
RESEARCH ARTICLE
www.advancedscience.com

𝜹-Conotoxin Structure Prediction and Analysis through
Large-Scale Comparative and Deep Learning Modeling
Approaches

Stephen McCarthy and Shane Gonen*

The 𝜹-conotoxins, a class of peptides produced in the venom of cone snails,
are of interest due to their ability to inhibit the inactivation of voltage-gated
sodium channels causing paralysis and other neurological responses, but
difficulties in their isolation and synthesis have made structural
characterization challenging. Taking advantage of recent breakthroughs in
computational algorithms for structure prediction that have made modeling
especially useful when experimental data is sparse, this work uses both the
deep-learning-based algorithm AlphaFold and comparative modeling method
RosettaCM to model and analyze 18 previously uncharacterized 𝜹-conotoxins
derived from piscivorous, vermivorous, and molluscivorous cone snails. The
models provide useful insights into the structural aspects of these peptides
and suggest features likely to be significant in influencing their binding and
different pharmacological activities against their targets, with implications for
drug development. Additionally, the described protocol provides a roadmap
for the modeling of similar disulfide-rich peptides by these complementary
methods.

1. Introduction

Conopeptides are peptides that have been evolved by marine
cone snails to protect against predators and to capture prey. Each
species of cone snail may produce over 1000 different peptides[1]

and estimates for the total number of conopeptides range from
50000 to millions,[2,3] but structural characterization remains
sparse. The targets for these conopeptides are varied and include
several protein classes of significance in human disease such
as ion channels and G protein-coupled receptors (GPCRs). Al-
though conopeptides rarely comprise more than 40 amino acids,
individual conopeptides can show high levels of target specificity
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and potency, including, in some cases,
the ability to distinguish between recep-
tor subtypes.[4] These properties have made
them the subject of considerable research,
both as tools in neurological research and as
leads for drugs targeting channelopathies
such as chronic pain, epilepsy, and mi-
graines.

Conotoxins are conopeptides that exert
a toxic effect on the envenomed organism
and are classified according to their target
and pharmacological effects. 𝛿-conotoxins
(Figure 1A) interact with voltage-gated
sodium channels (Navs), where they inhibit
the fast inactivation phase of channel gat-
ing and prolong an open channel conforma-
tion, similar to scorpion 𝛼-toxins.[5–7] While
the target subtype selectivity of most 𝛿-
conotoxins remains undetermined, intrigu-
ing differences have been noted between
𝛿-conotoxins derived from molluscivorous
(mollusk-eating) cone snails compared with

those from piscivorous (fish-eating) cone snails (Figure 1B):
while 𝛿-conotoxins from piscivorous cone snails show activity
against vertebrate Navs, peptides from molluscivorous snails
(with the exception of Am2766[8]) do not show activity on verte-
brate neurons, while retaining their characteristic activity against
mollusk Navs.[4,5,9,10] Radioligand binding studies on the mollus-
civorous cone snail peptide TxVIA nonetheless suggest that it re-
tains the ability to bind to vertebrate Navs, but without having
any pharmacological effect on the channel.[5] A structural basis
for this “silent binding” has not yet been determined, and exper-
imental structures of 𝛿-conotoxins to date are limited to two pep-
tides from molluscivorous cone snails, TxVIA and Am2766, and
one from a piscivorous cone snail, EVIA, which has been the sub-
ject of several structural studies.[11–14] The peptide EVIA is an out-
lier among conopeptides from piscivorous snails due to its longer
loop 2 (see Figure 1A for nomenclature), and, consequently little
structural information exists for most members of this class.

Computational structure prediction is especially valuable
when determining protein structures by experimental methods
is challenging. Traditional methods for structure prediction
include modeling by homology (in which known structures
of evolutionarily similar (homologous) proteins are used as
templates)[15,16] and ab initio calculations (which aim to mimic
protein folding in nature by subjecting an unfolded protein
chain to an energy function, without reference to external
templates).[17] More recently, protein structure prediction
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Figure 1. A) Sequence alignment of the 𝛿-conotoxins modeled in this study, together with the overall net charge and loop nomenclature. Peptides
from piscivorous, vermivorous, and molluscivorous cone snails are highlighted in blue, green, and purple, respectively. C-terminal amides are indicated
with *. B) Phylogenetic analysis of the sequences shown in A indicating peptides with available experimental structures and colored according to the
color scheme in A. C) (top) Features typical of an inhibitor cystine knot (ICK) peptide, showing the connectivity of the disulfide bonds (numbering
refers to the order in which cysteines appear, not residue numbering) and (bottom) One conformation of the NMR-derived structure of 𝛿-EVIA (PDB ID:
1G1P)[13] showing the classic ICK fold.
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algorithms based on machine learning techniques have come
to the fore.[18] One such approach is “deep learning” which
uses multilayered neural networks trained on large sequence
and structure datasets to predict protein structures from large
multiple sequence alignments (MSAs)[19,20] and is exemplified
by AlphaFold[21] and RoseTTAFold.[22,23] Other methods, such as
ESMFold[24] and OmegaFold,[25] take advantage of language mod-
els, which treat protein sequences similarly to natural languages
and predict structural features by learning the “grammar” of the
training sequence data;[26] these methods can predict structures
without the need to generate MSAs for the target protein.

Here we take advantage of these complementary computa-
tional approaches to determine 3D models of all 𝛿-conotoxins
without an experimental structure using AlphaFold and Roset-
taCM. The deep learning-based algorithm AlphaFold generates
models using MSAs and structural data as inputs,[21] whereas
RosettaCM is a threading modeling method requiring one or
more template structures.[27] Computational modeling is espe-
cially appropriate for studies of 𝛿-conotoxins, as the complex in-
hibitor cystine knot (ICK) disulfide bonding pattern (Figure 1C),
low in vitro oxidative folding yields, and high hydrophobicity have
hampered the synthetic efforts necessary for structural studies.
Analyzing multiple models generated by both AlphaFold and
RosettaCM provides insights into key structural features of the
𝛿-conotoxins and the bases for their pharmacological properties,
assists in developing modeling strategies for disulfide-rich pep-
tides, and aids in the characterization of 𝛿-conotoxins yet to be
discovered.

2. Results

Using AlphaFold, 5 decoys per target 𝛿-conotoxin were generated,
and all 5 models were included in the analysis. For the RosettaCM
models the lowest-energy representatives of the top 5 clusters,
generated from 5000 total models, were used for analysis. Repre-
sentatives for each peptide, together with corresponding quality
metrics, are highlighted in Figure 2, and our analysis and obser-
vations from these models are described below.

