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Multimodal Machine Learning-Based Marker Enables Early
Detection and Prognosis Prediction for Hyperuricemia

Lin Zeng, Pengcheng Ma, Zeyang Li, Shengxing Liang, Chengkai Wu, Chang Hong, Yan Li,
Hao Cui, Ruining Li, Jiaren Wang, Jingzhe He, Wenyuan Li, Lushan Xiao,* and Li Liu*

Hyperuricemia (HUA) has emerged as the second most prevalent metabolic
disorder characterized by prolonged and asymptomatic period, triggering gout
and metabolism-related outcomes. Early detection and prognosis prediction
for HUA and gout are crucial for pre-emptive interventions. Integrating
genetic and clinical data from 421287 UK Biobank and 8900 Nanfang Hospital
participants, a stacked multimodal machine learning model is developed and
validated to synthesize its probabilities as an in-silico quantitative marker for
hyperuricemia (ISHUA). The model demonstrates satisfactory performance in
detecting HUA, exhibiting area under the curves (AUCs) of 0.859, 0.836, and
0.779 within the train, internal, and external test sets, respectively. ISHUA is
significantly associated with gout and metabolism-related outcomes,
effectively classifying individuals into low- and high-risk groups for gout in the
train (AUC, 0.815) and internal test (AUC, 0.814) sets. The high-risk group
shows increased susceptibility to metabolism-related outcomes, and
participants with intermediate or favorable lifestyle profiles have hazard ratios
of 0.75 and 0.53 for gout compared with those with unfavorable lifestyles.
Similar trends are observed for other metabolism-related outcomes. The
multimodal machine learning-based ISHUA marker enables personalized risk
stratification for gout and metabolism-related outcomes, and it is unveiled
that lifestyle changes can ameliorate these outcomes within high-risk group,
providing guidance for preventive interventions.
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1. Introduction

Hyperuricemia (HUA) denotes elevated
serum uric acid (SUA) levels attributed
to either increased uric acid production
or decreased excretion within the body.[1,2]

Persistent HUA fosters the prolonged de-
position of urate crystals, posing poten-
tial deleterious effects on joint integrity
and exerting a notable impact on individ-
uals’ quality of life.[3] According to the Na-
tional Health and Nutrition Examination
Survey from 2007 to 2016, HUA preva-
lence exceeds 20% among both sexes.[4] In
the Chinese population, a study reported
HUA rates of 20.7% in men and 5.6% in
women, with prevalence rates steadily in-
creasing annually.[5] Ranked as the second
most prevalent metabolic disorder after di-
abetes mellitus,[6] HUA has garnered in-
creasing attention as a substantial global
public health concern.

Elevated SUA levels not only contribute
to gout but also predispose individuals
to various metabolic disorders, including
chronic kidney disease, hypertension,
cardiovascular diseases, and diabetes. Both
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Figure 1. Workflow of the established stacked model and study design. A) Clinical and genetic data acquisition in the UK Biobank and Nanfang Hospital.
B) Feature selection performed on the train set and applied to the internal test and external test sets. C) Development and validation of the stacked
multimodal machine learning model. D) Prognostic evaluation of the ISHUA in the train and internal test sets. SNP, single nucleotide polymorphism;
LASSO, least absolute shrinkage and selection operator; LGBM, Light Gradient Boosting Machine; XGB, classical extreme gradient boosting; CAB,
Categorical Boosting; RF, Random Forest; ADB, Adaptive Boosting; LR, Logistic regression; KNN, K-Nearest Neighbor. AUC, the area under the receiver
operating characteristic curve; ISHUA, probabilities as in-silico scores for hyperuricemia.

HUA and gout independently predict premature and all-cause
mortality.[7–13] However, the onset and progression of HUA of-
ten manifest subtly, rendering several patients unaware of its la-
tent risks in the absence of symptoms. Although most individu-
als with HUA remain asymptomatic and do not progress to gout,
sophisticated imaging techniques reveal clinically silent urate de-
position in ≈ 30% of asymptomatic HUA cases,[14] indicating po-
tential for chronic damage. Hence, prompt identification of HUA
and early prediction of gout risk may provide invaluable insights
for pre-emptive interventions and prognostic management.

Extensive research has elucidated the impact of clinical fac-
tors like age, blood pressure, lipid concentrations, and body
mass index (BMI) on SUA levels.[15–17] Additionally, genetic vari-
ations have been shown to contribute significantly, supported
by cross-ethnic Genome-Wide Association Studies (GWAS) that
have identified 183 genetic loci linked to uric acid levels, ac-
counting for 17% of the variance in heritability.[8] Furthermore,
a subset of these identified genetic variations, identified through
GWAS, is located within genes responsible for encoding urate
transporters or their regulatory elements.[18,19]

Currently, risk assessment for HUA or gout predominantly re-
lies on clinical parameters or polygenic risk scores (PRSs),[20–22]

lacking integration into a comprehensive predictive framework
that amalgamates genetic and clinical characteristics. Moreover,
these existing models typically function as classifiers to predict
HUA status in a binary framework rather than quantitatively eval-
uating the disease on a continuous scale. Quantitative assess-
ment of HUA has the potential to optimize personalized care
strategies.

