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Background and Purpose: The continuous accumulation of M2 macrophages may potentially contribute to the development of
kidney fibrosis in chronic kidney disease (CKD). The purpose of this study was to analyze the infiltration of M2 macrophages in
uremic patients and to seek new strategies to slow down the progression of renal fibrosis.
Methods: We conducted a comprehensive search for expression data pertaining to uremic samples within the Gene Expression
Omnibus (GEO) database, encompassing the time frame from 2010 to 2022. Control and uremic differentially expressed genes
(DEGs) were identified. Immune cell infiltration was investigated by CIBERSORT and modules associated with M2
macrophage infiltration were identified by weighted gene coexpression network analysis (WGCNA). Consistent genes were
identified using the least absolute shrinkage and selection operator (LASSO) and selection and visualization of the most
relevant features (SVM-RFE) methods to search for overlapping genes. Receiver operating characteristic (ROC) curves were
examined for the diagnostic value of candidate genes. Quantitative real-time PCR (qPCR) examined the expression levels of
candidate genes obtained from uremic patients in M2 macrophage.
Results: A total of 1298 DEGs were identified within the GSE37171 dataset. Significant enrichment of DEGs was observed in 20
biological processes (BP), 19 cellular components (CC), 6 molecular functions (MF), and 70 Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways. CIBERSORT analysis observed a significant increase in B-cell memory, dendritic cell activation,
M0, M1, M2, and plasma cell numbers in uremic samples. We identified the 10 most interrelated genes. In particular,
adenomatous polyposis coli (APC) and zinc finger and BTB structural domain 2 (ZBTB2) were adversely associated with the
infiltration of M2 macrophages. Importantly, the expression levels of APC and ZBTB2 were far lower in M2 macrophages
from uremic patients than those in healthy individuals.
Conclusion: The development of renal fibrosis may be the result of M2 macrophage infiltration promoted by APC and ZBTB2.
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1. Introduction

The prevalence of people with chronic kidney disease (CKD)
has been rising, affecting an estimated 843.6 million people
worldwide in 2017, partly due to a gradual increase in risk
factors, including obesity and diabetes [1]. CKD will be the
fifth most common cause of death worldwide by 2040 [2].
Due to the high morbidity and mortality of CKD, finding
strategies to slow down the course of CKD is crucial for
patients, society, and the nation.

Activation of mesenchymal cells and fibroblasts,
epithelial-mesenchymal transition of renal tubules, and
monocyte/macrophage infiltration and apoptosis are a series
of biological processes (BP) leading to the development of
fibrosis [3–5]. Specifically, M2 macrophage infiltration is
an important factor contributing to renal fibrosis [6]. A
study by Toki et al. [7] found a strong correlation between
fibrosis and M2 macrophages observed in allogeneic renal
transplant patients, with a higher infiltration of M2 macro-
phages being associated with a lower estimated glomerular
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filtration rate (eGFR). Similar findings were observed in a
study by Ikezumi et al. [8], who found that infiltration of
M2 macrophages was associated with an increase in intersti-
tial fibrosis. Furthermore, a strong association between
fibrotic areas and M2 macrophages was likewise found in
the renal tissue of IgA nephropathy patients [9]. Thus, M2
macrophage infiltration plays a crucial role in renal fibrosis
from various causes, and determining the mechanism of
M2 macrophage infiltration is important to slow the pro-
gression of CKD in patients.

Recently, new disease-associated genes that can serve as
diagnostic and prognostic biomarkers have been identified
using microarray technology and comprehensive bioinfor-
matics studies. However, the diagnostic role of genes associ-
ated with M2 macrophage infiltration in renal fibrosis
remains uncertain. Therefore, in this study, the Gene
Expression Omnibus (GEO) database provided us with a
microarray dataset of uremic patients, and we used bioinfor-
matics to identify biomarkers associated with M2 macro-
phage infiltration, while hoping to reveal the
pathophysiological processes by which M2 macrophage
infiltration promotes the development of renal fibrosis.