2.1. Peptides Show the Expected ICK Geometry

Peptide models were initially evaluated by checking to see that
they had formed the expected ICK fold with the correct disul-
fide connectivity (C1-C4, C2-C5, C3-C6) (Figure 1C); in the case
of the RosettaCM models this geometry was enforced and so all
models met this criterion. For AlphaFold models, however, no
disulfide bonding pattern was stipulated in the inputs; nonethe-
less, AlphaFold produced highly accurate predictions, with only
a single model (out of a total of 90) displaying incorrect disulfide
connectivity (Figure S1, Supporting Information). Notably, an at-
tempt to perform modeling in AlphaFold using only MSA data
and without the addition of template structures as inputs resulted
in considerably poorer results, with approximately half the target
peptides showing no models with the correct ICK topology (data
not shown). Templates provide additional residue pair and amino
acid torsion angle information that, together with evolutionary
information derived from the multiple sequence alignment, con-
tribute to the pair representation used by AlphaFold to calculate

atom positions; for the 𝛿-conotoxins this will necessarily include
disulfide bond pair information which will impose restraints on
the structure calculation and lead to a higher success rate than
for MSA data alone.

2.2. Peptide Termini Are Generally Flexible

For our purposes, the N- and C-terminal regions are defined
as the residues prior to the first cysteine residue, and after the
last cysteine residue, respectively. Consistent with experimen-
tal evidence showing that these regions are largely unstructured
in ICK peptides,[13] we observe decreased predicted local dis-
tance difference test (pLDDT) scores in the AlphaFold mod-
els, which is ascribed to regions that are either intrinsically
disordered or ordered only in complex (Figure S2, Supporting
Information).[21,28,29] We also observe a high degree of divergence
in the RosettaCM models of the termini, and correspondingly
higher per-residue root-mean-square deviation (RMSD) scores.

2.3. Secondary Structure Is Limited

The ICK fold classically contains a short 𝛽-turn near the C-
terminus that incorporates C5 and C6; very occasionally a short
third strand is observed around C2.[30] Our models largely con-
form to this pattern, with limited secondary structure aside from
this C-terminal 𝛽-turn. However, one RosettaCM model contains
a formal helical half-turn just prior to C3, and this turn is also
present in 5/18 of the top-ranked AlphaFold models, all of which
are derived from piscivorous cone snails (Figure 2). This element
is unusual in experimental structures of ICK peptides; an exam-
ple featuring a helix in this position is the insecticidal funnel-web
spider toxin U21-hexatoxin-Hi1a, however this peptide contains a
number of additional structural features beyond the ICK scaffold
core and the helix in this section of the peptide might be more
properly considered to be an insertion into the otherwise unstruc-
tured loop.[31] Since this region of the 𝛿-conotoxins is relatively
flexible (see below) it is possible that the observed secondary
structure in this region is transitory and does not represent a sig-
nificant population in solution, but it is also possible that cono-
toxins with a longer loop 2 permit formation of short secondary
structure elements that would not otherwise be observed. Addi-
tionally, AlphaFold has been shown to slightly over-predict the
formation of secondary structural elements (especially helices)
in flexible loops,[32,33] which could explain the increased occur-
rence of this helical turn in the AlphaFold models relative to the
RosettaCM models.

2.4. Peptide Flexibility Is Greatest in Loop 2

Of the four disulfide-constrained loops, loop 2 consistently
shows the lowest mean pLDDT score for the AlphaFold models
and the highest RMSD between RosettaCM models (Figure S2,
Supporting Information), strongly suggesting that this region
is flexible. This flexibility can be observed in the ensemble of
structures for EVIA determined by NMR (Figure 2); while this
peptide was used as a template in our RosettaCM modeling,
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Figure 2. Results of the modeling pipeline for all peptides. Disulfide bonds are highlighted in yellow. From left: best-scoring model produced by AlphaFold,
colored by per-residue pLDDT score; a plot of pLDDT per residue for the models generated by AlphaFold. Models with higher overall pLDDT scores are
in darker blue; the best-scoring model produced by RosettaCM, colored by per-residue root-mean-square deviation (RMSD) to representatives of the
top 5 best-scoring clusters; score-RMSD funnel plot for all 5000 decoys produced by RosettaCM, with score measured in Rosetta energy units (REU)
and RMSD calculated by distance to the lowest-energy model, and with the displayed model indicated in red; Below: experimentally-determined NMR
ensembles used as templates in this study for RosettaCM modeling. RMSD and pLDDT color bars are shown bottom right.

only a single conformation was used and, consequently all the
structural diversity observed in this loop has been independently
derived by the modeling algorithms.

While loop 2 is by far the longest loop in EVIA (9 amino acids),
most of the other conotoxins in this study have a shorter loop
2 (6 amino acids) with the exceptions being ErVIA, SuVIA, and
TsVIA from vermivorous snails (7 amino acids). It is therefore
notable that the other peptides retain flexibility in this loop de-
spite a shorter loop length; loop 1 has considerably lower pre-

dicted RMSDs than loop 2 (Figure S2, Supporting Information),
despite also consisting of 6 amino acids in all cases.

This region is comparatively rigid in 𝛿-conotoxins from
molluscivorous snails. Examining the predicted structures for
GmVIA reveals a role for the sidechain of Q16, which can form
hydrogen bonds to the backbone carbonyl of P13 and the back-
bone amide of C24 (Figure S3A, Supporting Information). The
AlphaFold models additionally show hydrogen bonding to the
C24 backbone carbonyl. This glutamine is conserved across all
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𝛿-conotoxins from molluscivorous peptides, and similar hydro-
gen bonding arrangements are found in some conformations of
Am2766 (Figure S3B, Supporting Information) and TxVIA.[11,12]

These peptides also lack the glycine immediately following C2
that is conserved across most 𝛿-conotoxins from piscivorous cone
snails which could contribute to the additional flexibility of loop
2 in these peptides.

2.5. Not All Peptides Show a Continuum of Positions in Loop 2

For some 𝛿-conotoxins we do not observe a continuum of posi-
tions for loop 2 across the full range of motion, as might be ex-
pected for a disordered region where there are low energetic bar-
riers to movement. In these cases, which are restricted to some
𝛿-conotoxins from piscivorous cone snails, we observe that the
models are clustered around a few discrete positions (Figure S4,
Supporting Information). This suggests that the loop may be able
to interconvert between different populations, with implications
for bioactivity (see Discussion).

2.6. A Structural Role for Hydroxyproline Residues in RosettaCM
Models

Post-translational modifications are common among conotoxins
from all functional classes. Among the 𝛿-conotoxins in this study,
4-hydroxyproline is modeled at position 6 (in the middle of loop
1) in five peptides, and at position 14 (middle of loop 2) in 12 pep-
tides. Of these two Hyp residues, the first has a clear structural
rationale: the additional hydroxyl group on the sidechain of Hyp6
forms a hydrogen bond with the sidechain of the conserved S19,
where it mitigates any flexibility of loop 1 as well as further stabi-
lizing S19, which has a role in forming the tight turn at the start
of loop 3 (Figure S3C, Supporting Information).

While this Hyp residue has a clear structural justification, the
same cannot be said for the Hyp residue on loop 2. This loop is
flexible (see above) but in all conformations, the hydroxyl group
is directed away from the rest of the peptide where it cannot form
direct intramolecular interactions. This raises the possibility that
it either contacts the target Nav or influences the structure less
directly.