Machine learning (ML), a pivotal branch of artificial intelli-
gence, excels in interpreting vast amounts of data and accurately

evaluating complex patterns.[23,24] By simulating human brain
data processing capabilities, ML significantly enhances accuracy
and efficiency compared to traditional methods.[25] ML has suc-
cessfully developed in vitro diagnostic scores for various diseases,
including metabolic syndrome[26] and coronary artery disease
(CAD).[27] Multimodal ML integrates information from multiple
modalities, reducing biases inherent in single-modality data and
enhancing generalization capabilities.[28] Recent advancements
in data-intensive genetic and clinical investigations have facili-
tated the development of multimodal ML models incorporating
genetic and clinical variables for early detection and prognosis
prediction.[23,29] However, to the best of our knowledge, such tai-
lored models specifically designed for HUA and gout remain ab-
sent.

In this study, we aimed to develop and validate a stacked mul-
timodal ML model, incorporating genetic and clinical data, and
synthesize the in-silico quantitative marker for HUA (ISHUA) to
enable prompt identification of HUA and early prediction of gout
and metabolism-related outcomes. Additionally, we explored the
potential beneficial effects of lifestyle modifications on adverse
outcomes.

2. Results

2.1. Study Workflow

The overall study design is illustrated in Figure 1. This study
comprised two main components. The first part aimed to train
a stacked multimodal ML model using genetic and clinical fea-
tures extracted from the train set (UK biobank [UKBB], 337029
participants) to predict HUA. Subsequently, the model was
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Table 1. Baseline characteristics of the UKBB and Nanfang Hospital co-
horts.

Characteristic UK Biobank Nanfang Hospital P-value

Number 421 287 8900

Age, years 58 (50, 63) 36 (30, 46) < 0.001

Sex, n (%) 0.647

Female 226 725 (53.82) 4812 (54.07)

Male 194 562 (46.18) 4088 (45.93)

BMI, kg m−2 26.75 (24.16, 29.90) 22.62 (20.47, 25.07) < 0.001

SUA, umol L−1 303.30 (250.7, 361.10) 360.50 (295.00, 438.00) < 0.001

sCr, umol L−1 70.50 (61.40, 81.00) 68.00 (57.00, 81.00) < 0.001

Urea, mmol L−1 5.27 (4.49, 6.14) 4.60 (3.90, 5.40) < 0.001

TG, mmol L−1 1.48 (1.05, 2.15) 1.09 (0.79, 1.62) < 0.001

CHO, mmol L−1 5.65 (4.91, 6.42) 5.02 (4.41, 5.71) < 0.001

LDL-C, mmol L−1 3.52 (2.95, 4.12) 3.11 (2.65, 3.63) < 0.001

HDL-C, mmol L−1 1.40 (1.17, 1.67) 1.37 (1.18, 1.58) < 0.001

Glu, mmol L−1 4.93 (4.60, 5.31) 4.77 (4.50, 5.08) < 0.001

HUA, n (%) 54 401 (12.91) 3389 (38.08) < 0.001

validated in internal (UKBB, 84258 participants) and external
(Nanfang Hospital cohort, 8900 participants) test sets. The sec-
ond part involved the construction of ISHUA through the
model’s probability scores, intended for the quantitative predic-
tion of future risks associated with gout and metabolism-related
outcomes (Table S1, Supporting Information). The effectiveness
of ISHUA in the early prediction of heightened gout risk in in-
dividuals was assessed. Subsequently, the population was strati-
fied into high- and low-risk groups using the maximum value of
the Youden index, enabling further assessment of metabolism-
related outcomes occurrences between these groups.

Lifestyle factors of UKBB dataset, including alcohol consump-
tion, smoking status, physical activity, and diet, were extracted to
investigate whether a favorable lifestyle (Table S2, Supporting In-
formation) could mitigate the risk of adverse outcomes related to
HUA in the high-risk group.

2.2. Baseline Characteristics of the two Datasets

The demographics and clinical characteristics of all participants
are summarized in Table 1. A total of 421287 participants from
the UKBB and 8900 from Nanfang Hospital were included for
analysis (Figure S1, Supporting Information). The baseline char-
acteristics of the UKBB and Nanfang Hospital cohorts differed.
Participants from the UKBB had a lower prevalence of HUA
(12.91% vs 38.08%), mainly because participants in Guangdong,
China, have been reported to have a high prevalence of HUA.[30]

Participants in the UKBB cohort were older than those in the
Nanfang Hospital cohort and had higher body mass index (BMI)
and serum uric acid (sCr), blood urea nitrogen, triglyceride (TG),
cholesterol (CHO), low-density lipoprotein-cholesterol (LDL-C),
high-density lipoprotein-cholesterol (HDL-C), and blood glucose
(Glu) levels. The characteristics of the study participants in the
train and internal test sets of the UKBB are presented in Table
S3 (Supporting Information). No significant difference was ob-

served in baseline characteristics between the train and internal
test sets.

