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Serum and Urine Metabolic Fingerprints Characterize Renal
Cell Carcinoma for Classification, Early Diagnosis, and
Prognosis

Xiaoyu Xu, Yuzheng Fang, Qirui Wang, Shuanfeng Zhai, Wanshan Liu, Wanwan Liu,
Ruimin Wang, Qiuqiong Deng, Juxiang Zhang, Jingli Gu, Yida Huang, Dingyitai Liang,
Shouzhi Yang, Yonghui Chen, Jin Zhang, Wei Xue, Junhua Zheng,* Yuning Wang,*
Kun Qian,* and Wei Zhai*

Renal cell carcinoma (RCC) is a substantial pathology of the urinary system
with a growing prevalence rate. However, current clinical methods have
limitations for managing RCC due to the heterogeneity manifestations of the
disease. Metabolic analyses are regarded as a preferred noninvasive approach
in clinics, which can substantially benefit the characterization of RCC. This
study constructs a nanoparticle-enhanced laser desorption ionization mass
spectrometry (NELDI MS) to analyze metabolic fingerprints of renal tumors
(n = 456) and healthy controls (n = 200). The classification models yielded
the areas under curves (AUC) of 0.938 (95% confidence interval (CI),
0.884–0.967) for distinguishing renal tumors from healthy controls, 0.850 for
differentiating malignant from benign tumors (95% CI, 0.821–0.915), and
0.925–0.932 for classifying subtypes of RCC (95% CI, 0.821–0.915). For the
early stage of RCC subtypes, the averaged diagnostic sensitivity of 90.5% and
specificity of 91.3% in the test set is achieved. Metabolic biomarkers are
identified as the potential indicator for subtype diagnosis (p < 0.05). To
validate the prognostic performance, a predictive model for RCC participants
and achieve the prediction of disease (p = 0.003) is constructed. The study
provides a promising prospect for applying metabolic analytical tools for RCC
characterization.
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1. Introduction

Renal cell carcinoma (RCC) is a major
prevalent and deadly type of kidney cancer,
with 168 560 new cases and 32 590 deaths in
the urinary system reported in the United
States.[1] Effective management for RCC,
including tumor determination, early diag-
nosis, and prognostic assessment, is vitally
important for improving survival outcomes,
which helps to enhance the 5-year sur-
vival ratio and guide clinical intervention.[2]

However, the common characterization
methods (e.g., abdominal imaging tech-
nologies and liquid biopsy tests) present
challenges in small tumor recognition, be-
nign and malignant case distinction, or
time-consuming procedures.[3] Meanwhile,
the absence of effective biomarkers and
prognostic assessment tools hinders the for-
mulation of therapeutic strategies (within
5 years after surgery, ≈20–25% of patients
with RCC will encounter the challenges of
recurrence and metastasis) and represent
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low diagnostic specificity.[4] Therefore, it is essential to establish a
minimally invasive, sensitive, and rapid method for the accurate
characterization of RCC.

Liquid biopsy enables real-time collection of sample informa-
tion for differential diagnosis, prognostic assessment, and treat-
ment monitoring, which has attracted increasing attention.[3,5]

Metabolic biomarkers serve as end products of pathways and
can potentially offer a more distal characterization of the ongo-
ing pathological process.[6] Recently, metabolic biomarkers hold
great promise for RCC diagnostic purposes, owing to the least
invasive nature of the handling process.[7] Nevertheless, cur-
rent studies based on metabolic profiling mostly focus on sin-
gle biofluid test, which suffers from the drawback of examin-
ing a limited sample cohort, or with a restricted clinical function
that neither supports diagnosis nor prognosis.[8] Notably, serum
metabolomics provides intact metabolic information from the
human body, meanwhile, renal tumors occur in the location prox-
imity to the urinary collection. It is foreseen that the integration
of serum and urine could enable the identification of potential
biomarkers with sufficient clinical relevance.[9]

Mass spectrometry (MS) is the principal tool that offers accu-
rate molecular information with higher sensitivity and resolution
than enzymatic biochemical assays and traditional spectrometric
methods. In particular, nanoparticle-enhanced laser desorption
ionization mass spectrometry (NELDI MS) has been widely used
in advanced biomedical applications by metabolic fingerprint-
ing of biofluids, such as serum, aqueous humor, cerebrospinal
fluid (CSF).[10] Compared to liquid/gas chromatography (LC/GC)
MS, laser desorption ionization (LDI) MS presents various advan-
tages, including simple sample pretreatment, low sample con-
sumption, high analysis speed, and high throughput.[11] Accord-
ingly, NELDI MS platforms provide new opportunities for rapid
and accurate metabolic analysis for clinical use in RCC.

Herein, we acquired metabolic fingerprints of the SUPER
(Serum and Urine Programme Established in Renji Hospital)
cohort with desirable reproducibility, high throughput, and low
sample consumption (Scheme 1). Automated recognition was ap-
plied to serum metabolic fingerprints (SMF) and urine metabolic
fingerprints (UMF) to distinguish malignant from benign tu-
mors (AML: Angiomyolipoma), classify RCC subtypes (ccRCC:
clear cell RCC, pRCC: papillary RCC, chRCC: chromophobe
RCC), and achieve the early-stage diagnosis. Moreover, we iden-
tified several metabolic biomarkers for RCC subtype diagnosis,
yielding an AUC of 0.813–0.965. Finally, we developed a predic-
tive system to predict the risk of recurrence or metastasis in pa-
tients with the major subtype of RCC (ccRCC). Our work has
expedited the advancement of metabolic analysis protocols for
paired serum and urine, making a valuable contribution to man-
aging RCC in the near future.

2. Results

2.1. Construction of NELDI-MS Platform for Metabolic Detection

We established a ferric oxide-based NELDI-MS platform for clin-
ical SMFs and UMFs analysis with rapid analytical speed (≈20 s
per sample), low sample consumption (1 μL only), and desir-
able throughput (384 samples per chip) (Figure 1a; Figure S1a,b,
Supporting Information). To construct the high-performance

on-chip microarray, we prepared ferric oxide nanoparticles as
a matrix according to our previous works. Briefly, a low-cost
solution-thermal method was employed for the synthesis of tai-
lored nanoparticles, and their characterization was conducted
using scanning electron microscopy (SEM). The ferric oxide
NPs presented polycrystalline and surface roughness structures
(Figure 1b), which were suitable as an LDI MS matrix for nu-
merous low-concentration metabolites analysis. Meanwhile, the
HAADF image and elemental mapping of NPs (Figure 1c; Figure
S1c, Supporting Information) confirmed its high-quality poly-
crystalline nature. To test the NELDI MS platform for the analysis
of the mixed metabolites in salt and protein solution, we analyzed
five metabolites by LDI MS, including histidine (His), arginine
(Arg), phenylalanine (Phe), tryptophan (Trp), and glucose (Glc)).

