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Abstract

Several metabolites serve as substrates for histone modifications and communicate changes in the 

metabolic environment to the epigenome. Technologies such as metabolomics and proteomics 

have allowed us to reconstruct the interactions between metabolic pathways and histones. 

These technologies have shed light on how nutrient availability can have a dramatic effect on 

various histone modifications. This metabolism-epigenome cross talk plays a fundamental role 

in development, immune function, and diseases like cancer. Yet, major challenges remain in 

understanding the interactions between cellular metabolism and the epigenome. How the levels 

and fluxes of various metabolites impact epigenetic marks is still unclear. Here we discuss recent 

applications, and the potential of systems biology methods such as flux tracing and metabolic 

modeling to address these challenges and to uncover new metabolic-epigenetic interactions. These 

systems approaches can ultimately help elucidate how nutrients shape the epigenome of microbes 

and mammalian cells.
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Histone post-translational modifications (PTMs) sense cellular metabolic state and regulate gene 

expression, thereby influencing normal physiology and disease progression. While histone PTMs 

rely on metabolic substrates, how nutrients impact the histone PTM code is unclear. Here we 

review systems biology technologies that can be used to study metabolic-epigenetic interactions.

1. Introduction

Histones are susceptible to a variety of post-translational modifications (PTMs). 

These include acetylation, methylation, phosphorylation, ubiquitination, sumoylation, 

glycosylation, and many others. These histone PTMs in combination serve as an ‘epigenetic 

code’ for transcriptional activation, repression and coordination of higher order chromatin 

structure.[1–3]

Histone PTMs are highly sensitive to cellular metabolism.[2,4,5] Several metabolites 

influence gene expression by serving as substrates for modification of histones or 

as regulators of epigenetic enzymes.[4] The metabolite S-Adenosyl Methionine (SAM) 

donates a methyl group to methyltransferase enzymes for histone methylation. Histone 

demethylating enzymes are dependent on intracellular levels of Flavin adenine dinucleotide 

(FAD), α-ketoglutarate, iron and oxygen. Acetyl-CoA, an important biomolecule produced 

from glucose, amino-acid and fatty acid catabolism, is the substrate for histone 

acetyltransferase enzymes, while NAD+ is the substrate for sirtuins, a class of deacetylase 

enzymes.

Histone PTMs thus represent an innate cellular mechanism that links metabolic status 

to gene expression. By sensing the levels of intracellular metabolites, cells can alter the 

expression of genes that are important for biological processes such as cell growth and 

differentiation. Furthermore, as metabolism provides the building blocks for histone PTMs, 

in many cases, these building blocks limit the creation of histone marks. For instance, 

lack of dietary folate can lead to impaired histone methylation during development [4]. 

Dysregulation of both metabolism and the epigenome are important hallmarks of cancers 

and metabolic disorders such as diabetes, obesity and hypertension.[2,4–6]
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How histone PTMs sense and integrate various metabolic inputs is still unclear.[5] This 

has been challenging to investigate because histone PTMs sense several central metabolites 

that are in turn involved in numerous metabolic reactions.[5] Here we highlight recent 

technologies that can help us tackle the highly interconnected and compartmentalized nature 

of cellular metabolism and its myriad impacts on the epigenome.

2. Metabolism-histone interactions regulate normal and disease 

physiology

Metabolic-epigenetic interactions play a central role in development and normal physiology 

of various organisms.[2] For example, the interactions between histones and cellular 

metabolites are important for controlling gene expression during the cell cycle. The temporal 

peak in abundance of acetyl-CoA during the yeast cell cycle correlates with histone 

acetylation of growth genes.[7,8] Levels of histone glycosylation by acetylglucosamine 

(GlcNAc) also changes during the cell cycle. Histone GlcNAcylation depends on the activity 

of the hexosamine biosynthesis pathway and is sensitive to the availability of glucose, fatty 

acids, uridine and glutamine; thus it may act as a nutrient sensor of diverse metabolic 

pathways.[9,10] Metabolism and histone acetylation also play an important role in DNA 

repair in mammalian cells. Upon DNA damage, nuclear ATP-citrate lyase (ACLY) promotes 

acetyl-CoA production, facilitating histone acetylation at the sites of double-strand breaks 

and stimulates DNA repair. [11]