For continuous features, the median (interquartile range) is
reported. For categorical features, count (%) is reported. Con-
tinuous variables were assessed using the Mann–Whitney U
test. Categorical variables were evaluated using chi-square or
Fisher’s exact tests; P-value is used to assess the statistical sig-
nificance of clinical variables between the UK Biobank and Nan-
fang Hospital cohorts. BMI, Body mass index; SUA, Serum
uric acid; sCr, Serum creatinine; TG, Triglyceride; CHO, Choles-
terol; LDL-C, Low-density lipoprotein-cholesterol; HDL-C, High-
density lipoprotein-cholesterol; Glu, blood glucose; HUA, hyper-
uricemia.

2.3. Association of Clinical Features with Hyperuricemia and
Gout

Regarding the clinical features used in the model, 10 variables
were chosen, encompassing sex, age, BMI, TG, CHO, LDL-C,
HDL-C, Glu, blood urea nitrogen, and sCr. Existing research un-
derscores that age, sex, lipid concentrations, and BMI are signif-
icant factors influencing SUA levels.[15–17] Creatinine and blood
urea nitrogen are indicators of renal function, which in turn im-
pacts uric acid excretion. We further explored the effect of clini-
cal features on HUA using logistic regression analyses (Table S4,
Supporting Information). Overall, the clinical features showed
significant associations with HUA in the UKBB and Nanfang
Hospital cohorts, except for CHO, which was significant only
in the Nanfang Hospital cohort. Further, Cox proportional haz-
ard regression models demonstrated that these 10 clinical fea-
tures were associated with an elevated risk of developing gout
(Table S5, Supporting Information).

2.4. Annotation of Selected SNPs and Enrichment Analysis

In the train set, 1378 SNPs were selected among the 38277
identified as genome-wide significantly (5 × 10−8) associated
with SUA in the GWAS analyses in the UKBB[31] or associ-
ated with SUA in the trans-ethnic population, as previously
reported.[8] The selected SNPs were annotated,[32,33] mapping
into 460 non-redundant genes. Among these, notable genes
included SLC2A9 (rs3775946), ABCG2 (rs141471965), PKD2
(rs139497546), SLC22A12 (rs111068643), SLC17A1 (rs1165199),
ADH1C (rs141973904), WDR1 (rs10939702), and NRXN2
(rs572492285). Most of these genes are related to uric acid
metabolism or inflammation, and the effects and P-values of the
lead SNPs are presented in Table S6 (Supporting Information).

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses were conducted.
In the KEGG pathway enrichment analysis, nine pathways, in-
cluding the cholesterol metabolism pathway and type I dia-
betes mellitus, were found to be significantly enriched (adjusted
P-value< 0.05; Figure S2A, Supporting Information). Similarly,
GO enrichment analysis revealed enrichment of biological pro-
cesses such as urate metabolic process, xenobiotic transport, and
aorta development; cellular component such as the apical part of
cell and apical plasma membrane; molecular function such as

Adv. Sci. 2024, 11, 2404047 2404047 (3 of 11) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

Figure 2. Performance of the stacked ML models for predicting HUA. A) The MSE of different numbers of SNPs revealed by the LASSO model in the
train set. A dotted vertical line is drawn at the optimal lambda values by minimum criteria, which is 1378. The lambda min means the lambda at which
the minimal MSE is achieved through five-fold cross-validation. B) LASSO coefficient profiles of SNPs. C) The ROC analyses for predicting HUA in the
train test set with the stacked ML models. D) The ROC analyses for predicting HUA in the internal test set with the stacked ML models. E) The ROC
analyses for predicting HUA in the external test set with the stacked ML models. HUA, hyperuricemia; MSE, mean square error; SNP, single nucleotide
polymorphism; LASSO, least absolute shrinkage and selection operator; ROC, receiver-operator characteristic.

active transmembrane transporter activity and insulin−like
growth factor I binding (adjusted p-value< 0.05; Figure S2B, Sup-
porting Information).

2.5. Performance of the Stacked ML Model in the Train Set

By applying the least absolute shrinkage and selection operator
(LASSO) algorithm to 38277 genetic variables in the train sam-
ples, the most important genetic variables (lambda.min) for iden-
tifying HUA were determined. The lambda.min indicates the
lambda at which the minimal mean square error was achieved
through five-fold cross-validation (Figure 2A,B). In total, 1378 ge-
netic features and 10 clinical features were utilized for model con-
struction.