As shown in Figure 1d, the peaks at m/z of 178, 188, 197,
203, and 227 were assigned to [His+Na]+, [Phe+Na]+, [Arg+Na]+,
[Glc+Na]+ and [Trp+Na]+, respectively. The capability of multiple
metabolites analysis and the favorable tolerance to salt and pro-
tein using NELDI-MS was supported by these results, suggesting
its potential for direct practical applications without the need for
pretreatment. To verify the reproducibility of our platform, we an-
alyzed six metabolites by LDI MS, including His, Arg, Phe, Trp,
Glc, and cellobiose (Cel). The coefficient of variations (CVs) of cor-
responding MS peak intensities at m/z of 178 ([His+Na]+), 197
([Arg+Na]+), 365 ([Cel+Na]+), 188 ([Phe+Na]+), 227 ([Trp+Na]+),
and 203 ([Glc+Na]+), were <10.0% ranging from 2.6% to 9.3% in
ten replicates (Figure 1e; Figure S1d–i, Supporting Information).
To investigate the reliability of our assay, we conducted a separate
study specifically examining the reproducibility and stability of
the metabolic fingerprints obtained from the patient sample. We
collected ten mass spectra from the same sample at different time
points (Figure S7a, Supporting Information), and incorporated
intraclass correlation coefficients and comparison of metabolic
profiles (Figure S7b, Supporting Information). To further evalu-
ate the reproducibility of the microarray, we detected a standard
solution of glucose 1 mg mL−1 on five different chips, and the rel-
ative standard deviation (RSD) of the MS peak intensity at m/z
of 203 ([Glc+Na]+) was 1.6% (Figure 1f).

Furthermore, we performed the typical mass spectrum of
serum and urine samples from one HC and one RCC patient
based on the MS platform, respectively (Figure 1g,h). For each
sample, the original mass spectra have ≈57 600 data points from
100–800 Da. Consequently, to demonstrate the similarity in each
group, we measured the similarity score of each urine and serum
spectra within HC and RCC groups (Figure 1i). Notably, over
90% of samples presented high similarity scores (over 0.8), con-
firming the detection capability and their spectra similarity in the
same group.

2.2. Baseline Information and Study Design

Within the case-cohort design, a total of 765 individuals were re-
cruited in this study, comprising 565 subjects from the renal tu-
mor group (Tables S1 and S2, Supporting Information). Accord-
ing to selection criteria (Figure 2a and Supporting Information,
Cohort selection), we enrolled 456 renal tumor participants in the
study cohort, with 415 malignant tumors as RCC and 41 benign
tumors (AML) (Table 1).
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Scheme 1. Schematic of biofluid samples characterize RCC for multi-clinical application by metabolic analysis.
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Figure 1. Serum and urine metabolic fingerprints using the NPELDI-MS platform. a) Digital image of the microarray depicts the printing of the matrix as
orange regions on the chip, with a scale bar measuring 5 mm. b) Scanning electron microscopy (SEM) image displays surface cavities of nanoparticles,
with a scale bar measuring 100 nm. c) The high-angle annular dark-field (HAADF) image and elemental mapping of the nanoparticles show Fe in red
and O in green, with the scale bar measuring 200 nm. d) Salt and protein tolerance of the microarray (salt solution: 1 mm PBS; protein: 5 mg mL−1

bovine serum albumin (BSA)). Blue asterisks represent histidine (His), phenylalanine (Phe), arginine (Arg), glucose (Glc), and tryptophan (Trp) at the
m/z peaks of 178, 188, 197, 203, and 227, respectively. e) CVs of intensities for histidine (His), phenylalanine (Phe), arginine (Arg), tryptophan (Trp),
cellobiose (Cel), and glucose (Glc) in a standard mixture over ten tests. f) Microarray reproducibility of five chips for standard Glc (1 mg mL−1) intensity
in five duplicates. g) Typical mass spectra of the serum metabolic fingerprint (SMF) for HC and RCC in the m/z range of 100–800 Da. h) Typical mass
spectra of the urine metabolic fingerprint (UMF) for HC and RCC in the m/z range of 100–800 Da. i) Intragroup similarity scores for serum and urine
metabolic fingerprints showed frequency distributions for both HC and RCC patient groups.

In the HC group, all participants provided informed consent to
participate in this study (Table S3, Supporting Information) with-
out kidney disease, according to the examination results. Then,
we collected serum and urine samples from all donors for fur-
ther analysis using the NELDI MS platform. To construct the
SMF and UMF databases, 251 and 214 m/z features were ex-
tracted from the original mass spectra. Each database was lo-
calized by the highest intensity and peak alignment with the
central m/z value and plotted, as shown in Figure 2b,c. For the

classification model, we applied an automated machine-learning
method to obtain the best algorithm and optimal hyperparam-
eter combinations. In Figure 1d, we split the united SMF and
UMF into training and test sets (7:3) with no significant differ-
ences in sex and age (p > 0.05), using the nested tenfold cross-
validation technique to identify the optimal algorithm and fine-
tune the hyperparameter combinations in the training set. Sub-
sequently, the final models were selected for application to the
test set.
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Figure 2. Cohort design and model optimization. a) Workflow summarizing the selection process, where 656 subjects were chosen from 765 subjects.
b) SMF of 251 m/z features was extracted from the raw mass spectrometry data. The intensities were displayed using a color scale after logarithmic
transformation. c) UMF, including 214 m/z features, was extracted from raw mass spectrometry data. The intensities were displayed using a color scale
after logarithmic transformation. d) Workflow of training and evaluation of classification model via automated machine learning.
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Table 1. Clinical characteristics of the renal tumor group (n = 456).