Some cellular metabolites directly regulate the expression of metabolic genes via 

histone modification. The FAD-dependent enzyme LSD1 has been shown to demethylate 

histones and regulate cellular energy levels by repressing genes involved in mitochondrial 

respiration and energy expenditure.[12,13] Another example is found in brown adipose 

tissue development. The master metabolic regulator – AMP-activated protein kinase 

(AMPK), causes increased production of α-ketoglutarate, the substrate for demethylases; 

α-ketoglutarate accumulation results in epigenetic activation of adipogenesis regulators by 

demethylation of their promoters.[14] In response to stress, AMPK also phosphorylates 

histone H2B serine residues (H2BS36) in mammalian cells and regulates the activity of 

histone acetyltransferases and deacetylases through phosphorylation.[15]

Metabolism driven epigenetic changes can influence cancer risk.[16] In mammalian cells, 

the set of genes activated by the c-Myc oncoprotein[17] through metabolic rewiring and 

chromatin remodeling[18] resembles the set of growth genes that are acetylated during 

acetyl-CoA peak abundance in the yeast cell cycle.[2,7,8] Metabolic gene mutations in 

diverse cancers cause an accumulation of succinate, fumarate and R-2-hydroxyglutarate. The 

accumulation of these metabolites is believed to contribute to tumorigenesis by inhibiting 

α-ketoglutarate-dependent demethylase enzymes including the tumor suppressor TET2.[2,19] 

Other studies have shown the NAD-dependent deacetylase enzymes – sirtuins, to be tumor 

suppressors, as they limit reactive oxygen species (ROS) synthesis.[20,21] Low NAD levels 

results in decreased sirtuin activity and increased risk for many cancers, likely due to 

DNA damage by ROS.[21,22] The enzyme Nicotinamide N-methyltransferase (NNMT) is 
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overexpressed in numerous cancers. Increase in NNMT activity consumes SAM, impairing 

histone methylation and leading to altered expression of cancer-associated genes.[23]

Besides cancer, multiple studies have been conducted to better understand the effect of 

epigenetic changes on disease pathology. The level of H3K4 trimethylation, a histone 

mark associated with active transcription, in the promoters of genes involved in lipid 

metabolism, adipogenesis and inflammation, correlates with increasing BMI of individuals.
[24] The availability of folate and other one-carbon donors during conception and pregnancy 

influences the epigenome and various phenotypes in offspring.[25] SAM and methionine 

availability also plays an important role in maintenance of pluripotency in stem cells. 

The depletion of SAM in stem cells diminishes H3K4 trimethylation levels and leads to 

enhanced differentiation.[26,27] In summary, these examples provide a connection between 

intracellular metabolites, histone marks and their effect on gene transcription, which may 

contribute to the progression of diseases.

3. Metabolic-epigenetic cross talk is complex and context-specific

The numerous metabolic pathways that intersect with histone PTMs make it highly 

challenging to understand their interdependencies. For example, acetylation is sensitive 

to acetyl-CoA and NAD+,[2,4] which are involved in hundreds of metabolic reactions. 

Methylation depends on highly connected metabolic intermediates (α-ketoglutarate, SAM) 

and redox factors (FAD), as well.[2,4]

As with any other process in biology, the metabolic impact on histone PTMs is context 

specific. For example, inhibiting the synthesis of SAM, the substrate for methylation, 

reduces histone methylation in primed murine embryonic stem cells.[28] However, the same 

inhibition does not alter bulk methylation in naïve embryonic stem cells.[28] Another layer 

of complexity results from extensive cross-talk between different histone PTMs with some 

PTMs stimulating or repressing others.[29,30] For example, H3K4 methylation can stimulate 

an increase in H3K9 acetylation. In contrast, butyrylation can preclude acetylation of the 

same histone.[30,31] Thus, understanding how cellular metabolism influences histone PTMs 

is a significant challenge.

The histone PTM levels in a cell depend on the activity of both PTM writers and 

erasers. The writers comprise enzymes such as histone methyltransferases and histone 

acetyltransferases, while histone demethylases and histone deacetylases are examples of 

“erasers”. The availability of substrates and cofactors, such as folates, acetyl-CoA, SAM, 

and α-Ketoglutarate, influences the activity of these epigenetic enzymes (i.e. writers and 

erasers).[2,4–6,28] For example, the levels of a single histone PTM - acetylation, depends on 

the levels of its substrate acetyl-coA, 17 distinct acetyltransferases, 18 different deacetylases 

and their substrates such as NAD, and the presence of other histone marks like methylation. 