First, we used seven base classifiers in the base module to
predict the input features in the train set independently (Figure
S3, Supporting Information). Based on the prediction results of
the seven base classifiers through five-fold cross-validation, we
trained the stacked models and observed that the performance
was better than that of the individual classifiers. The area un-

der the receiver operating characteristic curve (AUC) and exact
values in the train set for base classifiers are presented in Table
S7(Supporting Information).

In the train set, the AUC of the stacked model for predicting
HUA was 0.703 (95% CI: 0.700, 0.705) using genetic features,
0.822 (95% CI: 0.820, 0.824) using clinical features, and 0.859
(95% CI: 0.857, 0.861) using a combination of genetic and clinical
features (Figure 2C). Furthermore, the stacked model, using a
combination of genetic and clinical features, predicted HUA with
an accuracy of 0.736 (95% CI: 0.735, 0.737), sensitivity of 0.828
(95% CI: 0.825,0.832), and specificity of 0.723 (95% CI: 0.721,
0.724) (Table S8, Supporting Information). Our results showed
that the stacked model, which incorporated genetic and clinical
features, performed better than the individual classifier.

2.6. Performance of Stacked ML Models in the Internal and
External Test Sets

We evaluated the stacked ML models using both internal and ex-
ternal test sets. For the internal test set, the AUCs for predicting
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Figure 3. Association of known hyperuricemia risk factors with ISHUA in the train set. ISHUA was evaluated for association with known demographic,
clinical and genetic risk factors for hyperuricemia. A) Age, stratified by four decades of age groups. B) Sex, categorized into male and female. C) Obe-
sity, defined as BMI ≥ 30. D) Dyslipidemia, defined based on LDL-C, CHO, HDL-C, and TG levels. E) Blood glucose. F) SNP score, derived from the
hyperuricemia probabilities of the stacked machine learning model using only genetic features was stratified by quartiles. Data are presented as mean ±
standard deviation. Univariate linear regression was used to assess the association between variables and ISHUA: **, P < 0.001. ISHUA, insilico score
for hyperuricemia; BMI, body mass index; SNP, single nucleotide polymorphisms.

HUA were 0.661 (95% CI: 0.656, 0.666), 0.802 (95% CI: 0.796,
0.806), and 0.836 (95% CI: 0.832, 0.839) using only genetic fea-
tures, only clinical features, and combining genetic and clinical
features, respectively (Figure 2D). The stacked model, using a
combination of genetic and clinical features, predicted HUA with
an accuracy of 0.740 (95% CI: 0.737, 0.743), sensitivity of 0.775
(95% CI: 0.768, 0.783), and specificity of 0.734 (95% CI: 0.731,
0.737) (Table S8, Supporting Information).

For the external test set, the AUCs for predicting HUA were
0.588 (95% CI: 0.576, 0.600), 0.756 (95% CI: 0.745, 0.766), and
0.779 (95% CI: 0.769, 0.788) using only genetic features, only
clinical features, and combining genetic and clinical features,
respectively (Figure 2E). The stacked model, using a combina-
tion of genetic and clinical features, predicted HUA with an ac-
curacy of 0.723 (95% CI: 0.714, 0.732), sensitivity of 0.664 (95%
CI: 0.648, 0.680), and specificity of 0.759 (95% CI: 0.748, 0.770)
(Table S8, Supporting Information). Due to the different age
distribution of the Nanfang Hospital cohort compared to the
UKBB, we divided the external test set into two age groups (<
40 years and ≥ 40 years) and evaluated the model’s performance
accordingly (Table S9; Figure S4, Supporting Information). For
the stacked model using a combination of genetic and clinical

features, the AUC was 0.789 (95% CI: 0.776, 0.801) for partic-
ipants aged < 40 years and 0.764 (95% CI: 0.748, 0.780) for
those aged ≥40 years. Overall, the multimodal model incorpo-
rating both genetic and clinical features performed well in both
test sets.

2.7. Prognostic Evaluation of ISHUA

We utilized the HUA probabilities derived from the stacked mul-
timodal model to generate ISHUA for participants in the UKBB
train set and assessed its prognostic significance. A correlation
was observed between known risk factors for HUA and ISHUA
(Figure 3); specifically, ISHUA steadily increased by 0.024 per
decade of age (95% CI: 0.024, 0.025; P< 0.001), and was higher in
males (0.074 [0.073, 0.074]; P < 0.001), obese individuals (0.148
[0.147, 0.149]; P < 0.001), and those that exhibited dyslipidemia
(0.063 [0.062, 0.064]; P < 0.001) or dysglycemia (0.056 [0.055,
0.058]; P < 0.001) compared to those without these factors. Fur-
thermore, ISHUA captured the risk axes of HUA from the SNP
score, increasing by 0.047 per quartile increase in the SNP score
(95% CI 0.047–0.048; P < 0.001). The results were similar in the
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Figure 4. The cumulative risks of developing incident outcomes among the train set, by High-Risk and Low-Risk groups. A) Gout, B) AF, C) CAD, D)
HF, E) hypertension, F) DmT2, G) ESRD, and H) all-cause death. The Low-Risk group was set as the reference group. CAD, coronary artery disease; AF,
atrial fibrillation/atrial flutter; HF, heart failure; ESRD, end-stage renal disease; DmT2, type 2 diabetes mellitus.

internal and external test sets (Figures S5 and S6, Supporting In-
formation).