2.7. 𝜹-Conotoxins with an Extended Loop 2 Show a Mixture of
Cis- and Trans-Proline

Cis-prolines are uncommon in protein structures due to the in-
creased energy of this conformation relative to trans-proline, and
their prevalence is estimated to be ≈6% of all prolines.[34] It is
therefore significant that in the RosettaCM models of two 𝛿-
conotoxins in this study with an extended loop 2, a conserved Pro
at position 11 shows a mixture of cis and trans conformations
in the 5 best-scoring clusters (Figure S5, Supporting Informa-
tion). This result extends published NMR studies of EVIA, which
demonstrated a mixture of cis- and trans-prolines at the equiv-
alent position in an ≈1:1 ratio with slow interconversion.[13,14]

One NMR study also demonstrated that a P13A EVIA mutant
produced a 100% trans conformation at this bond, and also

halved the potency of the peptide compared to the wild type in
a competitive binding assay using 125I-labeled TxVIA on rat brain
synaptosomes.[13] This suggests that either the sidechain makes
direct contact with the target, or that the cis-proline conformation
is important for positioning other interacting residues.

Notably, the cis-proline bonds are only found in the Roset-
taCM models; the equivalent AlphaFold models show only the
trans conformation. Comparing the top-scoring cluster for TsVIA
(which has a cis-proline at position 11) with the corresponding
top-ranked AlphaFold model shows that the cis-proline bond al-
lows the L10 and V14 sidechains to project toward loop 3 and be
partially buried in the peptide core (Figure S3D, Supporting In-
formation). By contrast, the trans-proline conformation projects
the sidechains away from the peptide core where they are fully
exposed to solvent; it can therefore be hypothesized that the cis-
trans isomerization at proline in this loop balances the higher-
energy cis-conformation with the energetic penalty from fully ex-
posed hydrophobic leucine and valine sidechains.

2.8. A Consensus Surface-Exposed Hydrophobic Patch

The presentation of hydrophobic sidechains on the solvent-
accessible surface is disfavored in most protein structures but
is a common feature of ICK peptides; it has been hypothesized
that the reason for forming such a complex, covalently-linked
peptide core is to force exposure of these residues, even against
the energetic penalty.[35–37] These hydrophobic patches are often
important for binding.[38,39] Examining the available experimen-
tal structures of 𝛿-conotoxins,[11–13] together with our models,
we find a common hydrophobic patch on the peptide surface
(Figure S6, Supporting Information). Sequence alignments
of the 𝛿-conotoxins show that these regions are uniformly
hydrophobic, across all types of cone snails. This consensus
strongly suggests that these residues are important for binding
the peptides to the target, including the “silent binding” by the
𝛿-conotoxins from molluscivorous cone snails.

2.9. Some RosettaCM Models of Piscivorous Cone Snail
𝜹-Conotoxins Show a Cis-nonPro Bond in Loop 2

Several of the top-ranked RosettaCM models (but none of
the equivalent AlphaFold models) contained a non-proline cis-
peptide bond at the conserved glycine-isoleucine motif in loop
2 immediately following the C2-C5 disulfide bond. Peptides that
lacked the GI motif, such as GmVIA and TxVIB (derived from
molluscivorous cone snails) and BVIA (from a piscivorous snail),
did not contain a cis-peptide bond; neither did any of the pep-
tides derived from vermivorous snails (TsVIA, ErVIA and Su-
VIA) even though these peptides contain a similar GL motif as
part of a longer loop 2. Given the rarity of this structural fea-
ture in experimentally derived protein structures, we repeated the
RosettaCM modeling protocol with a further two different score
functions to investigate methodological explanations for its ap-
pearance in our model set (see Methods), only to obtain simi-
lar results (Table S1, Supporting Information). Although none of
the AlphaFold models contained non-proline cis-peptide bonds,
in some instances a twisted (non-planar) peptide bond was ob-
served in the C-terminal regions which suggests some difficulties
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in modeling correct geometries in regions of higher uncertainty
(see Discussion).[40]

3. Discussion

In this study we calculated models for 𝛿-conotoxins without ex-
perimental structures, using both AlphaFold and RosettaCM.
The models show many structural features that are well-known
properties of all 𝛿-conotoxins, such as the disulfide bond connec-
tivity typical of ICK peptides and surface-exposed hydrophobic
patch that arises from the rigidity of this network. However, sev-
eral differences are observed between the 𝛿-conotoxins derived
from piscivorous cone snails compared with those from mollus-
civorous cone snails, which provide suggestions for the structural
basis of the “silent binding” phenomenon.

The most notable difference between the two classes of
peptides is the flexibility observed for loop 2, which is seen in
all 𝛿-conotoxins from piscivorous and vermivorous cone snails,
but not among the 𝛿-conotoxins from molluscivorous snails
(Figure S2, Supporting Information). A previous structure-
activity relationship study of PVIA noted that the mutants P9A
and I12A – both highly conserved residues in 𝛿-conotoxins
from piscivorous snails but not molluscivorous snails – re-
tained the ability to bind to Navs but lost their pharmacological
properties.[9] Since these residues are located on loop 2, the
flexibility of this loop observed in our models raises the question
of how these residues are positioned to interact with the target.
Since F9 is located on loop 1, the AlphaFold models show a
largely consistent position for the sidechain. I12 shows greater
variance; in some models, it is orientated away from loop 2
and the disulfide-bonded core and closer to the F9 sidechain,
whereas in others it is directed inward and positioned closer
to loop 3. We speculate that, given the relative exposure to the
solvent of the I12 sidechain in the vertical position, as well as
its closer positioning to the bioactive residues F9, the former
orientation is more likely to be bioactive.

Examining the sequences of other classes of peptides known
to elicit similar pharmacological properties when binding to
Navs is also illustrative. A study of Australian funnel-web spi-
ders uncovered 22 peptides of the 𝛿-hexatoxin class.[41] Like the
𝛿-conotoxins, these peptides similarly inhibit the inactivation of
voltage-gated sodium channels (including in vertebrates) and
are thought to share a binding site on Nav voltage-sensing do-
main (VSD) IV; although they share a common ICK disulfide
bonding core, the 𝛿-hexatoxins are typically larger (with extended
loop 4 and N- and C-terminal domains) and possess an addi-
tional disulfide bond.[30,31] As with other ICK peptides, the in
vivo folding of these peptides is likely mediated by the process-
ing of the signal and propeptides,[42,43] and by enzymes includ-
ing prolyl isomerases[44] and protein disulfide isomerases.[45] Se-
quence alignments of 14 representative 𝛿-hexatoxins with the 𝛿-
conotoxins in this study show that an aromatic residue is con-
served at the equivalent of F9 in all peptides (typically it is tryp-
tophan), apart from the 𝛿-conotoxins from molluscivorous cone
snails, strongly implicating this residue in bioactivity (Figure S7,
Supporting Information). Interestingly the equivalent position to
I12, a conserved residue in 𝛿-conotoxins that has also been shown

to affect bioactivity, is a charged residue (most commonly lysine)
in the 𝛿-hexatoxins.