2. Materials and Methods

2.1. Methodological Type and Data Source. This research
endeavor involved a bioinformatics investigation aimed at
identifying datasets pertaining to renal fibrosis and uremia
spanning the years 2010 to 2022. Ultimately, the GSE37171
dataset emerged as the most suitable candidate, encom-
passing a total of 40 control samples and 75 samples
associated with uremia [10]. The GSE37171 dataset
encompassed the acquisition of peripheral blood samples
from individuals diagnosed with end-stage renal failure,
as well as from healthy controls. These samples were
subjected to genome-wide microarray analysis with the
objective of investigating alterations in gene expression
linked to uremia.

2.2. Disclosing Ethics Information. The protocol of this study
was approved by the Institutional Review Board of the Sec-
ond Affiliated Hospital of Nanchang University (Review
[2022] 104). All study procedures involving human partici-
pants were in accordance with institutional and/or National
Research Council ethical standards and the 1964 Helsinki
Declaration.

2.3. Identification and Functional Enrichment Analysis of
Differentially Expressed Genes (DEGs). In the dataset
GSE37171, the difference between the control and uremic
samples was defined based on log 2FC > 1 and adjusted
for p < 0 05. It was identified using the Limma R package
[11]. For the DEGs’ pathway enrichment analysis, the Clus-
terProfiler R package [12] was used. As part of the Gene
Ontology/Kyoto Encyclopedia of Genes and Genomes
(GO/KEGG) analysis, BP, molecular functions (MF), and
cellular components (CC) were included.

2.4. CIBERSORT. We used the CIBERSORT method for cell
type identification to infer the abundance of different cell

types, which was developed by Newman [13] et al. The
CIBERSORT method is based on a known reference set that
provides a gene expression signature set for 22 immune cell
subtypes: leukocyte signature matrix (LM22). LM22 con-
tains 547 genes and 22 immune cell types, including 7 T-
cell types (follicular helper, regulatory [Tregs], gamma delta,
CD8, CD4 naive, CD4 memory resting, and CD4 memory
activated); naive and memory B-cells; active and resting den-
dritic cells; active and resting immune cells; resting and
active macrophages; active mast cells and plasma cells; and
eosinophils and neutrophils. p values, correlation coeffi-
cients, and root mean square errors were calculated for 22
immune cell subpopulations. Therefore, samples with
CIBERSORT of p < 0 05 as the cutoff value and only samples
with p < 0 05 were expected for further analysis. In addition,
the number of permutations defining the feature matrix was
1000. Immune cells with expression of 0 were removed.
Finally, 17 immune cells were selected for further analysis.

2.5. Weighted Gene Coexpression Network Analysis (WGCNA)
Network Construction and Module Identification. We con-
structed coexpression networks using the WGCNA R package
[14]. As a preliminary step, a clustering tree diagram was pro-
duced. Subsequently, gene expression profiles from the
GSE37171 dataset and sample characteristics corresponding
to different types of immune cells were used to calculate
WGCNA. WGCNA uses a scale-free topology algorithm to
calculate the soft threshold. This algorithm uses the power
law distribution of the network to calculate the optimal soft
threshold for the network. The soft threshold is then used to
calculate the adjacency matrix, which is used to construct the
network. We first transformed the adjacency matrix into a
topological overlap matrix, and then used the degree of dis-
similarity to establish the gene dendrogram and module color.
By dynamic tree cutting, the original modules were further
separated and combined with modules with similar functions.
To determine which module (hub module) was most closely
related to the sample traits, we calculated correlations between
the module feature genes and sample traits. We selected the
MElightgreen and MEgreen modules, which are most closely
associated with M2 macrophages, based on the results of cor-
relation analysis to identify hub genes.

2.6. Identification of Hub Gene and Construction of a
Protein-Protein Interaction (PPI) Network. To analyze the
interaction of M2 macrophage genes with possible proteins,
a PPI network of M2 macrophage modules intersecting with
DEGs was created using STRING 11.0 (https://string-db
.org/) and Cytoscape (version 3.9.0) software [15]. To fur-
ther understand the interactions between M2 macrophages
and DEGs, the cytoHubba [16] plugin in Cytoscape software
was used to identify closely linked gene center clusters. For
further analysis, we selected clusters of 10 nodes only.