Clinical indexes Number %

Sex

Female 210 46

Male 246 54

Age(years)

<60 261 57

≥60 195 43

BMI

<24 176 39

≥24 280 61

Pathological classification

ccRCC 221 48

pRCC 95 21

chRCC 99 22

AML 41 9

Pathological stage (except AML)

I 351 85

II 36 9

III-IV 28 6

ISUP grade

I 73 23

II 164 52

III-IV 79 25

2.3. Screening of Tumor Types and RCC Sub-Categories

We built a three-step diagnostic model for tumor group differ-
entiation, benign and malignant tumor identification, and RCC
subtype classification using SMF and UMF (Figure 3a).

First, we differentiated tumor groups from healthy controls us-
ing unsupervised analysis (t-distributed stochastic neighbor em-
bedding, t-SNE). As shown in Figure 3b, the two groups could not
be separated, suggesting an improvement in the diagnostic effi-
ciency by machine learning. When the optimal machine learning
classifiers were applied in the SMF, UMF, and SMF-UMF analy-
ses, the SMF-UMF model showed the desired PR curves with an
enhanced AUC of 0.895 (95% CI, 0.854–0.943), compared to the
SMF of 0.837 (95% CI, 0.796–0.902) and UMF of 0.861 (95% CI,
0.811–0.928) for the independent validation cohort (Figure 3c).
Meanwhile, the ROC results also showed the best performance
of the SMF-UMF model (AUC of 0.938 (95% CI, 0.879–0.967),
accuracy of 91.2%, sensitivity of 90.8%, and specificity of 89.9%)
in the blind test set, validating the diagnostic value of united SMF
and UMF for tumor group screening (Figure 3d).

In the second step, we differentiated malignant tumors from
AML. The classification efficiency was evaluated by accuracy,
kappa, F1-score, precision, and recall, which are regarded as vital
parameters for the proficiency of the classifier (Figure 3e). The
combined SMF and UMF achieved the best performance (accu-
racy: 0.898, kappa: 0.823, F1-score: 0.857, precision: 0.815, recall:
0.898). Furthermore, the probability of sample-level distribution
was plotted to demonstrate the excellent discrimination between

the malignant tumor (orange) and the benign tumor (blue) us-
ing the model ridge classifier in Figure 3f. Additionally, the ROC
results in Figure 3g also presented the best classification perfor-
mance based on the SMF-UMF, with an AUC of 0.850 (95% CI,
0.824–0.903), accuracy of 84.1%, sensitivity of 83.9%, and speci-
ficity of 84.6%) in the test cohort.

In the final step, we achieved RCC subtype discrimination of
ccRCC, pRCC, and chRCC using the multi-classification method
after correcting for unbalanced sample sizes (Figure S2, Support-
ing Information). Figure 3h shows the confusion matrix results
of the test set (n = 30, ccRCC: 20, pRCC: 7, chRCC: 3). Accurately
classified samples (n = 26) indicated the multi-classification effi-
cacy of our model. Importantly, the SMF-UMF model achieved
PR curves with an AUC of 0.879 (95% CI, 0.823–0.918) for
pRCC, 0.764 for chRCC (95% CI, 0.733–0.824), and 0.955 for
ccRCC (95% CI, 0.932–0.985) (Figure 3i). The model perfor-
mance was also evaluated via ROC analysis (Figure 3j), achieving
an AUC of 0.932 (95% CI, 0.876–0.961) for pRCC, 0.926 (95%
CI, 0.874–0.965) for chRCC, and 0.925 (95% CI, 0.882–0.947)
for ccRCC.

2.4. Classification of Early-Stage RCC Subtypes

RCC subtype groups containing patients in stages I to IV were di-
vided into ccRCC (n = 221), pRCC (n = 91), and chRCC (n = 99)
(Figure 4a; Table S4, Supporting Information). We selected pa-
tients with stage I-II disease and matched HC with no significant
difference in age and sex (p > 0.05) for model building. Consid-
ering the sample size of RCC subtypes, we adjusted the dataset
split to 2:1 for training and testing. This strategy ensures suffi-
cient training data for detailed learning while maintaining a sub-
stantial test set to assess the model’s generalizability, as shown
in Figure 4b.

For early-stage ccRCC diagnosis, 219 samples from the train-
ing set can be classified by the LGBM model with optimized hy-
perparameter combinations, with model performance in Table
S5 (Supporting Information). The optimal LGBM model was ap-
plied to the test set (n = 112). The confusion matrix showed
that the model distinguished 57 patients with early-stage ccRCC
from 47 healthy individuals, achieving an AUC of 0.957 (95% CI,
0.913–0.969) with a sensitivity of 92.2% and a specificity of 93.4%
(Figure 4c,d).

Regarding the diagnostic performance of early-stage pRCC, we
utilized the training and test sets consisting of 106 and 52 sam-
ples, respectively. Similarly, the final model (LGBM) is optimized
using the training set (Table S6, Supporting Information). In the
test set, the confusion matrix showed a majority of accurate pre-
dictions (24/24, Figure 4e). Importantly, we obtained an AUC of
0.930 (95% CI, 0.898–0.956) with a sensitivity and specificity of
0.923 (Figure 4f).

