Skip to main content
. 2024 Sep 14;10(18):e37964. doi: 10.1016/j.heliyon.2024.e37964

Table 1.

Performance of machine learning models for disease detection using biomarker and clinical outcomes (2018–2023).

Machine Learning Studies Outcome Ref.
Deep learning system Diabetic & cancer Specificity: <96 %, sensitivity: <87 % [82]
ANN Lung cancer Specificity: 96 %, sensitivity: 95.8 % [83]
Naïve bayes and RF classifier Blood cancer Accuracy: 96.6 % [84]
ANN Breast cancer Accuracy: 90 % [85]
Gradient boosting COPD Accuracy: 91.3 %, sensitivity: 100 % [86]
Gaussian Naïve Bayes classifier and SVM Stroke R2: 0.97 [87]
Decision support system Dementia AUC for DSI: 0.79; 0.75 [37]
-Designed unsupervised learning Dementia P-value: 0.024; 0.018 [13]
SVM classifier CVD Accuracy: 90.2 % [75]
Feature extraction oHCM Accuracy: 99 % [39]
ANN Cardio. Accuracy:>98 % [88]
SVM and CNNs Liver [89]
Mann-Whitney-RF technique Liver toxicity FI: 0.91 [90]
Network-based prediction COVID-19 [81]