The 𝛿-conotoxins have a low net charge, ranging from−3 to+2
(Figure 1A); this contrasts with other peptide venom toxins, such
as the 𝜇-conotoxins or spider venom ICK peptides, which often
have a very high positive net charge.[46] This likely contributes
to the low aqueous solubility and refolding yields of these pep-
tides, which has hindered their structural and functional char-
acterization. Since a high net positive charge has been shown
to be an important determinant of potency against voltage-gated
sodium channels for related tarantula-derived ICK peptides due
to a membrane-first binding mechanism,[47,48] the low charge of
the 𝛿-conotoxins would suggest that a different binding mecha-
nism applies.

Although both piscivorous and molluscivorous snail-derived
𝛿-conotoxins share a low overall charge, the charged residues
are distributed differently across the loops, and recent docking
studies have implicated these charged residues as determinants
of channel binding.[14,49] Piscivorous snail 𝛿-conotoxins usually
have acidic residues at the N-terminus, on loop 3, and sometimes
at the C-terminus, while the basic residues are limited to a sin-
gle position on loop 2 (Figure 1A). Molluscivorous snail-derived
𝛿-conotoxins, however, universally have a basic residue immedi-
ately after C1, while acidic residues are located near the end of
loop 1, and immediately after C2. In cases where these residues
are not negatively charged a polar residue is often found in its
place. The conserved positioning of the basic residue in peptides
from piscivorous snails, in a loop that is flexible and known to
contain residues important for the inhibitory abilities of the pep-
tide, suggests a role in the mechanism of action of these peptides.
The supposed binding site for 𝛿-conotoxins[6] (above VSD) IV of
voltage-gated sodium channels) permits access to the ladder of
charged amino acids within VSD IV that are responsible for the
movement of the domain on activation. Disruption of this lad-
der by basic residues is a known mechanism of channel inhibi-
tion by other venom peptides, and could play a role in inhibiting
inactivation.[50–52]

Related to the positioning of these residues on loop 2 is the
cis/trans-isomerization at the conserved proline on this loop
among 𝛿-conotoxins from piscivorous snails. The appearance of
the cis-isomer is restricted to RosettaCM models of peptides with
an extended loop 2 (i.e., longer than 6 residues) (Figure S5, Sup-
porting Information), suggesting that the cis-conformation can-
not form in the tighter and more constrained 6-residue loop that
is most prevalent for loop 2. One possible functional explana-
tion for the formation of the cis-isomer was suggested by Tietze
et al.,[14] who hypothesized that the cis conformation was likely to
increase binding affinity by presenting both a hydrophobic side
chain and a backbone carbonyl (capable of accepting a hydrogen
bond) to the Nav.

All AlphaFold models showed exclusively trans-proline. To
our knowledge, a systematic study of the propensity of Al-
phaFold to predict cis-prolines has not yet been performed, but in
CASP14[53] it correctly predicted 42 trans-prolines and 3 out of 4
cis-prolines,[54] suggesting that AlphaFold performs well at iden-
tifying cis-prolines in its targets. However, a study of 91 confor-
mationally heterogeneous proteins showed that AlphaFold pre-
dictions were consistently biased toward only a single ground
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state model and failed to model alternative conformations in
94% of cases, even as the confidence metrics for the predicted
ground state remained high (in contrast to intrinsically disor-
dered proteins).[55] The authors attribute this to AlphaFold’s pref-
erence for modeling the “most probable” conformer, noting that
AlphaFold is trained predominantly on X-ray crystal structures
of stably folded proteins and that structure prediction algorithms
frequently assume that a single amino acid sequence generates a
single stable protein fold.[56] In the case of the 𝛿-conotoxins this
would produce a strong preference for the trans-proline isomer
since this conformation is predominant in experimental protein
structures, even as experimental NMR studies of the 𝛿-conotoxin
EVIA show both cis- and trans-proline conformations, with slow
interconversion.[13,14]

Cis-peptide bonds at residues other than proline are extremely
unusual in protein structures and their appearance in our set
of best-ranked RosettaCM models prompted further scrutiny. To
verify the initial models we repeated the modeling using two fur-
ther score functions and an alternative refinement strategy, but
nonetheless obtained similar results across both new datasets.
The non-proline cis-peptides seen in the top-ranked models all
occur at the same position – the glycine-isoleucine bond imme-
diately following the C2-C5 disulfide bond in conotoxins derived
from piscivorous cone snails. Peptides that lack this motif or that
have a longer loop 2 do not have cis-peptide bonds anywhere in
the model. These results are consistent with the observation that
≈80% of characterized cis-Xaa-nonPro bonds have glycine prior
to the cis-peptide bond,[57] since the steric penalty is minimized
when the clashing sidechain is a proton. Despite their rarity,
non-proline cis-peptide bonds have been characterized in NMR
structures of 𝛼-scorpion toxins;[58–60] these peptides similarly in-
hibit Nav inactivation and also bind to the extracellular loops of
VSD IV.

As previously noted, the AlphaFold models do not contain any
cis-peptide bonds. However, in a handful of cases the AlphaFold
models have “twisted” peptide bonds (𝜔 > ± 30° deviation
from planar) which are practically nonexistent in experimental
protein structures (Table S1, Supporting Information). It has
been shown that AlphaFold is more likely to predict these model
geometries in low-confidence regions (pLDDT < 60)[40] and
this is also observed in our dataset, with the twisted peptides
exclusively occurring in the disordered C-termini; similar fea-
tures are seen in models of these peptides in the AlphaFold
database.[28] Nonetheless, the conclusions in this paper are
solely derived from models without cis or non-planar peptide
bonds.

In this work, we use both a deep learning algorithm (Al-
phaFold) and a conventional homology and energy minimiza-
tion strategy (RosettaCM) to generate our model sets. Each
method has its strengths and weaknesses when modeling
these complex peptides. Threading algorithms are at their most
accurate when modeling sequences with high homology to
the available templates, as is often the case with ICK peptides
given the universality of this framework across different species;
RosettaCM is particularly well suited for this given its ability to
use multiple template structures simultaneously. Conotoxins
often have extensive post-translational modifications; C-terminal
amides and 4-hydroxyproline residues were present in our target
set but other conotoxin classes are known to have different mod-

ifications, including D-amino acids, 𝛾-carboxylation of glutamic
acid residues, and L-6-bromination of tryptophan residues.[61]

Rosetta has an extensive library of patches that enable these
modifications to be handled natively during modeling which
offers a significant advantage.