2.7. Identification of Biomarkers in M2 Macrophages. Least
absolute shrinkage and selection operator (LASSO) [17] is
used to scale down and select variables to reduce model
complexity and improve predictive performance. Initially,
genes from MElightgreen, MEgreen modules, and DEGs
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were subjected to WGCNA analysis to identify potential M2
macrophage infiltrating genes. Next, the LASSO method was
used to select genes. We arbitrarily divided the GES37171
dataset into a training set (70%) and a testing set (30%)
and analyzed the diagnostic power of the obtained genes
on the training and testing sets using receiver operating
characteristic (ROC) [18]. Subsequently, the selection and
visualization of the most relevant features (SVM-RFE)
method was implemented using the e1071 package [19,
20]. Potential genes were identified again by overlaying
LASSO and SVM-RFE genes, and diagnostic accuracy was
assessed using ROC curves.

2.8. Subject Characteristics and Quantitative Real-Time PCR
(qPCR). To determine whether the screened genes differ
between healthy individuals and uremic patients, we
obtained peripheral blood from healthy individuals and ure-
mic patients for validation. Our study included individuals
who were 18 years of age or older and diagnosed with
CKD Stage 5 requiring dialysis treatment. However, patients
with malignancy, acute infections such as pneumonia, acute
heart failure, and severe anemia were excluded from the
study. Secondly, we included individuals who exhibited nor-
mal liver and kidney function, serum lipids, blood pressure,
blood glucose, and body mass index (BMI) levels, while also
lacking risk factors for CKD such as hypertension, diabetes,
and obesity.

Ten milliliter of blood was diluted 1:1 with phosphate-
buffered saline (PBS) and 10mL of Ficoll reagent (Solarbio,
Beijing) and centrifuged at 400×g for 20min at room tem-
perature. Peripheral blood mononuclear cells at the interface
of the PBS and Ficoll layers were collected in new tubes [21].
The resulting cells were washed three times with PBS, and
the cell density was adjusted to 1 × 106/mL using DMEM
(Thermo Fisher Scientific, USA) containing 200U/mL of
double antibody. M2 macrophages were selected by flow
sorting, inoculated into 24-well plates and cultured in an
incubator at 37°C for 4 h. After 4 h, the supernatant was dis-
carded and washed three times with PBS, and wall-adherent
macrophages were obtained.

According to the manufacturer’s directions, EASY spin
Cellular RNA Rapid Extraction Kit (Aidlab Biotechnol-
ogies, Beijing) was utilized to extract RNA from the M2
macrophages of uremic patients (N = 10, 4 males and 6
females) and healthy individuals (N = 10, 4 males and 6
females). The Nanodrop2000 Nucleic Acid Protein Assay
(Thermo Fisher Scientific, USA) was used to determine
the concentration and purity of RNA. Reverse transcrip-
tion of 1μg of total RNA per sample was performed using
the SweScript RT I First Strand cDNA Synthesis Kit (Ser-
vicebio, Wuhan, China) according to the manufacturer’s
recommendations, followed by qPCR experiments. 2×
SYBR Green qPCR Master Mix (Servicebio, Wuhan) was
used for qPCR reactions, using 1μL of cDNA, and the
desired number of individual primers in a total volume
of 20μL. The experiments are performed in triplicate.
Gene expression is calculated using the 2−ΔΔCT method.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is
used as an internal reference gene. The primer sequences

are as follows: adenomatous polyposis coli (APC)-F:
AGCACAGCGAAGAATAGCCA, APC-R: TTGACCTTC
ATTCTGCCCGCT; zinc finger and BTB structural
domain 2 (ZBTB2)-F: GGATTTGGCCAACCATGGAC,
ZBTB2-R: TGGTTTCAAGCGGACACACT; and
GAPDH-F: GTCAAGGCTGAGAACGGGAA, GAPDH-R:
AAATGAGCCCCAGCCTTCTC.