After determining the HUA risk captured by ISHUA, we
assessed its potential as a quantitative marker for gout and
metabolism-related adverse outcomes. Our results indicated a
significant association between ISHUA and the occurrence of
metabolic-related adverse outcomes, particularly gout (Tables S10
and S11, Supporting Information). Therefore, we further evalu-
ated ISHUA’s effectiveness in predicting the occurrence of gout.
In the train set, ISHUA performed exceptionally in predicting in-
cident gout, with an AUC of 0.815 (95% CI: 0.811, 0.819; Figure
S7A, Supporting Information). Based on the largest Youden in-
dex, we established an optimal cut-off value to stratify partici-
pants into low- (< 0.183) and high-risk (≥0.183) groups in the
train set. Patients in the high- and low-risk groups were estimated
to have a heightened risk and low risk for gout occurrence, re-
spectively (Figure 4A).

To examine the generalizability of ISHUA in predicting gout
occurrence, we validated and verified the score in the UKBB in-
ternal test set. ISHUA maintained good predictive performance
in the internal test set, with an AUC of 0.814 (95% CI: 0.806,
0.822) (Figure S7B, Supporting Information). We used the same
cut-off value (0.183) to stratify participants into low- and high-risk
groups in the internal test set.

We subsequently evaluated the relationship between the
two groups and metabolism-related adverse outcomes in the
train and internal test sets. During a median follow-up of 13.6
years, we identified 3523, 23353, 10393, 17250, 40730, 18212,
1670, and 24919 incident events of gout, CAD, heart failure
(HF), atrial fibrillation/atrial flutter (AF), hypertension, type
2 diabetes mellitus (DmT2), end-stage renal disease (ESRD),
and all-cause death, respectively, in the train set. We identified

879, 5795, 2588, 4227, 9994, 4570, 416, and 6292 incident
events of gout, CAD, HF, AF, hypertension, DmT2, ESRD,
and all-cause death, respectively, in the internal test set (Table
S3, Supporting Information). The Kaplan-Meier survival curve
showed that the risk of incident gout or other metabolism-related
outcomes was significantly higher in the high-risk group in the
train and internal test sets (Figure 4; Figure S8, Supporting
Information). The high-risk group was associated with an in-
creased risk of gout, metabolism-related outcomes, and all-cause
death, after adjusting for lifestyle factors (Tables S12 and S13,
Supporting Information).

2.8. Association between Lifestyle and Adverse Outcomes in the
High-Risk Group

We subsequently analyzed the association between lifestyle
type and outcomes in the high-risk group to explore whether
a favorable lifestyle can mitigate the risk of gout and other
metabolism-related outcomes. In the high-risk group of the
train set, participants with intermediate and favorable lifestyle
profiles had lower hazard ratios (HRs) for gout (0.75 [0.68,
0.84] and 0.53 [0.47, 0.59], respectively), AF (0.91 [0.85, 0.97]
and 0.76 [0.71, 0.81], respectively), CAD (0.91 [0.86, 0.96] and
0.78 [0.74, 0.83], respectively), HF (0.86 [0.79, 0.93] and 0.66
[0.61, 0.72], respectively), hypertension (0.90 [0.85, 0.95] and 0.81
[0.77, 0.85], respectively), DmT2 (0.85 [0.80, 0.90] and 0.74 [0.69,
0.78], respectively), ESRD (0.80 [0.66, 0.96] and 0.58 [0.48, 0.70],
respectively), and all-cause death (0.81 [0.77, 0.86] and 0.64 [0.60,
0.68], respectively) compared to those with unfavorable lifestyle
(Figure 5). Similar trends were observed in the internal test set
(Figure S9, Supporting Information).
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Figure 5. The impact of lifestyle on gout and other outcomes in the High-Risk group in the train set. The HR values were obtained from Cox proportional
hazard regressions. Participants were categorized into three groups according to the number of healthy lifestyle factors: (1) unfavorable lifestyle (0 or
1 healthy lifestyle factors), (2) intermediate lifestyle (2 factors), and (3) favorable lifestyle (3 or 4 factors). HR, hazard ratio; AF, atrial fibrillation/atrial
flutter; CAD, coronary artery disease; HF, heart failure; ESRD, end-stage renal disease; DmT2, type 2 diabetes mellitus.