AlphaFold is a newer modeling algorithm that uses deep
learning methods to calculate the structure using an MSA,
residue-pair interaction data, and, optionally, experimental
structures as templates. AlphaFold’s chief advantage is its ac-
curacy: in the CASP assessments of protein structure modeling
methods in which AlphaFold has participated it considerably
outperformed other algorithms.[53] It also has the advantage
that it can predict structures based on the sequence data alone,
given a sufficiently large MSA, and does not entirely rely on
experimental structures as homology methods do. Given the
challenges in experimental characterization presented by certain
conotoxins, this could significantly improve model quality. While
the original AlphaFold algorithm has been extended to improve
modeling of protein-protein and protein-ligand complexes,[62] a
full treatment of post-translational modifications is not available;
this presents a drawback in the modeling of conotoxins given the
frequency and importance of post-translational modifications in
conotoxin structure and function.

A limiting factor in the development of drugs based on
conopeptides is the prevalence of off-target activity caused by the
high structural similarity of receptor subtypes, and a thorough
understanding of the structure-activity relationship is essential
for mitigating these side effects.[63] Structural information is also
essential in developing agents capable of countering the effects
of cone snail envenomation, for which there is currently no dedi-
cated treatment.[64] We anticipate that the structural models pre-
sented in this work will provide a strong foundation for docking
studies, molecular dynamics simulations, and experimental char-
acterization of peptide-channel complexes that will further shed
light on the mechanism of action of these peptides and contribute
to drug discovery.

4. Conclusion

Our computational study has expanded the range of 𝛿-conotoxins
with modeled structures, including a class of 𝛿-conotoxins from
piscivorous cone snails for which experimental structures are
sparse and challenging to obtain. We note intriguing similarities
and differences between peptides originating from piscivorous,
molluscivorous, and vermivorous cone snails and identify fea-
tures likely to be of relevance to their binding and activity against
their target Navs, including the “silent binding” phenomenon.
Our protocol additionally suggests a roadmap for modeling sim-
ilar disulfide-rich peptides. Further structural characterization of
these 𝛿-conotoxins, both in isolation and in complex, will shed
additional light on their mechanism of action and provide new
avenues for rational drug design.

5. Experimental Section
Database Searching, Template Selection, and Preparation: 𝛿-conotoxins

were identified using ConoServer.[65,66] Peptides annotated with the cys-
teine framework VI/VII and pharmacological family 𝛿 were selected;
synthetic constructs were excluded. Three peptides, Am2766, TxVIA,
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and EVIA, have experimental structures and were designated as tem-
plates for modeling the remaining 𝛿-conotoxins in RosettaCM.[11–14]

4-Hydroxyproline residues were designated as prolines for sequence
alignments. Due to the very high sequence similarity to TxVIA, conotoxin
TxVIB was modeled using a different protocol (see below).

All template peptide structures were determined by nuclear magnetic
resonance (NMR) and therefore comprise an ensemble of structures con-
sistent with the calculated restraints. To prepare a single input model per
template for RosettaCM, the ensemble structures were separated into indi-
vidual PDB files and cleaned using the clean_PDB.py script supplied with
Rosetta. For 1YZ2, which has a C-terminal amide, the OXT atom was re-
placed in one round of Rosetta FastRelax, and then edited to restore a C-
terminal amide. All structures were then energy-minimized (5 models per
input structure) using Rosetta Relax,[67,68] and the lowest-energy model
was selected as the template.

Modeling with AlphaFold: AlphaFold v2.0 was obtained (https://
github.com/google-deepmind/alphafold; 2021-07-14 parameters) and
modeling was performed with the –max_template_date = 2021-09-01 and
–preset = casp14 flags, and the use of experimental structures as tem-
plates was permitted. Hydroxyproline residues were modeled as unmodi-
fied prolines. The five ranked models produced were assessed for model
quality by their per-residue pLDDT scores and model geometry was as-
sessed with MolProbity.[69]

Model Generation in RosettaCM: Sequences were obtained from
ConoServer. Since sequence data for some of these peptides is obtained
through genomic analyses, which do not indicate the presence or ab-
sence of post-translational modifications, hydroxyproline residues, and
C-terminal amides were modeled where annotations in ConoServer indi-
cated their likely presence; note that some of these may be derived by sim-
ilarity and do not guarantee a modification at that position.

Structure prediction in RosettaCM requires a sequence alignment be-
tween the target and template protein(s) and proceeds via an initial thread-
ing step that overlays the aligned regions of the target protein onto the
template.[27] These threaded models are then hybridized to sample com-
binations of regions from the different threaded models and close missing
loops by fragment insertion, followed by energy minimization and scoring
of the final structures.

Sequence alignments were generated using ClustalΩ[70] and adjusted
where necessary to ensure alignment of the cysteine residues. The
phylogenetic tree (Figure 1B) was calculated using the phylogeny tool
ClustalW2.[71,72]

All scripts and flags used are provided as Supplementary Material.
Rosetta version 3.12 was obtained from Rosetta Commons (www.

rosettacommons.org) and installed from source. Initial threaded models
were calculated for each peptide using the setup_RosettaCM.py script pro-
vided with Rosetta,[27] then 1000 initial models were calculated using the
rosetta_cm.xml script. This script was modified where necessary to incor-
porate 4-hydroxyproline residues and C-terminal amides using the Modi-
fyVariantType mover. The energy of the models was minimized using the
Relax application with the current ref2015 score function,[73] generating 5
relaxed models per input model for a total of 5000 models per peptide.
The -fix_disulfs flag was used, together with a parameters file defining the
disulfide bond connectivity, to ensure the formation of the correct cysteine
framework.

This protocol was similarly followed when modeling using the cartesian
score functions beta_nov16_cart and ref2015_cart,[74] except the number
of output hydridized models was set to 5000, and the -relax:dualspace flag
was included to instigate dualspace refinement.

Model Clustering and Scoring: Models were clustered using Rosetta’s
energy-based clustering algorithm,[75] with a cluster radius of 1 Å. The 5
lowest-energy clusters were used for analysis, and decoys were aligned to
the lowest-scoring model in ChimeraX.[76,77]

Modeling of TxVIB: The sequence of TxVIB is identical to that of TxVIA
except for two mutations (L11V/L24F).[78,79] Modeling of TxVIB was there-
fore carried out using the mutagenesis tool in PyMOL[80] to mutate the
two residues, followed by energy minimization using Rosetta Relax (500
models). The lowest-scoring model was selected for analysis. The stan-
dard AlphaFold modeling protocol was used for TxVIB.

Figures were produced in ChimeraX, PyMOL, Microsoft PowerPoint
(microsoft.com), and Adobe Photoshop (adobe.com). Plots were pro-
duced using Matplotlib.[81]

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.

Acknowledgements
The authors thank all members of the Gonen lab for helpful and criti-
cal discussions. This research was supported by the Department of De-
fense HDTRA1-21-1-0004 and the National Institute of General Medical
Sciences, grant R35-GM142797.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
The data that support the findings of this study are available in the sup-
plementary material of this article.