2.9. Statistical Analysis. The DEGs for the dataset were
acquired utilizing the Limma R package. Subsequently, the
samples were subjected to immune infiltration analysis using
the CIBERSORT method. Coexpression networks were then
constructed using the WGCNA approach. Additionally, PPI
networks were constructed, and hub genes were identified
through the utilization of the STRING web page and Cytos-
cape software. Furthermore, the identification of overlap-
ping genes associated with M2 macrophage infiltration was
accomplished through the implementation of LASSO and
SVM-RFE techniques. To compare data from two groups,
the Wilcoxon test was used, and p < 0 05 was considered sta-
tistically significant. R was used to examine all of the data
(version 4.2.0).

3. Results

3.1. Transcriptome Analysis of Uremic and Control Samples.
The study flow is shown in Figure 1. The data preprocessing
results are shown in Supporting Information 2, including
principal component analysis and sample normalization
processing. In the GSE37171 dataset, DEGs were observed
to include 91 upregulated genes and 1207 downregulated
genes compared to the control group (Figure 2(a)). Heat
maps were used to show the expression of DEGs
(Figure 2(b)). We analyzed the GO/KEGG pathways of
DEGs to determine the biological functions of DEGs. Signif-
icant enrichment of DEGs was observed in 20 BP, 19 CC, 6
MF, and 70 KEGG pathways (Figures 2(c) and 2(d)). DEGs
are mainly enriched in BP responsible for protein and
mRNA processing, including histone modifications, protein
deacetylation, mRNA processing, protein diacylation, mac-
romolecular diacylation, Golgi vesicle transport, regulation
of mRNA metabolic processes, peptidyl lysine modifications,
and RNA splicing. DEGs were also heavily enriched in lym-
phocyte differentiation, and detailed results of the enrich-
ment analysis can be found in Supporting Information 1.
In addition to nuclear factor-kappa B (NF-κB) signaling
pathway, transforming growth factor-β (TGF-β) signaling
pathway, mammalian target of rapamycin (mTOR) signaling
pathway, phosphatidylinositol-3-kinase/protein kinase B
(PI3K/Akt) signaling pathway, tumor necrosis factor
(TNF) signaling pathway, Ras signaling pathway, and T cell
receptor signaling pathway, DEGs were also found to be
enriched in B cell receptor signaling pathway. Furthermore,
a close association with uremia was shown in hepatitis B and
C, Yersinia pestis infection, pathogenic E. coli infection,
Epstein-Barr virus infection, human cytomegalovirus infec-
tion, Salmonella infection, measles, Chagas disease, leish-
maniasis, and shigellosis (Supporting Information 1).
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3.2. Immune Cell Infiltration in Uremia. We excluded
immune cells with an abundance of 0. Therefore, only 17
immune cells were selected in the CIBERSORT study.
Detailed results of the CIBERSORT analysis can be found

in Supporting Information 1. Ratio histograms illustrate
the differences in numbers between the different types of
immune cells (Figure 3(a)). Nine immune cell types differed
in number between the uremic and control groups (p < 0 05
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), with B-cell naive, macrophage M2, and T-cell CD4 mem-
ory type showing the most significant differences (p < 0 0001
) (Figure 3(b)). There is growing evidence that uremia is
associated with M2 macrophage infiltration [6, 22]. Overin-
filtration of M2 macrophages may reveal the pathogenesis of
progression of renal interstitial fibrosis. Therefore, we
selected M2 macrophages for the next step of our study.