3. Discussion

This study used the large population-based UKBB cohort as the
training and internal test sets, along with a health examinee
dataset from Nanfang Hospital as the external test set, to con-
struct a novel stacked multimodal ML model to synthesize an
insilico quantitative marker for hyperuricemia (ISHUA). The
performance of the proposed model surpassed that of individ-
ual monomodal ML models, demonstrating consistent and sat-
isfactory efficacy. The ISHUA marker enables the prediction
of metabolic-related outcomes risk at an early stage, facilitat-
ing stratification into low- and high-risk groups for incident
gout. Moreover, we revealed that lifestyle changes can mitigate
metabolism-related outcomes in the high-risk group, providing
clinicians with valuable insights for personalized management
of HUA and gout.

Several studies have endeavored to develop prognostic models
for HUA using clinical features or PRSs respectively. One inves-
tigation focused on utilizing clinical data specifically from urban

Han Chinese adults to develop a sex-tailored predictive model for
HUA, achieving AUCs of 0.783 (0.779, 0.786) for men and 0.784
(0.778, 0.789) for women.[34] Similarly, a separate study applied
ML algorithms to forecast SUA status based on routine health
examination tests, yielding an optimized AUC of 0.775.[20] Addi-
tionally, a research effort in Korea conducted GWAS, developing
a PRS for SUA, and subsequently formulated a linear regression
model for SUA levels by integrating PRS and clinical variables.[35]

However, this model combined PRS and clinical features without
substantiating its efficacy. In contrast to these previous investi-
gations, our study marks the inaugural attempt to use an ML
approach and train a stacked multimodal model incorporating
genetic and clinical variables, achieving a higher AUC of 0.836
(0.832, 0.839).

In this study, a set of 1378 SNP variants was identified as
highly predictive genetic factors contributing to HUA through
LASSO analysis. Noteworthy among these variants are rs3775946
and rs1014290, situated within SLC2A9, which significantly im-
pact SUA levels. SLC2A9, encoding GLUT9, a renal transporter
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responsible for uric acid reuptake, exhibits profound influ-
ence over urate concentrations and gout susceptibility.[1,19]

Furthermore, the presence of the rs2231142.T allele prompts
dysfunction in ABCG2, a uric acid transporter primarily located
within the gastrointestinal tract and thereby linked to inadequate
extra-renal excretion of uric acid.[1] Moreover, the prominence
of rs139497546 within PKD2 emerged as a pivotal factor within
the model, demonstrating a positive correlation with ABCG2
gene expression and suggesting its potential indirect impact
on gout development through interactions with ABCG2.[36]

However, the predictive accuracy of the ML model utilizing
solely genetic variables was ≈ 0.661. We enhanced the model’s
predictive efficiency by manually integrating 10 readily available
metabolism-related clinical characteristics, which significantly
contribute to and hold biological relevance in HUA.[15,30,37–40] Fol-
lowing the incorporation of metabolism-related clinical variables
into our ML model, the AUC of the internal test set escalated
from 0.661 to 0.832, indicating that managing metabolic factors
could potentially mitigate HUA risk.

Genetic risk factors contributing to HUA are inherent and per-
sistent from birth. Conversely, clinical risk factors associated with
HUA are often responsive to lifestyle choices and amenable to
modification. Recent research suggests that specific healthy diets,
coupled with weight reduction in overweight or obese individ-
uals, lead to notable improvements in cardiometabolic risk fac-
tors and metabolism-related outcomes.[41] Moreover, adopting a
healthy lifestyle can partially mitigate the augmented genetic risk
of HUA.[42] The ISHUA score proposed in this study holds the
ability to quantitatively evaluate the metabolism-related adverse
outcomes of HUA on a continuous scale and further stratify par-
ticipants into low- and high-risk groups based on gout risk. It
also demonstrated that adherence to a healthy lifestyle regimen
contributed to reducing the incidence of these outcomes among
high-risk individuals.

Integration of the ISHUA score into clinical workflows
through electronic health records and clinical decision support
systems might enable dynamic monitoring and stratified man-
agement of HUA and associated metabolism-related outcomes
during routine health examinations. For high-risk individuals,
enhancing patient education, increasing disease awareness, and
promoting lifestyle improvements can potentially prevent occur-
rences of gout, CAD, and other metabolic adverse outcomes. This
approach may alleviate the burden of diseases associated with
HUA to a certain extent.

There remains a distance to the practical application of
ISHUA, due to several limitations in the study. First, the model
was developed in a European cohort and externally tested in a
Chinese cohort, potentially introducing a dataset shift. Although
performance in the Chinese cohort was acceptable, further
validation in diverse populations is necessary. Second, except
for gout, the associations of clinical outcomes with ISHUA were
only assessed in the UKBB cohort and might not reflect other
clinical practices or the general population. Moving forward,
we plan to collect follow-up information from the Nanfang
Hospital cohort and evaluate the prognostic value of ISHUA.
Third, further prospective studies are crucial to validate the
clinical impact of ISHUA, considering factors such as cost-
effectiveness, resource allocation, and acceptance in clinical
settings.