Hence increased acetylation in a cell could occur due to either high acetyl-coA production 

or due to reduced deacetylase activity arising from a change in redox metabolism. 

Consequently, acetylation has been found to increase in both nutrient excess and starvation 

conditions! [32,33]
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There are over 250 such epigenetic enzymes in humans with both distinct and overlapping 

substrates and targets (i.e. histone sites).[34] Some histone sites can even be non-

enzymatically modified directly by metabolites.[4] Furthermore, the extent of sensitivity to 

metabolism for different PTMs changes with respect to their positions in the histone.[4,35–37] 

For example, acetylation at H3K9, H3K27 and H3K56, but not at H3K14, H3K18 and 

H3K23, have been found to be sensitive to acetate addition.[35] Similarly acetylation at 

H3K9, H3K14, H3K18, H4K8, H4K12, and H4K16 was most sensitive to glucose levels 

while other sites did not change significantly.[36] Our understanding of how histone PTMs 

are influenced by metabolism can benefit from systems biology approaches that account for 

numerous components.

4. How to trace metabolic signals to the nucleus

While there are numerous pathways that can theoretically synthesize specific epigenetic 

substrates, such as acetyl-CoA, stable isotope tracing analysis can tell us which 

pathway predominates in a given condition. Combining isotope-labeled metabolomics with 

proteomics is a powerful approach for uncovering metabolic-epigenetic interactions. For 

instance, treating cells with heavy isotope labeled glucose or acetate followed by proteomics 

measurement of histone PTMs can help identify which molecule and metabolic pathway 

contributes more to histone PTM synthesis. Further, measuring the incorporation of stable 

isotope labeled glucose or other metabolites over time can track the dynamics of PTMs and 

trace metabolic pathways that support the synthesis of PTM substrates (Figure 2).

Recent studies have used isotope-labeled tracing to uncover how different acetylation sites 

exhibit unique sensitivity and dynamics for different substrates.[35,36,38,39] This approach 

can also help determine the quantitative relationship between histone marks and metabolite 

levels and fluxes. Cluntun et al created a tunable system to titrate glucose at various 

concentrations in a human colon cancer cell line.[36] They performed kinetic flux profiling 

experiments using 13C labeled glucose to manipulate glycolytic flux. They found that this 

glucose titration leads to different histone acylation (multiple PTMs) patterns, in which 

different sites show differing degrees of sensitivity to glycolytic flux. Similarly, Mentch et 
al found a quantitative link between methionine levels and histone H3 trimethylation.[37] 

They found that the SAM/SAH ratio was predictive of the levels of histone methylation 

in response to methionine restriction. While a severe reduction in histone di- and tri-

methylation in response to depletion of SAM or methionine has been observed in many 

systems,[23,26–28,37,40] Haws et al found that mammalian cells mount a highly coordinated 

response to preserve H3K9 mono-methylation.[41]

Tracing has also provided novel insights on how metabolic pathways are rewired to impact 

histone PTMs in stem cells. Chandrasekaran et al traced 13C labeled glucose, glutamine 

and serine to show how carbon from glucose impacts histone methylation during the 

naïve to primed transition in pluripotent stem cells.[28] In these cells, glycolytic flux 

is routed towards the one-carbon metabolic pathway, which influences serine and folate 

metabolism, and leads to increased SAM synthesis and ultimately histone methylation. 

Similarly, Moussaieff et al used labeled glucose tracing to uncover the impact of glycolytic 
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flux on acetyl-CoA synthesis and histone acetylation in naïve and primed pluripotent stem 

cells.[42]

While glucose is considered the most common carbon source for histone acetylation,
[38,43,44] eukaryotic cells, especially cancer cells, also utilize alternate carbon sources.[45] 

McDonnell et al combined 13C carbon tracing with acetyl-proteomics in immortalized 

hepatocytes (AML12 cells) to show that up to 90% of acetylation on histone lysines can 

be derived from fatty acid carbon (octanoate), even in the presence of excess glucose.[46] A 

large proportion of tumors also utilize carbon from acetate for histone acetylation.[47] Using 