3.3. Obtained 85 Potential Genes Associated With M2
Macrophage Infiltration. We identified modules related to
M2 macrophages in uremia using the WGCNA method.
After removing the outliers (Supporting Information 2), we
created a sample dendrogram and a trait heat map (Support-
ing Information 2). The soft threshold is selected according
to the function of the WGCNA, with an ideal soft threshold
power of 18 and R2 of 0.85 (Supporting Information 2).
After merging the comparable modules, the coexpression
network showed 10 modules. Based on the module-trait
relationships in Figure 4(a), we found that M2 macrophages
were strongly correlated with MElightgreen (cor = 0 59, p
< 0 05) and MEgreen (cor = −0 49, p < 0 05) modules. The
characteristic genes of M2 macrophages showed a strong
association with the modular genes in MElightgreen
(cor = 0 45, p < 0 05) and MEgreen (cor = 0 38, p < 0 05)

(Figures 4(b) and 4(c)). Therefore, for downstream analysis,
we selected the MElightgreen and MEgreen modules. Next,
we overlapped the DEGs with genes from the MElightgreen
and MEgreen modules and identified 85 potential genes
(Figure 5(a)).

3.4. Acquisition of Top 10 Genes. Next, based on the STRING
database, we analyzed the PPI network of 85 candidate
genes. In the web page, “multiple proteins” and “Homo sapi-
ens” were selected. Network interaction links were consid-
ered statistically significant when the p value was less than
0.05, and interaction scores above 0.70 indicated a highly
plausible relationship. A Cytoscape visualization of the PPI
networks from the STRING database can be seen in
Figure 5(b). Using the CytoHubba plugin, we identified the
10 most interlinked genes (Figure 5(c)). These 10 most inter-
linked genes include: ZBTB2, spermatid perinuclear RNA
binding protein (STRBP), repressor activator protein 1A
(RAP1A), lymphoid enhancer binding factor 1 (LEF1),
APC, phosphatidylinositol-4,5-bisphosphate 3-kinase cata-
lytic subunit alpha (PIK3CA), tankyrase 2 (TNKS2), ER
lipid raft associated 2 (ERLIN2), chromatin remodeler
(ATRX), and chromobox homolog 1 (CBX1). Then, as we
can observe from Figure 5(d), APC and ZBTB2 correlate
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Figure 4: Identification related modules. (a) Evaluation of modules associated with immune infiltration in uremia. The correlation heat map
demonstrates the correlation between modules and immune cells of different infiltrations. Each row represents a color-coded module and
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well with most of the genes in the uremia group. However, in
the control group, APC correlated weakly with these genes.

3.5. Screening for ZBTB2, APC, and ERLIN2 Genes. Subse-
quently, SVM-RFE and LASSO were used for identifying
gene signatures from 10 candidate genes. The LASSO model
(Figure 6(a)) was built by searching the hub gene expression
profile. At lambda 1se = 0 009718, LASSO found nine gene
features, which included ZBTB2, APC, and ERLIN2
(Figures 6(a) and 6(b)). The LASSO model allows the devel-
opment of diagnostic markers for M2 macrophage infiltra-
tion and uremia. Using SVM-RFE, we identified eight gene
signatures, including APC, TNKS2, RAP1A, ZBTB2,
ERLIN2, CBX1, LEF1, and PIK3CA. For genes with stable
expression in uremia, we overlapped the genes obtained by
LASSO and SVM-RFE algorithms to obtain three genes
(Figure 6(e)), including ZBTB2, APC, and ERLIN2. To vali-
date the diagnostic performance of ZBTB2, APC, and
ERLIN2, we divided the dataset into training and testing sets
according to the scale. The results show that in the training
set, the area under the curve (AUC) of the model is 0.98,
while in the testing set, it is 0.96 (Figures 6(c) and 6(d)).

3.6. Validation of Potential Biomarkers of M2 Macrophage
Infiltration in Uremic Samples. In the GSE37171 dataset,
ZBTB2, APC, and ERLIN2 were evaluated using ROC
curves. We found that their expression levels were all signif-
icantly lower in the uremic samples than those in the control
samples (Figure 7(a)–7(c)) and with high precision, with
AUC of 0.889, 0.93, and 0.953, respectively (Figure 7(d)).
These results suggest that ZBTB2, APC, and ERLIN2 can
be used as diagnostic biomarkers of M2 macrophage infiltra-
tion in renal interstitial fibrosis. In addition, we performed
external validation of these three genes. We found that the

expression of APC and ZBTB2 was significantly lower in
uremic patients than in healthy individuals. However, we
found no difference in the expression of ERLIN2 in healthy
individuals and uremic patients. In conclusion, these find-
ings imply that APC and ZBTB2 may contribute to the pro-
gression of renal fibrosis by mediating M2 macrophage
infiltration (Figures 7(e) and 7(f)).

