonri-
bosomal proteins, which hints at the need for a combinatorial
regulatory mechanism to separate these activities. The fact that
the transcription factors MCM1 and SWI5 are related to cell cycle
regulation suggests that one way for RAP1 to specifically target
ribosomal proteins in growing yeast cells is to require the pres-
ence of MCM1 and SWI5. This is also supported by the Gene
Ontology annotations in Table 1, which suggests that the genes
associated with the binding sites RAP1, MCM1�, and SWI5 are
involved in ribosomal activity. The combination is also sup-

6Some rules may not survive the expression similarity filtering when additional
genes are added or may merge with larger rules including both the previous
known binding-site module composed of known binding sites and the addi-
tional putative sites.

Figure 4. Graph showing which binding-site pairs participate in the
same binding-site modules as hypothesized by our rules. Nodes are the
binding sites, and there is an edge between any two binding sites if they
appear in the same rule (the number of rules including a particular bind-
ing site is given in brackets). Bold edges indicate that the two binding
sites appear in a rule that was induced from more than one expression
data set. The graph includes 41 of the 43 known binding sites. GAL and
MET31–32 were not found in any rule. Corresponding graphs con-
structed using only significant rules according to each part of Gene On-
tology and the binding data by Lee et al. (2002) may be found at http://
www.lcb.uu.se/∼hvidsten/binding_sites/.

Table 4. Rediscovering potential binding-site modules from
several expression data sets

Binding-site combination

PAC AND mRRPE
MCM1� AND RAP1 AND SWI5
MCM1� AND PAC AND mRRPE
LYS14 AND PAC AND mRRPE
MCM1� AND RAP1

The table shows binding-site combinations found in five of six gene ex-
pression data sets (no combination was found in all six data sets). Fre-
quently occurring binding sites in combinations found in several expres-
sion data sets are PAC (polymerase A and C-box), mRRPE (ribosomal RNA
processing element), and RAP1 (repressor activator protein). These bind-
ing sites were much less frequent in combinations found in one or two
expression data sets. An extension of the table listing all combinations
and the information from which expression data sets they were induced
may be found at our Web site.
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ported in literature: Gray and Fassler (1993) published data sug-
gesting that in Ty1 elements RAP1 forms a complex with MCM1,
while Lydall et al. (1991) showed that MCM1 and SWI5 are re-
sponsible for the cell-cycle-restricted transcription of SW15.

Another example is the rule associating STRE� and GCR1
with the group of genes ENO1, ZWF1, TDH1, ALD4, and BMH1.
Since zinc finger proteins MSN2 and MSN4 bind to the STRE�

binding site (Herrero et al. 1999), and the transcription factor
GCR1 binds to the binding site of the same name, the rule sug-
gests a connection between stress response (STRE) and control of
glycolysis (GCR1). Indeed, Herrero et al. (1999) showed that
GCR1 is needed for constitutive expression of the GLK1 gene,
while the STRE element is needed for induction/de-repression of
the same gene in the presence of ethanol (or rather absence of
glucose).7 A logical explanation is that the absence of glucose
may be regarded as one form of stress (nutrient stress or starva-
tion). The glucose level does affect cAMP signaling, which, in
turn, regulates MSN2/4 activity, and hence a mechanism is also
available. The rule indicates a possibility that the matching genes
may be involved in the primary carbon metabolism in a way
similar to GLK1. This applies to the five genes, four of which fit
this assumption (ENO1, ZWF1, TDH1, and ALD4 are annotated
with alcohol metabolism) and one that possibly does not (BMH1
is involved in MAP kinase signaling).

Discussion
We have presented a novel method to discover potential regula-
tory binding-site modules from a library of sequence motifs and
gene expression data. We have selected binding-site combina-
tions for which the occurrence of several genes with a common
expression profile indicates a likely relationship between these
binding sites and gene expression. These combinations represent
strong evidence for actual coregulation, in particular, when the
same combinations are found in several sets of expression con-
ditions (e.g., Table 1 and Fig. 2).

Since literature-based validation of combinatorial regulation
appears not to provide any significant number of cases, we re-
sorted to validation using experimental data on transcription fac-
tor binding to specific yeast promoters (Lee et al. 2002), and
separately, using Gene Ontology to test for common biological
roles among putatively coregulated genes. Both of these external
sources showed a statistically significant result for genes hypoth-
esized to be coregulated through binding-site modules discov-
ered with our method. It is particularly interesting to notice that
an organism-independent source of knowledge such as Gene On-
tology confirmed the biological relationship between many
genes associated with common potential regulatory module for
all three aspects of the cellular roles of genes (i.e., biological pro-
cess, molecular function, and cellular component). Also, we ob-
served that adding noise to the set of binding sites used in the
calculations (in terms of putative motifs) decreased the scores of
both binding data and Gene Ontology, suggesting that, in fact,
the known binding sites are, indeed, involved in regulation. Fi-
nally, we also see a relationship between these external valida-
tion methods and the parameters in the learning framework
(data available at http://www.lcb.uu.se/∼hvidsten/binding_
sites/). Specifically, it is clear that rules of higher quality either in
terms of accuracy/coverage or in terms of expression tightness

obtain higher scores with respect to both the binding data and
Gene Ontology.