Keywords
AlphaFold, computational, conopeptide, conotoxin, modeling, rosetta

Received: May 3, 2024
Revised: June 27, 2024

Published online: July 21, 2024

[1] J. Davis, A. Jones, R. J. Lewis, Peptides 2009, 30, 1222.
[2] R. J. Lewis, M. L. Garcia, Nat. Rev. Drug Discov. 2003, 2, 790.
[3] S. Dutertre, R. Lewis, Snails: Biology, Ecology and Conservation, (Eds:

E. M. Hämäläinen, S. Järvinen) Nova Science Publishers, New York,
NY 2013, pp. 85–104.

[4] J. Barbier, H. Lamthanh, F. Le Gall, P. Favreau, E. Benoit, H. Chen, N.
Gilles, N. Ilan, S. H. Heinemann, D. Gordon, A. Ménez, J. Molgó, J.
Biol. Chem. 2004, 279, 4680.

[5] M. Fainzilber, O. Kofman, E. Zlotkin, D. Gordon, J. Biol. Chem. 1994,
269, 2574.

[6] E. Leipold, A. Hansel, B. M. Olivera, H. Terlau, S. H. Heinemann,
FEBS Lett. 2005, 579, 3881.

[7] J. Wang, V. Yarov-Yarovoy, R. Kahn, D. Gordon, M. Gurevitz, T.
Scheuer, W. A. Catterall, Proc. Natl. Acad. Sci. 2014, 111, 3644.

[8] S. Sudarslal, S. Majumdar, P. Ramasamy, R. Dhawan, P. P. Pal, M.
Ramaswami, A. K. Lala, S. K. Sikdar, S. P. Sarma, K. S. Krishnan, P.
Balaram, FEBS Lett. 2003, 553, 209.

[9] G. Bulaj, R. DeLaCruz, A. Azimi-Zonooz, P. West, M. Watkins, D.
Yoshikami, B. M. Olivera, Biochemistry 2001, 40, 13201.

[10] M. Fainzilber, J. C. Lodder, K. S. Kits, O. Kofman, I. Vinnitsky, J. Van
Rietschoten, E. Zlotkin, D. Gordon, J. Biol. Chem. 1995, 270, 1123.

[11] T. Kohno, T. Sasaki, K. Kobayashi, M. Fainzilber, K. Sato, J. Biol. Chem.
2002, 277, 36387.

[12] S. P. Sarma, G. S. Kumar, S. Sudarslal, P. Iengar, P. Ramasamy, S. K.
Sikdar, K. S. Krishnan, P. Balaram, Chem. Biodivers. 2005, 2, 535.

Adv. Sci. 2024, 11, 2404786 2404786 (8 of 10) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advancedscience.com
https://github.com/google-deepmind/alphafold
https://github.com/google-deepmind/alphafold
http://www.rosettacommons.org
http://www.rosettacommons.org
https://www.microsoft.com


www.advancedsciencenews.com www.advancedscience.com

[13] L. Volpon, H. Lamthanh, J. Barbier, N. Gilles, J. Molgó, A. Ménez, J.
M. Lancelin, J. Biol. Chem. 2004, 279, 21356.

[14] D. Tietze, E. Leipold, P. Heimer, M. Böhm, W. Winschel, D. Imhof, S.
H. Heinemann, A. A. Tietze, Biochim. Biophys. Acta – Gen. Subj. 2016,
1860, 2053.

[15] B. Webb, A. Sali, Curr. Protoc. Bioinforma. 2016, 54, 5.6.1.
[16] B. Kuhlman, P. Bradley, Nat. Rev. Mol. Cell Biol. 2019, 20, 681.
[17] J. Lee, P. L. Freddolino, Y. Zhang, in From Protein Struct. to Funct.

with Bioinforma (Ed.: D. J. Rigden), Springer, Netherlands, Dordrecht
2017, pp. 1–35.

[18] L. Aithani, E. Alcaide, S. Bartunov, C. D. O. Cooper, A. S. Doré, T. J.
Lane, F. Maclean, P. Rucktooa, R. A. Shaw, S. E. Skerratt, Curr. Opin.
Struct. Biol. 2023, 80, 102601.

[19] N. Sapoval, A. Aghazadeh, M. G. Nute, D. A. Antunes, A. Balaji, R.
Baraniuk, C. J. Barberan, R. Dannenfelser, C. Dun, M. Edrisi, R. A. L.
Elworth, B. Kille, A. Kyrillidis, L. Nakhleh, C. R. Wolfe, Z. Yan, V. Yao,
T. J. Treangen, Nat. Commun. 2022, 13, 1728.

[20] N. Kumar, R. Srivastava, Brief Bioinform 2024, https://doi.org/10.
1093/bib/bbae042.

[21] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
K. Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko, A. Bridgland,
C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes,
S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E.
Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer,
S. Bodenstein, D. Silver, O. Vinyals, et al., Nature 2021, 596,
583.

[22] M. Baek, F. DiMaio, I. Anishchenko, J. Dauparas, S. Ovchinnikov, G.
R. Lee, J. Wang, Q. Cong, L. N. Kinch, R. Dustin Schaeffer, C. Millán,
H. Park, C. Adams, C. R. Glassman, A. DeGiovanni, J. H. Pereira,
A. V. Rodrigues, A. A. Van Dijk, A. C. Ebrecht, D. J. Opperman, T.
Sagmeister, C. Buhlheller, T. Pavkov-Keller, M. K. Rathinaswamy, U.
Dalwadi, C. K. Yip, J. E. Burke, K. Christopher Garcia, N. V. Grishin,
P. D. Adams, et al., Science 2021, 373, 871.

[23] R. Krishna, J. Wang, W. Ahern, P. Sturmfels, P. Venkatesh, I. Kalvet,
G. R. Lee, F. S. Morey-Burrows, I. Anishchenko, I. R. Humphreys, R.
McHugh, D. Vafeados, X. Li, G. A. Sutherland, A. Hitchcock, C. N.
Hunter, A. Kang, E. Brackenbrough, A. K. Bera, M. Baek, F. DiMaio,
D. Baker, Science 2024, https://doi.org/10.1126/science.adl2528.

[24] Z. Lin, H. Akin, R. Rao, B. Hie, Z. Zhu, W. Lu, N. Smetanin, R. Verkuil,
O. Kabeli, Y. Shmueli, A. dos Santos Costa, M. Fazel-Zarandi, T. Sercu,
S. Candido, A. Rives, Science 2023, 379, 1123.

[25] R. Wu, F. Ding, R. Wang, R. Shen, X. Zhang, S. Luo, C. Su, Z. Wu, Q.
Xie, B. Berger, J. Ma, J. Peng, bioRxiv 2022, https://doi.org/10.1101/
2022.07.21.500999.

[26] Y. Fang, Y. Jiang, L. Wei, Q. Ma, Z. Ren, Q. Yuan, D. Q. Wei, Bioinfor-
matics 2023, https://doi.org/10.1093/bioinformatics/btad718.

[27] Y. Song, F. Di Maio, R. Y. R. Wang, D. Kim, C. Miles, T. Brunette, J.
Thompson, D. Baker, Structure 2013, 21, 1735.