13C labeling and multiple reactions monitoring mass spectrometry, Gao et al found that 

during hypoxia, acetate becomes a major carbon source for histone acetylation in tumors.
[35] Furthermore, carbons from branched-chain amino acid oxidation is used to synthesize 

acetyl-CoA to support histone acetylation in pancreatic acinar cells and contributes to the 

development of pancreatic ductal adenocarcinoma.[48]

Flux tracing analyses have helped uncover how aberrant metabolic rewiring can influence 

histone PTMs in tumors. Morrish et al used 13C glucose tracing to demonstrate that Myc 

overexpression increases the mitochondrial synthesis of acetyl-CoA, and a 40% increase in 

H4K16ac.[18] Cancer cells can channel carbon flux into acetyl-CoA to sustain high levels 

of histone acetylation even when glucose is limiting. This is achieved by increasing the 

activity of ATP-Citrate Lyase (ACLY) or acetyl-CoA synthetase 2 (ACSS2) enzymes that 

synthesize acetyl-CoA and support histone acetylation.[47] In hypoxic tumors, acetate from 

histone deacetylation is recaptured by nuclear ACSS2 and channeled for histone acetylation. 

ACSS2 helps maintain adequate nuclear acetyl-CoA levels to support histone acetylation 

even when there is high cytosolic demand for acetyl-CoA to support lipogenesis.[44]

New histone marks have also been discovered using tracing and mass-spectrometry. For 

example, metabolic labelling using 13C L-lactate followed by mass-spectrometry analysis 

has demonstrated that a novel histone mark - lysine lactylation, can be derived from lactate.
[49]

Furthermore, metabolic labelling experiments using isotopic glucose have demonstrated that 

lysine lactylation is endogenously derived from glucose.

A limitation of these isotope labeled tracing studies is that they are done using bulk 

cellular measurements and as a result, subcellular compartment information is lost. 

Acetyl-CoA and other histone PTM substrates exist in distinct pools in mitochondria, 

nucleus and other compartments.[50] Metabolite pools in the mitochondria may not have 

significant impact on histone modifications in the nucleus. Recent studies have begun 

to address this limitation through a variety of ways including fractionation to separate 

organelles, compartment-specific chemical probes, and via computational modeling. Lee 

et al measured fluxes in mitochondria and cytosol by combining isotope tracing with 

subcellular fractionation and metabolomics.[51] However, the subcellular fractionation 

process itself can lead to artifacts. Trefely et al have developed a post-labeling correction 

strategy to account for the disruption caused by the fractionation of compartments.[52] 

Computational models can also be used to deconvolute compartment-specific metabolism 
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from bulk measurements. Chandrasekaran et al were able to differentiate mitochondrial and 

cytosolic folate metabolism from bulk metabolomics measurement using a computational 

model of metabolism in various compartments, and validated the model using chemical 

inhibitors that target folate metabolism in distinct compartments.[28].

An essential requirement for isotope labeling experiments is the steady-state labeling of 

metabolites, i.e. the isotopic labeling does not change over time. However, the exchange 

of intracellular and external metabolites can significantly reduce labeling rates and labeling 

may not reach steady state. For example, cytosolic acetate freely exchanges with both acetyl-

CoA and extracellular acetate. This free exchange along with rapid protein acetylation-

deacetylation cycles can lead to labeling of histones without a net carbon transfer. This 

makes it challenging to study histone acetylation labeling by acetate. To overcome this, 

Bulusu et al utilized a chemical derivative of acetate to determine net acetate exchange rate 

and quantify labeling of histone-bound acetate.[44]

Although isotope labeling patterns of metabolites can directly provide qualitative 

information on relative pathway activities, 13C metabolic flux analysis (MFA)[53,54] can 

provide a more quantitative estimate of fluxes at key branch points. In MFA, labeling 

patterns of metabolites are used to computationally estimate metabolic fluxes.[55] However, 

MFA is time-intensive and computational models with detailed atomic mapping are 

currently available only for a limited set of pathways in central metabolism.[53,54]

Finally, the interpretation of large numbers of metabolic changes observed in tracing 

and metabolomics measurements is a significant challenge.[56,57] While flux tracing is 

limited to a small set of well-studied pathways, extensive metabolic changes occur during 

differentiation or tumorigenesis resulting in altered epigenetic modifications. Mechanistic 

modeling tools have now been developed to interpret omics datasets. Recent studies have 

also applied metabolic modeling methods to understand the influence of diverse metabolic 

changes on histone modifications.