Several other studies investigating the combinatorial nature
of gene regulation in yeast have been published. Pilpel et al.
(2001) provided evidence for the existence of combinatorial in-
teraction between transcription factors by observing a significant
increase in expression similarity between genes sharing one com-
mon transcription factor binding site and genes sharing a pair of
binding sites. Expression similarity was measured based on Eu-
clidean distance, and the study provided a simple, yet effective,
method for proving the combinatorial nature of gene regulation
in yeast. Segal et al. (2003b) used an expectation maximization
(EM) algorithm to obtain sets of genes that are coregulated (gene
modules) through a combination of sequence motifs. The algo-
rithm first clusters expression data into gene modules and then
selects motif combinations for each module. It then iteratively
moves genes between modules to optimize the degree to which
selected motifs explain the expression profiles in the modules.
Segal et al. (2003a) used the same methodology to build gene
module networks using gene expression data and candidate regu-
lators such as known transcription factors or signaling proteins.
Beer and Tavazoie (2004) built similar networks using expression
data and sequence motifs. We have used a rule-based approach
based on finding minimal binding-site combinations associated
with coexpressed genes. Segal et al. (2003a,b) and, to some de-
gree, Beer and Tavazoie (2004) aim at explaining coregulation as
a set of broad nonoverlapping gene clusters. Our aim is rather to
explore a large number of overlapping groups in search for bind-
ing-site modules associated with an often relatively small set of
genes. We then select instances where substantial evidence for
coregulation exists. In this way we discover binding-site combi-
nations that are more often significant than the findings re-
ported by the previous studies. These comparisons are made in
terms of Gene Ontology annotations and in terms of binding
data by Lee et al. (2002) (data comparing different published
approaches available at http://www.lcb.uu.se/∼hvidsten/
binding_sites/). We also observed that genes with similar expres-
sion or common binding-site motifs are more often annotated
with the same biological process, compared to randomly selected
genes, than with the same molecular function or cellular com-
ponent. This is in agreement with assumptions and previous ob-
servations of other authors (e.g., Brown et al. 2000).

As more and more genomes are sequenced, the efforts in
molecular biology turn to functional genomics; understanding
gene regulation and the cellular roles of gene products. The au-
tomated processing of thousands of genes and gene products
with respect to measured data and available knowledge is neces-
sary in order for progress to be made in this field. Gene Ontology
provides one approach to formalizing biological knowledge, and
using Gene Ontology annotations we have shown that genes
with common binding sites and common expression profiles ex-
hibit a significantly higher probability for being functionally re-
lated than genes matching any of these criteria alone. This shows
the power of combining the sequence data (static code) and the
expression data (dynamic execution) in the pursuit of under-
standing both regulation and function, and in particular in the
discovery of functional regulatory modules.

The binding-site modules we have predicted here may be
interpreted as complex nodes in a gene regulation network simi-
lar to what was proposed by Segal et al. (2003a). Two nodes
would be connected by an edge if one of the transcription factors
binding to one of the sites specified by the child node was coded

7Note that GLK1 is not included in the list of genes matching the rule because
it was filtered out owing to missing data.
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by one of the genes associated with the parent node. The fact that
modules discovered here correspond reasonably well with the
experimental binding data demonstrates the viability of building
such regulatory networks. However, we also see several other
extensions within the framework of the present work leading to
better understanding of the regulatory mechanisms. Since some
transcription factors are only active at certain times or under
certain conditions, a more advanced definition of coexpression
which, for instance, takes into account correlation over subsets of
expression time points might be advantageous (see Lægreid et al.
2003). Another current research issue involves repeating the
grouping of expression profiles and rule induction in a feedback
loop. It would allow refining of both the groups and the set of
rules in an iterative procedure using groups of coexpressed genes
to induce rules and using rules to improve the groups. By doing
so we could significantly improve the consistency of the result-
ing model and reduce the impact of both the intrinsic noise in
the expression data and the large number of false positives
among automatically inferred sequence motifs. We would also
like to test this approach on different organisms. There are pos-
sibilities for applying it to higher organisms, for example, by
using noncoding elements conserved between human and
mouse as putative regulatory motifs. Another possible applica-
tion is to use our method to analyze microbial data. As more and
more microbial genomes become available and expression stud-
ies are conducted for these genomes, we could produce consis-
tent rule-based models of transcriptional regulation.

Methods

Data material
Known and putative regulatory motifs and their occurrences in
promoters in yeast genes were obtained from Pilpel et al. (2001).
Gene expression data were downloaded from ExpressDB (Aach et
al. 2000). Expression profiles were log-transformed and normal-
ized individually to a unit standard deviation with a mean of
zero. For genes where several expression profiles were available
under the same conditions, we averaged them to form one pro-
file. Profiles with missing values were removed completely since
this only applied to a few genes in each data set.