[28] M. Varadi, S. Anyango, M. Deshpande, S. Nair, C. Natassia, G.
Yordanova, D. Yuan, O. Stroe, G. Wood, A. Laydon, A. Zídek, T. Green,
K. Tunyasuvunakool, S. Petersen, J. Jumper, E. Clancy, R. Green, A.
Vora, M. Lutfi, M. Figurnov, A. Cowie, N. Hobbs, P. Kohli, G. Kleywegt,
E. Birney, D. Hassabis, S. Velankar, Nucleic Acids Res. 2022, 50,
D439.

[29] K. Tunyasuvunakool, J. Adler, Z. Wu, T. Green, M. Zielinski, A.
Žídek, A. Bridgland, A. Cowie, C. Meyer, A. Laydon, S. Velankar,
G. J. Kleywegt, A. Bateman, R. Evans, A. Pritzel, M. Figurnov, O.
Ronneberger, R. Bates, S. A. A. Kohl, A. Potapenko, A. J. Ballard,
B. Romera-Paredes, S. Nikolov, R. Jain, E. Clancy, D. Reiman, S.
Petersen, A. W. Senior, K. Kavukcuoglu, E. Birney, et al., Nature 2021,
596, 590.

[30] V. Laverne, P. F. Alewood, M. Mobli, G. F. King, in Venoms to Drugs
Venom as a Source Dev Hum Ther (Ed.: G. F. King), Royal Society Of
Chemistry, Cambridge, 2015, pp. 37–70.

[31] S. S. Pineda, Y. K. Y. Chin, E. A. B. Undheim, S. Senff, M. Mobli, C.
Dauly, P. Escoubas, G. M. Nicholson, Q. Kaas, S. Guo, V. Herzig, J.
S. Mattick, G. F. King, Proc. Natl. Acad. Sci. 2020, 117, 11399.

[32] A. O. Stevens, Y. He, Biomolecules 2022, 12, 985.
[33] L. M. F. Bertoline, A. N. Lima, J. E. Krieger, S. K. Teixeira, Front Bioin-

form. 2023, 3, 1120370.
[34] A. A. Morgan, E. Rubenstein, PLoS One 2013, 8, 1.
[35] G. F. King, Venom to Drugs: Venom as a Source for the Development of

Human Therapeutics, Royal Society of Chemistry, Cambridge 2015.
[36] E. A. B. Undheim, M. Mobli, G. F. King, BioEssays 2016, 38, 539.
[37] M. H. Moreira, F. C. L. Almeida, T. Domitrovic, F. L. Palhano, Comput.

Struct. Biotechnol. J 2021, 19, 6255.
[38] C. H. Y. Lau, G. F. King, M. Mobli, Sci. Rep. 2016, 6, 34333.
[39] J. J. Smith, T. R. Cummins, S. Alphy, K. M. Blumenthal, J. Biol. Chem.

2007, 282, 12687.
[40] C. J. Williams, D. C. Richardson, J. S. Richardson, Comput Crystallogr

Newsl 2022, 13, 7.
[41] V. Herzig, K. Sunagar, D. T. R. Wilson, S. S. Pineda, M. R. Israel, S.

Dutertre, B. S. McFarland, E. A. B. Undheim, W. C. Hodgson, P. F.
Alewood, R. J. Lewis, F. Bosmans, I. Vetter, G. F. King, B. G. Fry, Proc.
Natl. Acad. Sci. 2020, 117, 24920.

[42] G. Bulaj, B. M. Olivera, Antioxidants Redox Signal 2008, 10, 141.
[43] O. Buczek, B. M. Olivera, G. Bulaj, Biochemistry 2004, 43, 1093.
[44] H. Safavi-Hemami, G. Bulaj, B. M. Olivera, N. A. Williamson, A. W.

Purcell, J. Biol. Chem. 2010, 285, 12735.
[45] H. Safavi-Hemami, D. G. Gorasia, A. M. Steiner, N. A. Williamson,

J. A. Karas, J. Gajewiak, B. M. Olivera, G. Bulaj, A. W. Purcell, J. Biol.
Chem. 2012, 287, 34288.

[46] R. J. Lewis, S. Dutertre, I. Vetter, M. J. Christie, Pharmacol. Rev. 2012,
64, 259.

[47] S. T. Henriques, E. Deplazes, N. Lawrence, O. Cheneval, S. Chaousis,
M. Inserra, P. Thongyoo, G. F. King, A. E. Mark, I. Vetter, D. J. Craik,
C. I. Schroeder, J. Biol. Chem. 2016, 291, 17049.

[48] E. Deplazes, S. T. Henriques, J. J. Smith, G. F. King, D. J. Craik, A. E.
Mark, C. I. Schroeder, Biochim. Biophys. Acta – Biomembr. 2016, 1858,
872.

[49] D. Wang, S. W. A. Himaya, J. Giacomotto, M. M. Hasan, F. C. Cardoso,
L. Ragnarsson, R. J. Lewis, Mar. Drugs 2020, 18, 343.

[50] H. Xu, T. Li, A. Rohou, C. P. Arthur, F. Tzakoniati, E. Wong, A. Estevez,
C. Kugel, Y. Franke, J. Chen, C. Ciferri, D. H. Hackos, C. M. Koth, J.
Payandeh, Cell 2019, 176, 702.

[51] T. Clairfeuille, A. Cloake, D. T. Infield, J. P. Llongueras, C. P. Arthur,
Z. R. Li, Y. Jian, M. F. Martin-Eauclaire, P. E. Bougis, C. Ciferri, C. A.
Ahern, F. Bosmans, D. H. Hackos, A. Rohou, J. Payandeh, Science
2019, https://doi.org/10.1126/science.aav8573.

[52] K. George, D. Lopez-Mateos, T. M. Abd El-Aziz, Y. Xiao, J. Kline, H.
Bao, S. Raza, J. D. Stockand, T. R. Cummins, L. Fornelli, M. P. Rowe,
V. Yarov-Yarovoy, A. H. Rowe, Front. Pharmacol. 2022, 13, 846992.

[53] A. Kryshtafovych, T. Schwede, M. Topf, K. Fidelis, J. Moult, Proteins
Struct Funct Bioinforma 2021, 89, 1607.

[54] O. Herzberg, J. Moult, Proc. Natl. Acad. Sci. 2023, 120, 2017.
[55] D. Chakravarty, L. L. Porter, Protein Sci. 2022, 31, e4353.
[56] K. Manalastas-Cantos, K. R. Adoni, M. Pfeifer, B. Märtens, K.

Grünewald, K. Thalassinos, M. Topf, Mol. Cell. Proteomics 2024, 23,
100724.

[57] S. Das, S. Ramakumar, D. Pal, FEBS J. 2014, 281, 5602.
[58] K. S. Mineev, M. A. Chernykh, V. V. Motov, D. A. Prudnikova, D. M.

Pavlenko, A. I. Kuzmenkov, S. Peigneur, J. Tytgat, A. A. Vassilevski,
FEBS Lett. 2023, 597, 2358.