4. Discussion

CKD is one of the leading causes of death in the world, and
its incidence is steadily increasing worldwide [23]. Although
scientists have conducted extensive studies on the mecha-
nisms of renal fibrosis [24–26], treating renal fibrosis or pre-
venting its progression remains a major challenge. Recent
studies have shown that infiltration of M2 macrophages into
the renal mesenchyme is essential for the development and
progression of renal fibrosis [7]. Renal fibrosis is closely
associated with infiltration of M2 macrophages [8, 9]. Since
the mechanism of M2 macrophage infiltration in renal fibro-
sis is unknown. Therefore, a detailed study of the mecha-
nisms of M2 macrophages in renal fibrosis is needed to
provide new therapeutic strategies for patients with CKD.
In this study, bioinformatics analysis revealed that uremic
samples were enriched for several signaling pathways associ-
ated with uremic disease pathogenesis. In addition, the
expression of APC and ZBTB2 was significantly decreased
in M2 macrophages from uremic patients, and APC and
ZBTB2 were identified as potential renal fibrosis biomarkers
associated with M2 macrophage infiltration.

This study has identified multiple signaling pathways
that are enriched in uremic samples, some of which are
implicated in macrophage polarization and differentiation.
Specifically, the NF-κB signaling pathway has been
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recognized as a crucial pathway for macrophage activation
and M1/M2 polarization [27, 28]. Inhibition of the NF-κB
signaling pathway has been shown to suppress M1 macro-
phage polarization and promote M2 macrophage polariza-
tion [29]. Similarly, activation of the mTOR signaling
pathway and PI3K/Akt signaling pathway has been found
to be essential for M2 macrophage polarization [30]. More-
over, the induction of M2 macrophage differentiation is
facilitated by the TGF-β signaling pathway, which has been
observed to be activated in M2 macrophages derived from
injured kidneys [31, 32]. However, currently, there is a lack
of literature documenting the correlation between M2 mac-

rophages and the TNF signaling pathway, Ras signaling
pathway, T cell receptor signaling pathway, and B cell recep-
tor signaling pathway, although our bioinformatics analyses
have revealed that these aforementioned signaling pathways
are enriched in uremic samples.

M2 macrophages (also known as activated macrophages)
are induced by IL-4. M2 macrophages express high levels of
arginase-1 and dectin-1. This expression induces the pro-
duction of proline in the nitric oxide metabolic pathway,
which stimulates cell growth, collagen formation, and tissue
repair [33]. Thus, M2 macrophages have a key role in tissue
repair and fibrotic disease progression [34, 35]. It was found
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that in IgG4-related disease, M2 macrophages promote the
production of several fibrogenic cytokines (IL-33, IL-1β,
and TGF-β) via NF-κB signaling, leading to severe fibrosis
in the affected organs [36]. Furthermore, deletion of CCAA
T/enhancer binding protein homologous protein promoted
the expression of suppressor of cytokine signaling 1 and 3,
which then inhibited signal transducer and activator of tran-
scription 6/peroxisome proliferator-activated receptor
gamma (STAT6/PPAR-γ) signaling, thereby attenuating
the induction of M2 macrophages and alleviating idiopathic
pulmonary fibrosis [37]. In contrast, IL-24 enhances STAT6/
PPAR-γ signaling, thereby promoting IL-4-induced M2
macrophage production [38]. Importantly, there is growing
evidence that M2 macrophage infiltration is associated with
CKD [39, 40]. We found by bioinformatics analysis that in
uremic samples, APC and ZBTB2 expressions were
decreased in the infiltration module of M2 macrophages.
Furthermore, we validated this in healthy individuals and
uremic patients, and the results were consistent with the bio-
informatics analysis. We hypothesize that APC and ZBTB2
are closely associated with M2 macrophage infiltration, and
uncovering the role of APC and ABTB2 in M2 macrophage
infiltration may unravel the physiopathological mechanisms
underlying the development of renal fibrosis.