We used Gene Ontology version 1.320. Annotations were
downloaded from the Gene Ontology Web site.

Rough set-based rule induction
The rough set theory is a mathematical framework for analyzing
tabular data. For the gene regulation analysis in this paper, we
have constructed a table with genes as rows, binding sites as
columns, and entries 1 or 0 depending on whether the binding
site was present in the promoter region of the corresponding
gene or not. The theory sees the data in terms of equivalence
classes, in this case sets of genes that are indiscernible (indistin-
guishable) with respect to an arbitrary subset of binding sites. A
“rough set” is a set of genes that cannot be uniquely represented
by these basic classes. In practice, this means that a set is rough
if it only partly overlaps with one of the equivalence classes. Sets
of genes satisfying this requirement cannot be uniquely defined
using the binding sites since at least one gene in the set is asso-
ciated with the exact same binding sites as at least one gene not
in the set.

We subsequently classified genes according to whether they
were expressed similarly to one particular fixed gene or not. Such
sets of similarly classified genes (i.e., coexpressed genes) are

called “decision classes.” In particular, decision classes may be
rough sets, in which case at least one gene with different expres-
sion cannot be discerned from the coexpressed genes using the
binding sites. To obtain combinations of binding sites, we built a
Boolean function (i.e., a function that evaluates to true or false)
that is only true for the binding-site combinations needed to
discern the fixed gene from genes not in the decision class. We
then simplified this so-called discernibility function to obtain
minimal combinations of binding sites discerning a sufficiently
large fraction of genes (90% in this study) with different expres-
sion than those in the decision class of coexpressed genes. We
used a genetic algorithm to search for such approximate solu-
tions called approximate reducts. Finally, IF–THEN rules were
constructed to obtain links between minimal combinations of
binding sites (i.e., reducts) and particular expression profiles. The
framework is implemented in our software system called the
ROSETTA system, which is available on the Web.

Grouping gene expression and selecting important rules
We defined two genes to have similar expression profiles if the
Euclidean distance, normalized by the number of measurement
points, was shorter than a specified threshold distance. The
threshold distances were in general chosen to be relatively loose
(see column 2 in Table 2) allowing a broad search for potentially
coregulated genes. Stricter thresholds in general resulted in fewer
rules with better evaluation scores (see our Web site for data).
Furthermore, we found that reasonable criteria for including a
rule in our study were a coverage value of at least 5 and an
accuracy value of at least 2/3. These values where chosen so that
virtually no rules were selected during multiple rule induction
from random gene expression groups.

Computing P-values for binding interactions
and Gene Ontology
For each rule, we used the hypergeometric distribution to calcu-
late P-values for each transcription factor using the binding in-
teractions by Lee et al. (2002). The P-values were computed using
the formula

p�x; N, n, k� = �
i=x

min�k,n� �k

i ��N − k

n − i �
�N

n �
,

where x is the number of genes matching the rule that were
bound by the transcription factor, N is the number of genes in
the data set, n is the number of genes matching the rule, and k is
the number of genes in the data set bound by the transcription
factor. Hence, the P-value is the probability of the transcription
factor binding the observed or greater number of genes by
chance. Since we calculated one P-value for each transcription
factor, we multiplied the resulting P-values by the number of
transcription factors binding to at least one gene matching the
rule. This is called the Bonferroni correction for multiple hypoth-
eses. We chose 0.01 as the significance level and considered a rule
to be significant if at least one transcription factor had a Bonfer-
roni-corrected P-value lower than this level. Correspondingly, we
also calculated P-values for Gene Ontology annotations and con-
sidered a rule to be significant for one part of Gene Ontology if at
least one annotation from this part had a Bonferroni-corrected
P-value of <0.01.

In addition to reporting P-values for each rule, we also re-
ported P-values for the fractions of significant rules induced from
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each data set. For this purpose, we conducted randomization
tests in which sets of genes were drawn according to different
requirements and an element of randomness was introduced (see
a description of the three tests below). To ensure that the tests
were directly comparable with the rules, we drew as many sets of
genes as there were rules and calculated the fraction of significant
sets. We then repeated this process 1000 times and counted the
fraction of times we observed more significant sets than the num-
ber of significant rules in the original rule set. This fraction may
be interpreted as a P-value, that is, the probability of observing at
least that many significant rules under different randomization
assumptions.

In the three randomization tests, we randomly sampled

1. genes with similar expression profiles, that is, we drew one
gene randomly and added the closest genes in the expression
space (using Euclidean distance);

2. genes with common binding sites, that is, we randomly
sampled a set of binding sites and selected the set of genes
with these sites in common; and

3. genes without any further restrictions.

Each randomly sampled set corresponded to a particular rule in
the sense that we drew the same number of genes as found
matching the rule (tests 1 and 3) or the same number of binding
sites as in the rule (test 2).

Detailed results
All rules and their evaluation with binding data and Gene On-
tology can be found in Supplemental material, which also in-
cludes standard deviation for the randomization tests in Table 2
and Table 3 and extended versions of Table 4 and Figure 4.
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