4. Conclusion

Overall, we established and verified a reliable and practical
stacked multimodal ML model trained on genetic and clinical
data to synthesize an insilico quantitative marker for HUA, capa-
ble of timely identification of HUA and offering potential in per-
sonalized risk stratification for gout and metabolism-related out-
comes. Additionally, we demonstrated that lifestyle changes can
mitigate adverse consequences in high-risk individuals. Collec-
tively, the multimodal machine learning-based ISHUA marker
proposed here could offer valuable guidance for dynamic moni-
toring and precise management of HUA.

5. Experimental Section
Study Population: This study included participants from two cohorts

in the UK and China. The UKBB is an ongoing prospective study with clini-
cal and genotype data and multiple follow-ups from half a million individu-
als aged 40-69 years recruited from across the UK between 2006 and 2010.
Participants with missing covariate and genotype data were excluded, re-
sulting in a total enrolment of 421287 participants. This cohort was ran-
domly divided in an 8:2 ratio, with 337029 in the train set and 84258 in the
internal test set (Figure S1, Supporting Information).

The health examinee dataset of Nanfang Hospital includes information
on individuals undergoing health checkups. Data was extracted from indi-
viduals aged ≥18 years who visited the hospital between 2015 and 2020.
Data collection and preprocessing followed the same criteria as those used
in the UKBB. Ultimately, 8900 participants were enrolled in the study, serv-
ing as the external test set (Figure S1, Supporting Information).

Clinical Data and HUA Diagnosis: In the UKBB, clinical data were col-
lected using the corresponding data-field codes, including demographic
information, BMI, SUA, Glu, TG, CHO, LDL-C, HDL-C, blood urea nitro-
gen, and sCr. In the health examinee dataset of Nanfang Hospital, clinical
data were retrieved from the electronic health record system. Although
no consensus definition of HUA based on the SUA level is available, a
HUA diagnosis was made if the SUA level was >420 μmol L−1 in men and
>360 μmol L−1 in women, consistent with previous studies.[5,43]

Genotype Data: The genotype data in the UKBB were derived from
GWAS ChIP (Affymetrix UK BiLEVE and UK Biobank Axiom arrays). For
the health examinee dataset of Nanfang Hospital, genotyping was per-
formed using the Infinium Chinese Genotyping Array v1.0. Genomic DNA
was extracted from peripheral blood mononuclear cells. The target genetic
variations were SNPs identified as genome-wide significantly (5×10−8) as-
sociated with SUA levels in GWAS analyses (http://www.nealelab.is/uk-
biobank) conducted in the UKBB[31] or associated with SUA in trans-
ethnic populations as previously reported.[8] Genotype information of
those SNPs was extracted from the two datasets, and finally, 38277 SNPs
simultaneously existing in both datasets were extracted.

Clinical Outcomes: In the UKBB, detailed follow-up data of the par-
ticipants was obtained through their past and future medical and other
health-related records, providing follow-up information related to cause-
specific mortality and other health events. Cases of gout and metabolism-
related outcomes were identified by the presence of International Classifi-
cation of Diseases (ICD) codes and self-reported codes (Table S1, Support-
ing Information). Metabolism-related outcomes included hypertension,
CAD, HF, AF, ESRD, and DmT2. The follow-up time for each participant
was calculated from baseline until the date when the clinical outcome was
identified, lost to follow-up, or at last follow-up, whichever occurred first.
Cases that occurred before the HUA diagnosis were excluded.

Assessment of Lifestyle Factors: In the UKBB, information on alcohol
consumption, smoking status, and physical activity was obtained from
the touchscreen questionnaire, and diet was derived from the Food Fre-
quency Questionnaire. Alcohol consumption was calculated based on self-
reported intake of red wine, white wine, beer, spirits, and fortified wine.
Chronic heavy alcohol consumption was defined as ≥3 drinks for women
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and ≥4 drinks for men on any day (one drink is measured as 8 g ethanol
in the UK).[44] Smoking status was dichotomized as either smoking or
non-smoking. Physical activity was measured as minutes per week spent
walking or engaged in moderate or vigorous activity according to the In-
ternational Physical Activity Questionnaire. Regular physical activity was
defined as engaging in moderate activity for ≥150 min per week, vigorous
activity ≥75 min per week, or a combination of moderate and vigorous ac-
tivity totaling ≥150 min per week.[45] Dietary habits were evaluated using
the Food Frequency Questionnaire, and a healthy diet score was generated
based on intake from seven commonly consumed food groups, aligned
with current dietary guidelines for cardiometabolic health.[46] A healthy
diet was defined as consuming at least four of these seven food groups.[46]

Table S2 (Supporting Information) provides detailed information on the
assessment of healthy lifestyle factors.

In this study, four healthy lifestyle factors: no/moderate alcohol con-
sumption, non-smoking status, regular physical activity, and adherence
to a healthy diet were confirmed. Based on the number of these healthy
lifestyle factors, participants were categorized into three groups: 1) unfa-
vorable lifestyle (0 or 1 healthy lifestyle factors), 2) intermediate lifestyle
(2 factors), and 3) favorable lifestyle (3 or 4 factors).