During model building, 170 chRCC patients were divided into
training and test sets. The optimal Ridge model (Table S7, Sup-
porting Information) successfully distinguished 23 early-stage
chRCC cases from 28 HC in the test set (n = 58) (Figure 4g). Be-
sides, we achieved the performance with an AUC of 0.983 (95%
CI, 0.934–0.992), sensitivity of 96.6%, and specificity of 79.3%
(Figure 4h, Supporting Information).
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Figure 3. Three-step diagnostic models. a) Flowchart of the discrimination model for RCC screening. b–d) Screening of Tumor group: b) t-SNE visualiza-
tion of the cluster results of the HC (blue) and tumor (orange) groups; c) AUC of the proposed algorithm on the HC and Tumor groups of precision-recall
(PR) curve; and d) receiver operating characteristic (ROC) curve based on three types of biofluid features. e–g) Identification of tumor type: e) Model
evaluation of three types of biofluid features based on the final optimized model, including Recall, Accuracy (Acc.), Kappa, F1, and Precision (Prec.); f) a
sample-probability plot for malignant (orange dots) and benign (blue dots); and g) ROC curve for classifying malignant from benign. h–j) Classification
of RCC types: h) confusion matrix for the classification results of the proposed algorithm on the validation dataset (7 pRCC, 3 chRCC, and 20 ccRCC); i)
PR curve for three subtypes of RCCs (One vs Rest) i,j) ROC curve of three subtypes of RCCs (One vs Rest).
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Figure 4. Diagnosis of early-stage RCC subtypes. a) Age, sex, and stage distribution of 221 ccRCC, 91 pRCC, and 99 chRCC patients. b) Workflow for
building diagnostic model. c,d) Confusion matrix for the diagnostic result in the validation group (51 HCs vs 61 early stage ccRCCs) c); Blind test based
on the optimized models of Light Gradient Boosting Machine (LGBM) d). e,f) Confusion matrix for the diagnostic result in the validation group (26
HCs vs 26 early stage pRCCs) e) Blind test based on the optimized models of Light Gradient Boosting Machine for validation f). g,h) Confusion matrix
for the diagnostic result on the validation group (29 HCs vs 29 early stage chRCCs) g); Blind test based on the optimized models of Ridge Classifier for
validation h).
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Figure 5. Distribution and diagnostic performance of metabolic biomarkers for three subtypes of RCC. a–c) Biomarker panel for ccRCC: The beeswarm
plot demonstrated differential expression of the seven metabolic biomarkers between HCs and ccRCC patients (three biomarkers for serum and four
biomarkers for urine). Metabolite levels were presented as normalized intensities after undergoing logarithmic transformation. a); The ROC curves
demonstrated the AUCs of each metabolic biomarker (AUC of 0.58–0.80) b); The ROC curves of the metabolic panel for train set and test set to
distinguish HC and ccRCC patients c). d–f) Biomarker panel for pRCC: The beeswarm plot demonstrated differential expression of the six metabolic
biomarkers between HCs and pRCC patients (two biomarkers for serum and four biomarkers for urine). Metabolite levels were presented as normalized
intensities after undergoing logarithmic transformation. d); The ROC curves demonstrated the AUCs of every single metabolic biomarker (AUC of 0.52–
0.68) e); The ROC curves of the metabolic panel for train and test sets to distinguish HCs and pRCC patients f). g–i) Biomarker panel for chRCC: The
beeswarm plot demonstrated differential expression of the six metabolic biomarkers between HCs and chRCC patients (three features for serum and
three features for urine). Metabolite levels were presented as normalized intensities after undergoing logarithmic transformation. g); The ROC curves
demonstrated the AUCs of each metabolic biomarker (AUC of 0.52–0.64) h); The ROC curves of the metabolic panel for train set (dark khaki line, AUC
= 0.813) and test set (orange line, AUC = 0.833) to distinguish HC and chRCC patients i). *p < 0.05, **p < 0.01, ***p < 0.005, and ****p < 0.0001.

2.5. Identification of Metabolic Biomarkers for RCC Subtypes

To further explore the promising biomarkers, we filtered the
metabolites based on the SMF and UMF databases according to
the criteria (mean intensity >1000, model score >0, and p-value
<0.05).

Specifically, we identified three features from SMF and 4 fea-
tures from UMF for ccRCC. Compared with HC, the ccRCC
group exhibited increased expression levels for S179.1, U100.1,
U143.1, and U242.9. In parallel, the ccRCC group demon-
strated decreased expression levels of S113.6, S151.1, and U186.8
(Figure 5a). Further, individual variation biomarkers and the
combined biomarker panel were applied to evaluate the effective-
ness of diagnosis, respectively. The biomarker panel achieved an
improved AUC of 0.965 (95% CI, 0.905–0.984) with an accuracy
of 94.8%, compared to individual features with a limited AUC
ranging from 0.58 to 0.80 (Figure 5b,c).

For pRCC, 2 features were filtered in SMF and 4 features were
found in UMF. The expression of S203.1 was elevated, while
the others (S135, U103.9, U143, U152, and U256) showed de-
creased expression levels in the pRCC group (Figure 5d). More-

over, the classification model demonstrated improved overall per-
formance in distinguishing pRCC from the HC group, with an
AUC of 0.936 (95% CI, 0.879–0.974) and accuracy of 91.9%), the
result surpassed the analysis of a single metabolic feature, where
AUC ranged from 0.52 to 0.68) (Figure 5e,f).

Furthermore, we analyzed six feature levels between the
chRCC and HC. Among them, S203 and U119.9 were
up-regulated, while S135, S140.8, U152, and U156.8, were
down-regulated in chRCC compartments compared with HC
(Figure 5g). The aforementioned features demonstrated an AUC
range of 0.52–0.64 in their ability to distinguish chRCC from HC.
The combined panel results in a significantly improved AUC of
0.813 (accuracy of 79.8%) for the validation cohort (Figure 5h,i).

Notably, we investigated potential metabolic pathways asso-
ciated with serum and urine metabolites (Tables S9 and S10,
Supporting Information). There were ten relevant pathways with
pathway impact (PI) > 0 and hit number (the number of metabo-
lites matched to each pathway) ≥1, including: 1) Warburg Effect,
2) Sphingolipid Metabolism, 3) Galactose Metabolism, 4) Glu-
coneogenesis, 5) Glycolysis, 6) Transfer of Acetyl Groups into
Mitochondria, 7) Lactose Synthesis, 8) Glucose-Alanine Cycle,
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Figure 6. Diagnostic potential for ccRCC patients. a) Plasma levels of KIM-1 for HC and ccRCC; b) The ROC curve of KIM-1 for discriminating between
HC and ccRCC. c) The ROC curves showed the performance of each metabolic biomarker; d) The ROC curves showed the performance of each metabolic
biomarker.

9) Trehalose Degradation, and 10) Lactose Degradation (Figure
S7, Supporting Information). The above pathway analysis sug-
gested that the screened metabolites play a significant role in reg-
ulating glucose levels and amino acid metabolism.[12]

2.6. Performance of Biomarker Panel for CCRCC Diagnosis

To confirm the clinical value of SMF-UMF for ccRCC diagnosis,
we selected a verification cohort with ccRCC (n = 65) and HC
(n = 88) with no significant differences in sex and age (p > 0.05).
Kidney Injury Molecule-1 (KIM-1) is a potential clinical indi-
cator for kidney function and was selected for comparison. In
Figure 6a, KIM-1 was overexpressed in the plasma of ccRCC pa-
tients compared to HC, with a diagnostic AUC of 0.89 (Figure 6b).
In contrast, the biomarker combination of ccRCC achieved dis-
crimination with an enhanced AUC of 0.952 (95% CI, 0.896–
0.989) for the test set and 0.994 for the discovery cohort, respec-
tively, compared to individual features with the limited AUC of
0.54–0.66 (95% CI, 0.501–0.702) (Figure 6c,d).