[59] R. J. Guan, Y. Xiang, X. L. He, C. G. Wang, M. Wang, Y. Zhang, E. J.
Sundberg, D. C. Wang, J. Mol. Biol. 2004, 341, 1189.

[60] N. A. Kuldyushev, K. S. Mineev, A. A. Berkut, S. Peigneur, A. S.
Arseniev, J. Tytgat, E. V. Grishin, A. A. Vassilevski, Proteins Struct.
Funct. Bioinforma. 2018, 86, 1117.

Adv. Sci. 2024, 11, 2404786 2404786 (9 of 10) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advancedscience.com
https://doi.org/10.1093/bib/bbae042
https://doi.org/10.1093/bib/bbae042
https://doi.org/10.1126/science.adl2528
https://doi.org/10.1101/2022.07.21.500999
https://doi.org/10.1101/2022.07.21.500999
https://doi.org/10.1093/bioinformatics/btad718
https://doi.org/10.1126/science.aav8573


www.advancedsciencenews.com www.advancedscience.com

[61] O. Buczek, G. Bulaj, B. M. Olivera, Cell. Mol. Life Sci. 2005, 62, 3067.
[62] AlphaFold Team, Google DeepMind Team, Isomorphic Labs, Perfor-

mance and Structural Coverage of the Latest, in-Development AlphaFold
Model 2023, 1–20.

[63] R. J. Lewis, in Venom to Drugs Venom as a Source Dev Hum Ther (Ed.:
G. F. King), Royal Society of Chemistry, Cambridge, 2015, pp. 245.

[64] Z. A. Halford, P. Y. C. Yu, R. K. Likeman, J. S. Hawley-Molloy, C.
Thomas, J. P. Bingham, Diving Hyperb. Med. 2015, 45, 200.

[65] Q. Kaas, R. Yu, A. H. Jin, S. Dutertre, D. J. Craik, Nucleic Acids Res.
2012, 40, D325.

[66] Q. Kaas, J. C. Westermann, R. Halai, C. K. L. Wang, D. J. Craik, Bioin-
formatics 2008, 24, 445.

[67] L. G. Nivón, R. Moretti, D. Baker, PLoS One 2012, 8, e59004.
[68] P. Conway, M. D. Tyka, F. DiMaio, D. E. Konerding, D. Baker, Protein

Sci. 2014, 23, 47.
[69] I. W. Davis, A. Leaver-Fay, V. B. Chen, J. N. Block, G. J. Kapral, X.

Wang, L. W. Murray, W. B. Arendall, J. Snoeyink, J. S. Richardson, D.
C. Richardson, Nucleic Acids Res. 2007, 35, W375.

[70] F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus, W. Li, R.
Lopez, H. McWilliam, M. Remmert, J. Söding, J. D. Thompson, D.
G. Higgins, Mol. Syst. Biol. 2011, 7, 539.

[71] M. Goujon, H. McWilliam, W. Li, F. Valentin, S. Squizzato, J. Paern,
R. Lopez, Nucleic Acids Res. 2010, 38, W695.

[72] M. A. Larkin, G. Blackshields, N. P. Brown, R. Chenna, P. A.
McGettigan, H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R.
Lopez, J. D. Thompson, T. J. Gibson, D. G. Higgins, Bioinformatics
2007, 23, 2947.

[73] R. F. Alford, A. Leaver-Fay, J. R. Jeliazkov, M. J. O’Meara, F. P. DiMaio,
H. Park, M. V. Shapovalov, P. D. Renfrew, V. K. Mulligan, K. Kappel, J.
W. Labonte, M. S. Pacella, R. Bonneau, P. Bradley, R. L. Dunbrack, R.
Das, D. Baker, B. Kuhlman, T. Kortemme, J. J. Gray, J. Chem. Theory
Comput. 2017, 13, 3031.

[74] J. K. Leman, B. D. Weitzner, S. M. Lewis, J. Adolf-Bryfogle, N. Alam, R.
F. Alford, M. Aprahamian, D. Baker, K. A. Barlow, P. Barth, B. Basanta,
B. J. Bender, K. Blacklock, J. Bonet, S. E. Boyken, P. Bradley, C. Bystroff,
P. Conway, S. Cooper, B. E. Correia, B. Coventry, R. Das, R. M. De
Jong, F. DiMaio, L. Dsilva, R. Dunbrack, A. S. Ford, B. Frenz, D. Y. Fu,
C. Geniesse, et al., Nat. Methods 2020, 17, 665.

[75] P. Hosseinzadeh, G. Bhardwaj, V. K. Mulligan, M. D. Shortridge, T.
W. Craven, F. Pardo-Avila, S. A. Rettie, D. E. Kim, D. A. Silva, Y. M.
Ibrahim, I. K. Webb, J. R. Cort, J. N. Adkins, G. Varani, D. Baker, Sci-
ence 2017, 358, 1461.

[76] E. F. Pettersen, T. D. Goddard, C. C. Huang, E. C. Meng, G. S.
Couch, T. I. Croll, J. H. Morris, T. E. Ferrin, Protein Sci. 2021, 30,
70.

[77] T. D. Goddard, C. C. Huang, E. C. Meng, E. F. Pettersen, G. S. Couch,
J. H. Morris, T. E. Ferrin, Protein Sci. 2018, 27, 14.

[78] M. Fainzilber, D. Gordon, A. Hasson, M. E. Spira, E. Zlotkin, Eur. J.
Biochem. 1991, 202, 589.

[79] A. Hasson, M. Fainzilber, D. Gordon, E. Zlotkin, M. E. Spira, Eur. J.
Neurosci. 1993, 5, 56.

[80] The PyMOL Molecular Graphics System, Version 3.0 Schrödinger,
LLC, https://pymol.org/support.html.

[81] J. D. Hunter, Comput. Sci. Eng. 2007, 9, 90.

Adv. Sci. 2024, 11, 2404786 2404786 (10 of 10) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advancedscience.com
https://pymol.org/support.html

	83´-Conotoxin Structure Prediction and Analysis through Large-Scale Comparative and Deep Learning Modeling Approaches
	1. Introduction
	2. Results
	2.1. Peptides Show the Expected ICK Geometry
	2.2. Peptide Termini Are Generally Flexible
	2.3. Secondary Structure Is Limited
	2.4. Peptide Flexibility Is Greatest in Loop 2
	2.5. Not All Peptides Show a Continuum of Positions in Loop 2
	2.6. A Structural Role for Hydroxyproline Residues in RosettaCM Models
	2.7. 83´-Conotoxins with an Extended Loop 2 Show a Mixture of Cis- and Trans-Proline
	2.8. A Consensus Surface-Exposed Hydrophobic Patch
	2.9. Some RosettaCM Models of Piscivorous Cone Snail 83´-Conotoxins Show a Cis-nonPro Bond in Loop 2

	3. Discussion
	4. Conclusion
	5. Experimental Section
	Supporting Information
	Acknowledgements
	Conflict of Interest
	Data Availability Statement

	Keywords