There is increasing evidence that infiltration of immune
cells into the renal interstitial fluid leads to the development
of renal fibrosis [41]. Bioinformatic investigations have also
shown significant differences in the immune cell profile of
healthy versus dysfunctional kidneys [42]. Our study found
that uremia samples had increased abundances of B-cells
memory, macrophages M0, macrophages M2, plasma cells,
and activated dendritic cells, whereas T-cells CD4 naive,
NK-cells activated, and B-cells naive were less invasive, indi-
cating their crucial roles in the etiology of renal fibrosis. One
study found a large number of M2 macrophages detected in
renal tissue in a mouse model of ischemia-reperfusion [43].
In contrast, hydroxychloroquine reduces the infiltration of
intrarenal macrophages, especially M2 macrophages, and
reduces the degree of inflammation of tubulointerstitial
fibrosis in vivo [44]. In addition, the number of infiltrating
M2 macrophages was strongly correlated not only with the
area of fibrosis but also with clinical examination indices
[9]. There was a positive correlation between M2 macro-
phage infiltration and serum creatinine and 24-h protein-
uria, but a negative correlation with eGFR [9]. As
previously mentioned, extensive evidence and our current
results suggest that M2 macrophages are key players in the
development of renal fibrosis and should be the subject of
further study, and mechanisms associated with M2 macro-
phage infiltration should be further explored.

APC is a large multidomain protein with a molecular
mass of 300 kD [45]. Mutations in the APC gene are respon-
sible for sporadic colorectal tumors and familial adenoma-
tous polyposis [46, 47]. APC expression was positively
correlated with arterial stiffness [44]. Furthermore, miR-
142 acts as an inducer of fibrosis by targeting APC in cardiac
fibroblasts [48]. Moreover, in a recent study on idiopathic
membranous nephropathy (IMN) [49], APC expression
was found to be significantly decreased in IMN patients.

Unfortunately, there are no relevant studies to investigate
the role of APC in renal fibrosis. APC was found to bind
to β-catenin, a protein that plays a role in cell adhesion
and Wnt signaling pathway [50]. APC is a negative regulator
of the Wnt signaling pathway [51–53]. However, APC dele-
tion leads to ligand nondependent pathway activation of the
Wnt signaling pathway through lattice-protein-mediated
endocytosis [54, 55]. Importantly, the Wnt signaling path-
way is associated with M2 macrophage infiltration [56, 57].
Therefore, we hypothesized that the downregulation of
APC could have mediated the infiltration of M2 macro-
phages through the activation of the Wnt signaling pathway,
thereby promoting the progression of renal fibrosis.

ZBTB2 belongs to the POK family of transcription fac-
tors and has an n-terminal POZ structural domain and four
c-terminal Krüppel-like C2H2 zinc fingers. The POZ struc-
tural domain is a conserved protein interaction pattern that
frequently binds to transcriptional corepressors [58, 59].
ZBTB2 represses a variety of cellular promoters, including
key regulators of the P53 DNA damage pathway [60].
ZBTB2 has been found to be associated with the develop-
ment of a variety of tumors [61–65]. Unfortunately, there
are no relevant studies to investigate the role of ZBTB2 in
renal fibrosis. Interestingly, P53 and M2 macrophage polar-
ization were closely related. Li et al. [66] found that P53 has
a unique role in regulating M2 macrophage polarization.
P53 acts as a physiological “brake” for M2 macrophage
polarization through the murine double minute 2/cellular-
myelocytomatosis viral oncogene axis. In addition, downreg-
ulation of P53 expression levels increases the polarization of
M2 macrophages and regulates the tumor-associated micro-
environment, ultimately leading to poor prognosis in lung
cancer patients [67]. Therefore, we hypothesized that ZBTB2
may promote M2 macrophage infiltration through the P53
signaling pathway leading to the progression of renal
fibrosis.