2.7. Prognostic Value of Serum and Urine Metabolic Fingerprints

Specifically, we assessed the predictive ability of the diagnos-
tic model using the Kaplan–Meier curve in the ccRCC group
(n = 221). As a result, the low-risk group showed a significantly
prolonged median disease-free time compared to the high-risk

group, as indicated by the log-rank test results (p < 0.001 in
the training set, Figure 7a; p = 0.003 in the test set, Figure 7b;
p < 0.001 according to the TNM staging system, Figure S5, Sup-
porting Information), demonstrating the favorable prognostic
performance of SMF-UMF.

3. Discussion

Differential diagnosis, early detection, and prognostic assess-
ment for RCC emerge as crucial global concerns. Recently, sev-
eral types of body fluid markers have played a prominent role
in the diagnosis and prognosis of renal diseases, ranging from
genomic, and proteomic, to metabolomic levels. The upstream
biomarkers of nucleic acids and proteins are used for the man-
agement of RCC and showed AUCs of 0.70–0.85[13] with bio-
chemical reaction-based signal amplification assays. Addition-
ally, elevated levels of carbonic anhydrase IX (CA-IX) expres-
sion have been consistently observed in tissue samples of RCC
patients with constitutive activation of hypoxia-inducible factor
(HIF).[14] In our study, a typical examination of a ccRCC patient’s
tumor tissue (Figure S9, Supporting Information) revealed a pos-
itive expression of CA-IX. This suggests the likelihood of an ag-
gressive tumor and potentially a poorer prognosis. Such findings
could be utilized in conjunction with biofluid markers as a com-
plementary approach to enhance the accuracy of RCC diagnosis.
Downstream products of metabolic biomarkers are expected to
provide real-time insight into phenotypic variations in biological
systems, making them highly accessible targets for clinical inter-
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Figure 7. Disease-free analysis for ccRCC of low-risk and high-risk groups. a) training set; b) test set.

vention. Of note, previous studies have demonstrated promising
results for employing metabolic biomarkers for diagnosing RCC
but remain inconclusive.[15] Notably, work design plays a funda-
mental role in providing precise insights into disease phenotype
by selecting proper bio-fluids and enrolling an appropriate co-
hort.

For biofluid selection, urine can be collected less invasively
than other biofluids and could serve as a highly appropriate bi-
ological resource for large-scale clinical studies, which has been
applied to explore RCC status and metabolic pathways for RCC
diagnostic analyses. Current studies suggest that blood circula-
tion and urine collection correlate with perturbations in glycol-
ysis, tricarboxylic acid (TCA) cycle, amino acid metabolism, and
fatty acid metabolism.[16] Accordingly, paired serum and urine
were enrolled in this study, our results demonstrate that the
best performance for managing RCC was achieved by combining
these two biofluids. To our knowledge, few epidemiological stud-
ies have validated the assumption by comparing single biofluids
(serum or urine) and combined biofluids for their utility using
metabolomics.

For cohort design, previous studies on metabolic analysis of
RCC have mainly utilized a limited cohort size, with a sample
number of 50–400 for investigation.[15c,17] In comparison, our
study enrolled a total of 656 individuals with clear collection cri-
teria. Subsequently, using a large-scale data mining approach
(auto-learning algorithm) for feature selection and model devel-
opment, we attained an enhanced AUC of 0.898 for tumor type
classification with SMF-UMF compared to individual metabolic
fingerprints (SMF of 0.585, UMF of 0.783). Encouraged by the
improved performance of unified metabolic fingerprints, we also
applied them in the subtype classification and early-stage diag-
nosis of RCC. Further, we identified several metabolic features
to construct a specific panel for RCC subtype diagnosis. These
results strongly indicate that our metabolic platform can serve
for RCC management and is valuable for extensive clinical ap-
plications, owing to the appropriate choice of biofluids, advanced
machine learning methods, and a well-considered cohort design.

Finally, developing an efficient prognostic model to accurately
identify high-risk patients is essential for guiding therapeutic
decision-making. Liquid biomarkers, such as circulating tumor
cells (CTCs), microRNAs (miRNAs), and cf-DNA/ct-DNA, cor-
relate with overall survival (OS) and progression-free survival
(PFS), enabling the prediction of patient survival. These biomark-

ers have the potential to assist in identifying high-risk patients
and predicting the risk of metastasis and recurrence, with a p-
value less than 0.005.[18] In contrast, a prognostic model was con-
structed in this study by implementing Cox regression analysis
of combined SMF-UMF data, demonstrating a comparable prog-
nostic efficiency with a p-value of 0.003. Therefore, the SMF-UMF
prediction model only requires NELDI MS analysis, indicating its
potential as a real-time detection tool for large-scale applications
and its ability to improve disease management.

Nevertheless, there are some limitations to consider in this
work. First, this study was conducted at a single center. Further
research is needed to include larger sample sizes from multi-
ple centers, covering diverse geographic regions and racial back-
grounds. Second, the biological significance of metabolites re-
mains unclear and requires comprehensive clarification. A deep
understanding of the relationship between metabolites and the
development of renal tumors may indirectly uncover potential
targets for metabolic interventions in clinical therapy. Third, the
integration of advanced instrumental techniques has the po-
tential to improve the specificity and confidence in detecting
metabolic analysis. For instance, designer nanoparticles play a
crucial role in NELDI MS and can be tailored for specific practi-
cal applications. These approaches could potentially offer oppor-
tunities to screen a broad population with renal tumors, provide
therapies at a more treatable phase, and thus alleviate the physical
and emotional burden on patients while reducing the economic
burden on society.