Feature Selection: Feature selection and normalization were per-
formed on the train set from the UKBB and subsequently applied to
both internal and external test sets. This process aimed to optimize the
performance and clinical interpretability of the ML model while mitigating
its complexity. Regarding clinical features, 10 variables with significant
impact on SUA levels were chosen based on the existing research, [15–17]

encompassing sex, age, BMI, TG, CHO, LDL-C, HDL-C, glucose, blood
urea nitrogen, and sCr. For the genetic features, LASSO regression was
utilized to identify the most predictive SNPs associated with the HUA
phenotype from the extracted set of 38277 SNPs in the train set (lambda
min). LASSO regression analysis was performed using “LassoCV” statis-
tical software (Python Foundation). Given the inherent scale variations
between genetic and clinical attributes, all selected features were stan-
dardized using “StandardScaler” (Python Foundation). The clinical and
genetic features were jointly fed into the stacked model for further analysis
(Figure 1A,B).

Model Development and Validation: For model development, the stack-
ing ML method was employed,[47] which was an ensemble learning tech-
nique. This approach uses predicted probabilities from individual classi-
fiers (base classifiers) as trainable features for the meta-classifier. Thus,
a stacked multimodal ML architecture was proposed consisting of two
components, base and meta modules, which were interconnected in a cas-
cading manner. The base module comprised seven base classifiers, Light
Gradient-Boosting Machine (LGBM), classical extreme Gradient Boosting
(XGB), Categorical Boosting (CAB), Random Forest (RF), Adaptive Boost-
ing (ADB), Logistic Regression (LR), and K-Nearest Neighbor (KNN), all
of which operated in parallel, independently predicting input features and
subsequently aggregating these predictions. The aggregated results were
then transferred to the meta module, which consisted of a meta-classifier
(XGB) that further processed the aggregated results from the base module
classifiers to derive the final HUA phenotype prediction (Figure 1C; Figure
S3, Supporting Information).

Throughout the training phase, a five-fold cross-validation method was
utilized in the base module to prepare the inputs for the meta module.
This approach helps alleviate overfitting and enhances model stability. This
involved randomly dividing the train set into five distinct subsets of the
same size for iterative model training (five times in total). Within each
iteration, four of the five subsets were concurrently employed for train-
ing the seven base classifiers, while the remaining subset was utilized for
internal validation purposes. Specifically, the seven base classifiers pre-
dicted outcomes on the remaining subset, enabling an evaluation of the
base classifiers’ performance against ground truth. Simultaneously, these
predicted outcomes were aggregated to form input features for the meta-
classifier. Following the completion of the five iterations, an encompassing
set of meta input features was derived, enabling the training of the meta
classifier using all features to predict HUA phenotype. Subsequently, the
stacked model’s performance was evaluated on internal and external test
sets to assess its efficacy (Figure 1C).

Prognostic Evaluation: The stacked multimodal model generated prob-
ability scores for each participant, which were used as ISHUA values.
ISHUA values range from 0 (lowest HUA probability) to 1 (highest HUA
probability) and serve as a quantitative marker for HUA, predicting future
risks associated with gout and metabolism-related outcomes.

Using the receiver operating characteristic (ROC) curve analysis, we
evaluated the discrimination of ISHUA for gout occurrence in the train
set. Then the cut-off value was applied based on the maximum value of
the Youden index to stratify participants into low- and high-risk groups.
Subsequently, the association of these risk groups was assessed with
metabolism-related outcomes in participants from the train set.

To validate the discriminatory ability of ISHUA, the probability scores
in the internal test set were obtained after testing the stacked multimodal
model. The cut-off value was employed and derived from the train set to
categorize the participants of the internal test set into two groups and
validate its prognostic value for quantifying the risk of metabolism-related
outcomes (Figure 1D).

Statistical Analysis: The characteristics of the study participants are
presented in Table 1. Continuous variables are presented as medians and
interquartile ranges when skewed. Categorical variables are expressed as
frequencies and percentages. For comparison between groups, continu-
ous variables were conducted using Mann–Whitney U test. Categorical
variables were evaluated using chi-square or Fisher’s exact tests. ROC
curve analysis was conducted to assess the prediction efficiency of single
and stacked ML models. Kaplan-Meier curves stratified by ISHUA were
generated for gout and metabolism-related outcomes. Cox proportional
hazard regression models were used to examine the association between
risk groups (divided by the maximum value of the Youden index of ISHUA
for gout) and outcomes. The association between different lifestyle and
adverse outcomes in the high-risk group was assessed using Cox propor-
tional hazard regression models. Effect sizes were reported as HRs and
measures of precision (95% confidence intervals [CIs]). All modeling anal-
yses were performed using Python. Other analyses were conducted using
R software (version 4.0.2; R Foundation for Statistical Computing, Vienna,
Austria). A two-sided P-value < 0.05 indicated statistical significance for
all analyses.
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