Our study showed that the expression of APC and
ZBTB2 was closely correlated with the abundance of M2
macrophages, suggesting that APC and ZBTB2 may exacer-
bate renal fibrosis through infiltration of M2 macrophages.
More critically, the levels of APC and ZBTB2 expressed by
M2 macrophages were significantly lower in uremic patients
compared with healthy subjects. Therefore, in delaying renal
fibrosis, we speculate that APC and ZBTB2 may be potential
therapeutic targets.

CKD is a complex disease that requires in-depth studies
to determine its underlying mechanisms. Our study revealed
that two genes, APC and ZBTB2, may be involved in the
process of renal interstitial fibrosis. Further studies on the
role of these two genes could provide valuable information
to understand the pathogenesis of the disease. Specifically,
these genes are thought to regulate the function of M2 mac-
rophages, a type of immune cell involved in the development
of renal interstitial fibrosis. Understanding how APC and
ZBTB2 interact with M2 macrophages could pave the way
for the development of new strategies for the treatment of
CKD.

Several limitations of the current investigation must be
acknowledged. First, the study is retrospective; in-depth
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studies are needed to clarify the role of APC and ZBTB2 in
renal fibrosis. Second, we found only one suitable dataset.
Our conclusions should be externally validated in additional
datasets. Third, our results were only validated in M2 mac-
rophages from uremic patients and healthy individuals,
and further experiments in kidney tissues or cells are needed
to confirm this result in the future. Additional in vitro and
in vivo studies are necessary to investigate the specific mech-
anisms by which APC and ZBTB2 affect M2 macrophage
infiltration in renal fibrosis. Notwithstanding the aforemen-
tioned limitations, it is crucial to acknowledge that our study
has revealed a novel finding of diminished expression of
APC and ZBTB2 in M2 macrophages among uremic
patients. This reduced expression of APC and ZBTB2 in
M2 macrophages serves as a significant indicator for the
presence of renal fibrosis. Further investigations into the
expression of APC and ZBTB2 in M2 macrophages hold
promise for providing fresh insights into the mechanisms
underlying renal fibrosis and facilitating the development
of innovative therapeutic approaches to combat this disease.

5. Conclusion

Our findings identify biomarkers associated with M2 macro-
phage infiltration in renal fibrosis and speculate on possible
mechanisms by which APC and ZBTB2 influence M2 mac-
rophage infiltration to promote the progression of renal
fibrosis, which may offer new possibilities to slow down
the progression of the disease in patients with CKD.

Nomenclature

APC adenomatous polyposis coli
ATRX chromatin remodeler
AUC area under the curve
BP biological processes
CBX1 chromobox homolog 1
CC cellular components
CKD chronic kidney disease
eGFR estimated glomerular filtration rate
ERLIN2 ER lipid raft associated 2
GAPDH glyceraldehyde-3-phosphate

dehydrogenase
GEO Gene Expression Omnibus
GO/KEGG Gene Ontology/Kyoto Encyclopedia of

Genes and Genomes
IMN idiopathic membranous nephropathy
LASSO least absolute shrinkage and selection

operator
LEF1 lymphoid enhancer binding factor 1
MF molecular functions
mTOR mammalian target of rapamycin
PBS phosphate-buffered saline
PI3K/Akt phosphatidylinositol-3-kinase/protein

kinase B
PIK3CA phosphatidylinositol-4,5-bisphosphate 3-

kinase catalytic subunit alpha
PPI protein-protein interaction
qPCR quantitative real-time PCR

RAP1A repressor activator protein 1A
ROC receiver operating characteristic
STAT6/PPAR-γ signal transducer and activator of tran-

scription 6/peroxisome proliferator-
activated receptor gamma

STRBP spermatid perinuclear RNA binding
protein

SVM-RFE selection and visualization of the most
relevant features

TGF-β transforming growth factor-β
TNF tumor necrosis factor
TNKS2 tankyrase 2
WGCNA weighted gene coexpression network

analysis
ZBTB2 zinc finger and BTB structural domain 2
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