4. Experimental Section
Sample Harvesting: This work was approved by the Ethics Committee

of Shanghai Renji Hospital (Shanghai, China, IRB KY2022-001-B) and was
conducted by the Declaration of Helsinki. All the paired biofluid samples
were obtained with written informed consent. For sample collection, 5 mL
peripheral venous blood samples and 15 mL urine samples per person
were obtained from all the patients with renal tumors and healthy donors.
All the collected samples were transferred to the laboratory for additional
processing within an hour at 4 °C. The blood samples were centrifuged
at 3000 rpm at 4 °C for 10 min, and the urine samples were centrifuged
at 3000 g at 4 °C for 10 min. Following centrifugation, the plasma from
the upper layer of the blood sample and the supernatant solution from
the urine sample were collected and stored at −80 °C. Each tube of the
sample was carefully labeled to ensure that the specimen was consistent
with the patient.
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MS Experiments: The ferric nanoparticles were used as the matrix for
NELDI MS. They were prepared in deionized water, reaching a concentra-
tion of 1.0 mg mL−1. Before the mass spectrometry (MS) analysis (refer
to Supporting Information for the construction of the NELDI-MS platform
for metabolic detection), each biofluid sample (serum or urine) required
≈15 s for careful dilution. Next, a minute volume of the analyte solution
and an equivalent quantity of the matrix slurry (1 μL per spot) was dis-
pensed onto the chip, followed by drying under ambient conditions. This
drying process took ≈90 min for each batch of 384 samples (equivalent
to 14 s per sample). The mass measurements were calibrated using stan-
dard small molecules, and positive ion mode was employed for all MS
experiments. The instrumental parameters were optimized to ensure opti-
mal performance. Each analysis involved a laser pulse frequency of 1 kHz,
2000 laser shots, a delay time of 200 ns, and an acceleration voltage of
20 kV. To identify crucial biomarkers, the HPLC-MS instrument was used
for MS analyses, while the TOF-MS system was employed for MS/MS ex-
periments.

MS Data: Preprocessing of the raw mass spectra data was conducted
using a custom-built code before applying machine learning techniques
in Python (version 3.8). The preprocessing steps included peak detec-
tion, peak alignment, peak filtration, standardization, and peak filtration.
The discrete wavelet transform was applied for spectrum smoothing and
baseline correction. The local maximum was used for peak detection,
and signal-to-noise ratio, intensity, and shape ratio (peak area) were em-
ployed for peak filtration. No standardization was used in the data pre-
processing process. No missing value imputation or internal standards
were used. The united database was constructed using the concatenation
method. the SMF and UMF were aligned and combined along the sam-
ple axis, effectively expanding the informational breadth without changing
the sample size. For diagnosis, machine learning was applied to analyze
the metabolic fingerprints of serum and urine, incorporating feature selec-
tion and model construction. Feature selection was applied to eliminate
redundant collinear mass-to-charge ratio (m/z) signals by identifying the
most predictive variables using an elastic net algorithm, given the high
dimensionality of the metabolic fingerprints (SMF and UMF). The thresh-
old of the coefficient was optimized for each machine-learning algorithm
during the feature selection process. The linear regression algorithm in-
corporated L1 and L2 regularization on the coefficients as a penalty term
in the loss function. This adjustment helped drive the coefficients of weak
m/z signals closer to zero. the performance of Lasso, Ridge, and Elas-
ticNet was evaluated on each database by utilizing a held-out test set
during the feature selection process, which was done by computing the
lowest Mean Squared Error (MSE) value. To automate the intricate and
time-consuming clinical tasks, Automated Machine Learning (AutoML)
was utilized for model selection and hyperparameter tuning using PyCaret.
This platform can quickly train a set of predefined models on prepro-
cessed data. It then selects an appropriate search strategy, such as grid
search, random search, or more advanced techniques like Bayesian opti-
mization, to fine-tune model parameters. This methodology involved the
orchestration of various machine learning algorithms, including Light Gra-
dient Boosting Machine (LGBM), Extra Trees (ET), Random Forest (RF),
Ada Boost (AB), Gradient Boosting (GB), Decision Tree (DT), K Neighbors
(KNN), Logistic Regression (LR), Linear Discriminant Analysis (LDA), and
Naive Bayes (NB). For validation, the best machine learning algorithm was
evaluated in the independent validation cohort to study the overfitting ef-
fect. AutoML helps determine the best model for each clinical task, as well
as optimal parameter combinations for each algorithm (summarized in
Table S5, Supporting Information).

Statistical Analysis: The t-distributed stochastic neighbor embed-
ding (t-SNE), precision-recall (PR) curve, receiver operating character-
istic (ROC) curve, confusion matrix of classification, cosine similar-
ity, and correlation analysis were performed using Python version 3.8.
Metabolic analysis was performed using MetaboAnalyst 5.0 (https://www.
metaboanalyst.ca/), and the verification of the metabolites showing a sig-
nificant difference among RCC patients was conducted on the Human
Metabolome Database (HMDB, http://www.hmdb.ca/) based on the ac-
curate molecular formula. The similarity score was calculated using the
adjusted cosine similarity algorithm. In this study, additional statistical

analyses were conducted using the SPSS software (version 24.0, SPSS
Inc., USA) to calculate the statistical significance (p-value). These analy-
ses included the two-sided Student’s t-test, chi-square test, and ANOVA.
A significance level of 0.05 was established. For the prognosis, a multi-
variate Cox regression analysis was conducted on SPSS software, version
22.0, in SMFs-UMFs of the discovery cohort. Further analysis only consid-
ered markers with a p-value <0.05. Afterward, a linear regression predictor
was generated using the selected biomarkers. Kaplan–Meier survival anal-
ysis was conducted to evaluate the prognostic effectiveness of the TNM
stage using R (version 3.4.3) with the “survival” and “timeROC” packages.
The Human Metabolome Database (HMDB) and PubChem were used to
search for candidate metabolites for biomarker identification. In this work,
additional statistical analyses were conducted using the SPSS software to
calculate the p-value for statistical significance. The following tests were
employed: the two-sided Student’s t-test, the Mann–Whitney U test, and
the paired t-test. These tests were used for statistical analysis to ensure
the significance of the results. The significance level was set at 0.05.
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Supporting Information is available from the Wiley Online Library or from
the author.

Acknowledgements
This work was supported by Project 2022YFC2502800 by the National
Key Research and Development Program of China, Medical-Engineering
Joint Funds of Shanghai Jiao Tong University (YG2024ZD07, YG2021ZD09,
YG2023ZD08), Project 22204103, 81971455, 82173532, U20A20350 by
NSFC, Project 2022XYJG0001-01-16 by Shanghai Jiao Tong University
Inner Mongolia Research Institute, Project 2024YFHZ0176 by Sichuan
Provincial Department of Science and Technology, and Project 2021-01-07-
00-02-E00083 by Shanghai Institutions of Higher Learning. This work was
also sponsored by the Innovative Research Team of high-level Local Uni-
versities in Shanghai (SHSMU-ZDCX20210700), the Science and Technol-
ogy Commission of Shanghai Municipality (18490740600, 20DZ2220400,
2021SHZDZX), and Shanghai Municipal Health Commission (2022JC013,
2019CXJQ03).

Conflict of Interest
The authors declare no conflict of interest.

Author Contributions
X.X., Y.F., and Q.W. contributed equally to this article. Z.J., W.Y., Q.K., and
Z.W. conceptualized and obtained funding for the study. F.Y., D.Q., and G.J.
collected clinical samples. W.Q., Z.S., L.W., C.Y., Z.J., and X.W. conducted
clinical research. X.X. analyzed clinical data and drafted the manuscript.
L.W., W.R., Z.J., H.Y., L.D., and Y.S. were involved in data analysis and ma-
terial characterization. All authors contributed to revising the manuscript
and approved the final version as submitted.

Data Availability Statement
The data that support the findings of this study are available from the cor-
responding author upon reasonable request.

Keywords
mass spectrometry, metabolic fingerprinting, prognosis, renal diagnosis,
subtype classification

Adv. Sci. 2024, 11, 2401919 2401919 (12 of 13) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advancedscience.com
https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
http://www.hmdb.ca/


www.advancedsciencenews.com www.advancedscience.com

Received: February 24, 2024
Revised: June 14, 2024

Published online: July 8, 2024

[1] R. L. Siegel, K. D. Miller, N. S. Wagle, A. Jemal, Ca-Cancer J. Clin. 2023,
73, 17.

[2] a) B. Escudier, C. Porta, M. Schmidinger, N. Rioux-Leclercq, A. Bex,
V. Khoo, V. Gruenvald, A. Horwich, E. G. Comm, Ann. Oncol. 2016,
27, v58; b) J. Y. Wen, D. Liu, Q. N. Wu, L. Q. Zhao, W. C. Iao, H. T. Lin,
View-China 2023, 4, 220070.

[3] M. Y. Li, L. Li, J. Y. Zheng, Z. Y. Li, S. J. Li, K. F. Wang, X. N. Chen, Mol.
Cancer 2023, 22, 37.

[4] T. Klatte, S. H. Rossi, G. D. Stewart, World J. Urol. 2018, 36, 1943.
[5] S. N. Lone, S. Nisar, T. Masoodi, M. Singh, A. Rizwan, S. Hashem, W.

El-Rifai, D. Bedognetti, S. K. Batra, M. Haris, A. A. Bhat, M. A. Macha,
Mol. Cancer 2022, 21, 79.

[6] B. Faubert, A. Solmonson, R. J. DeBerardinis, Science 2020, 368,
aaw5473.

[7] a) G. Lucarelli, D. Loizzo, R. Franzin, S. Battaglia, M. Ferro, F.
Cantiello, G. Castellano, C. Bettocchi, P. Ditonno, M. Battaglia, Ex-
pert Rev. Mol. Diagn. 2019, 19, 397; b) N. A. di Meo, F. Lasorsa, M.
Rutigliano, D. Loizzo, M. Ferro, A. Stella, C. Bizzoca, L. Vincenti, S.
D. Pandolfo, R. Autorino, F. Crocetto, E. Montanari, M. Spilotros, M.
Battaglia, P. Ditonno, G. Lucarelli, Int. J. Mol. Sci. 2022, 23, 14360;
c) J. X. Zhang, F. Teng, B. Y. Hu, W. S. Liu, Y. D. Huang, J. Wu, Y. N.
Wang, H. Y. Su, S. Z. Yang, L. M. Zhang, L. C. Guo, Z. Lei, M. Yan,
X. Y. Xu, R. M. Wang, Q. G. Bao, Q. Z. Dong, J. Long, K. Qian, Adv.
Mater. 2024, 36, 2311431.

[8] a) X. F. Hu, Z. P. Wang, H. L. Chen, A. Zhao, N. R. Sun, C. H. Deng,
Anal. Chem. 2022, 94, 14846; b) G. C. Huang, X. J. Li, Z. B. Chen, J. Y.
Wang, C. D. Zhang, X. Chen, X. Q. Peng, K. H. Liu, L. W. Zhao, Y. Q.
Lai, L. C. Ni, Oncol. Res. 2020, 26, 2425; c) G. C. Huang, H. J. Li, J. Y.
Wang, X. Q. Peng, K. H. Liu, L. W. Zhao, C. D. Zhang, X. Chen, Y. Q.
Lai, L. C. Ni, Pathol. Res. Pract. 2020, 216, 153152.

[9] a) X. Liu, M. Zhang, C. Shao, H. Sun, B. Zhang, Z. Guo, J. Sun, F.
Qi, Y. Zhang, H. Niu, W. Sun, Mol. Cell. Proteomics 2023, 22, 100603;
b) Y. N. Wang, X. Y. Xu, Y. Z. Fang, S. Z. Yang, Q. R. Wang, W. S.
Liu, J. X. Zhang, D. Y. T. Liang, W. Zhai, K. Qian, ACS Nano 2024, 18,
2409.

[10] a) Y. D. Huang, S. Q. Du, J. Liu, W. Y. Huang, W. S. Liu, M. J. Zhang,
N. Li, R. M. Wang, J. Wu, W. Chen, M. Y. Jiang, T. H. Zhou, J. Cao, J.
Yang, L. Huang, A. Gu, J. Y. Niu, Y. Cao, W. X. Zong, X. Wang, K. Qian,
H. X. Wang, P. Natl. Acad. Sci. USA 2022, 119, e2122245119; b) H. Y.
Su, Y. L. Song, S. Z. Yang, Z. Y. Zhang, Y. Shen, L. Yu, S. J. Chen, L.
Gao, C. C. Chen, D. N. Hou, X. P. Wei, X. D. Ma, P. Y. Huang, D. J.
Sun, J. Zhou, K. Qian, ACS Cent. Sci. 2024, 10, 331.

[11] a) M. Pietzner, I. D. Stewart, J. Raffler, K. T. Khaw, G. A. Michelotti,
G. Kastenmuller, N. J. Wareham, C. Langenberg, Nat. Med. 2021, 27,
471; b) J. Wu, Y. T. Wei, C. J. Shi, Y. D. Huang, Z. B. Hong, W. S. Liu,
L. Y. Gu, R. M. Wang, Y. L. Li, J. Cao, W. Di, X. M. Hou, J. Liu, K. Qian,
L. H. Qiu, Adv. Funct. Mater. 2024, 34, 2312380; c) Y. N. Wang, Y. Liu,
S. Z. Yang, J. Yi, X. Y. Xu, K. Zhang, B. H. Liu, K. Qian, Small 2023, 19,
2207190; d) Y. D. Zhu, H. H. Girault, View-China 2023, 4, 220042.

[12] D. Rodrigues, M. Monteiro, C. Jeronimo, R. Henrique, L. Belo, M. D.
Bastos, P. G. de Pinho, M. Carvalho, Transl. Res. 2017, 180, 1.

[13] a) Y. P. Xu, Y. J. Jiang, M. K. Yu, J. M. Lou, M. Song, H. Xu, Y. Y. Cui, X.
W. Zeng, Q. B. Wang, H. Y. Ma, Z. P. Wang, S. X. Zhu, G. R. Li, A. Zhao,
Front. Mol. Biosci. 2021, 8, 683844; b) R. Hu, R. Gupta, Z. Wang, C.
Wang, H. Sun, S. Singamaneni, E. D. Kharasch, J. J. Morrissey, Kidney
Int. 2019, 96, 1417; c) Z. H. Zhang, Y. Wang, Y. Zhang, S. F. Zheng, T.
Feng, X. Tian, M. Abudurexiti, Z. D. Wang, W. K. Zhu, J. Q. Su, H. L.
Zhang, G. H. Shi, Z. L. Wang, D. L. Cao, D. W. Ye, Mol. Cancer 2023,
22, 61.

[14] a) C. T. Supuran, V. Alterio, A. Di Fiore, K. D’ Ambrosio, F. Carta, S. M.
Monti, G. De Simone, Med. Res. Rev. 2018, 38, 1799; b) O. Sedlakova,
E. Svastova, M. Takacova, J. Kopacek, J. Pastorek, S. Pastorekova,
Front. Physiol. 2014, 4, 00400.

[15] a) J. Pinto, F. Amaro, A. R. Lima, C. Carvalho-Maia, C. Jeronimo, R.
Henrique, M. L. Bastos, M. Carvalho, P. Guedes de Pinho, J. Proteome
Res. 2021, 20, 3068; b) A. Arendowski, K. OssoliNski, J. Niziol, T.
Ruman, Anal. Sci. 2020, 36, 1521; c) M. R. Peter, F. Zhao, R. Jeyapala,
S. Kamdar, W. Xu, C. Hawkins, A. J. Evans, N. E. Fleshner, A. Finelli,
B. Bapat, Front. Oncol. 2022, 11, 814228; d) X. S. Liu, L. Ma, W. Y. Yan,
A. Aazmi, M. H. Fang, X. Z. Xu, H. Y. Kang, X. B. Xu, View-China 2022,
3, 210013.

[16] G. Outeiro-Pinho, D. Barros-Silva, E. Aznar, A. I. Sousa, M. Vieira-
Coimbra, J. Oliveira, C. S. Goncalves, B. M. Costa, K. Junker, R.
Henrique, C. Jeronimo, J. Exp. Clin. Cancer Res. 2022, 41, 247.

[17] a) K. Morozumi, Y. Kawasaki, M. Maekawa, S. Takasaki, T. Sato, S.
Shimada, N. Kawamorita, S. Yamashita, K. Mitsuzuka, N. Mano, A.
Ito, Cancer Sci. 2022, 113, 182; b) M. Murdocca, F. Torino, S. Pucci,
M. Costantini, R. Capuano, C. Greggi, C. Polidoro, G. Somma, V.
Pasqualetti, Y. K. Mougang, A. Catini, G. Simone, R. Paolesse, A.
Orlandi, A. Mauriello, M. Roselli, A. Magrini, G. Novelli, C. Di Natale,
F. C. Sangiuolo, Cancers 2021, 13, 4213; c) O. O. Bifarin, D. A. Gaul, S.
Sah, R. S. Arnold, K. Ogan, V. A. Master, D. L. Roberts, S. H. Bergquist,
J. A. Petros, A. S. Edison, F. M. Fernandez, Cancers 2021, 13, 6253.

[18] a) Y. Yamamoto, M. Uemura, M. Fujita, K. Maejima, Y. Koh, M.
Matsushita, K. Nakano, Y. Hayashi, C. Wang, Y. Ishizuya, T. Kinouchi,
T. Hayashi, K. Matsuzaki, K. Jingushi, T. Kato, A. Kawashima, T. Ujike,
A. Nagahara, K. Fujita, R. Imamura, H. Nakagawa, N. Nonomura,
Cancer Sci. 2019, 110, 617; b) Z. L. Wang, P. Zhang, H. C. Li, X. J.
Yang, Y. P. Zhang, Z. L. Li, L. Xue, Y. Q. Xue, H. L. Li, Q. Chen, T.
Chong, Cancer Biol. Ther. 2019, 20, 505.

Adv. Sci. 2024, 11, 2401919 2401919 (13 of 13) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advancedscience.com

	Serum and Urine Metabolic Fingerprints Characterize Renal Cell Carcinoma for Classification, Early Diagnosis, and Prognosis
	1. Introduction
	2. Results
	2.1. Construction of NELDI-MS Platform for Metabolic Detection
	2.2. Baseline Information and Study Design
	2.3. Screening of Tumor Types and RCC Sub-Categories
	2.4. Classification of Early-Stage RCC Subtypes
	2.5. Identification of Metabolic Biomarkers for RCC Subtypes
	2.6. Performance of Biomarker Panel for CCRCC Diagnosis
	2.7. Prognostic Value of Serum and Urine Metabolic Fingerprints

	3. Discussion
	4. Experimental Section
	Supporting Information
	Acknowledgements
	Conflict of Interest
	Author Contributions
	Data Availability Statement

	Keywords