5. Constraint based modeling can predict and interpret metabolism-

histone cross talk

All living cells contain numerous highly interconnected metabolic pathways with varying 

degrees of activity. Transcriptomics or metabolomics analysis can provide a snapshot of 

cellular metabolism; however, transcript or metabolite changes do not directly provide 

insights on the activity of various metabolic reactions. For instance, increased accumulation 

of TCA cycle metabolites may be due to increased activity of glycolysis and TCA cycle 

or decreased activity of oxidative phosphorylation pathway. Similarly, changes in mRNA 

levels of one pathway should be interpreted in the context of all other pathways that are 

linked to it. Interpreting metabolic changes through traditional informatics approaches such 

as grouping genes into pathways is also challenging.[56] Usually, individual proteins in a 

pathway do not change coherently as a whole. Given the highly inter-connected nature 

of the metabolic network, the underlying assumption behind pathway analysis that each 

pre-defined pathway is independent of each other does not hold for metabolism as adjacent 
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pathways can influence each other’s activity. A systems-level model is needed to account for 

changes at both the individual protein level and the overall network level.

Metabolic network reconstructions address these challenges and provide a virtual map 

of all known metabolic reactions that happen in a human cell.[58] Metabolic network 

reconstructions represent the mechanistic relationships between genes, proteins, and 

metabolites in a cell. For example, the human metabolic model (Recon 2) contains 7,440 

reactions, 1,789 genes, 2,194 transcripts, 2,657 proteins, 1,052 protein complexes, 8 cellular 

compartments and 5,063 metabolites.[59]

Several theoretical approaches that utilize metabolic reconstructions to interpret 

transcriptomics[60–63] and metabolomics[28,64,65] data have been developed. All these 

approaches build upon a fundamental theoretical concept called Constraint-Based Modeling 

(CBM). CBM is a powerful theoretical tool that is capable of simulating hundreds of 

enzymes in the metabolic network.[66,67] Using CBM, we can identify an optimal path 

through the network from nutrients to biomass components based on thermodynamic, 

stoichiometric and enzyme expression constraints. CBM does not require any kinetic 

parameters and can be used to simulate models with thousands of reactions. Flux balance 

analysis, the oldest and most commonly used CBM method, is formulated as an optimization 

problem, wherein fluxes are estimated by assuming cellular metabolism is optimized for 

the production of biomass components, subject to stoichiometric constraints resulting from 

mass balances for intracellular metabolites (Figure 3).[68] Further external nutrient levels 

and metabolic secretion rates provide boundary constraints on intracellular fluxes. Due 

to redundancies in the metabolic network, additional constraints from transcriptomics or 

metabolomics data are frequently used to limit the feasible space of possible fluxes through 

the network.

CBM has been successfully used to predict the metabolic state of various mammalian 

systems, including cancer cells and stem cells.[28,60,69]. CBM models have led to the 

discovery of biomarkers, metabolic vulnerabilities and drug targets.[58,70] For example, 

CBM identified dysregulation of mannose metabolism in obese patients, which was 

validated by quantifying plasma mannose levels in lean and obese individuals.[71] Similarly, 

modelling of hepatocyte metabolism revealed serine deficiency in patients with non-

alcoholic fatty liver disease.[72]

CBM is highly effective in predicting lethality of single and combinatorial gene knockouts 

as this approach is good at predicting infeasible metabolic states. For example, using 

a metabolic model of renal-cell cancer cells, Frezza et al discovered a synthetic lethal 

interaction between the enzymes fumarate hydratase (FH) and haem oxygenase.[73] Since 

FH mutations are common in these cancers, haem oxidation could be targeted in tumors 

with FH inactivating mutations, while sparing normal cells with wild-type FH. A metabolic 

model of hepatocellular carcinoma (HCC) revealed that de novo lipogenesis is substantially 

upregulated in patients with HCC and identified mitochondrial acetate as the substrate for 

lipogenesis through the upregulation of mitochondrial acetyl-CoA synthetase (ACSS1).[74]
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Like all models, the accuracy of CBM depends on the availability of high-quality datasets 

to build and curate the metabolic models. Further, the underlying assumptions of metabolic 

steady state and optimization of biomass are not applicable for all systems. Nevertheless, 

these assumptions can be adjusted based on experimental evidence. For example, time-

course metabolomics measurements can be used to identify metabolites that are not at 

steady-state.[28,64] Similarly complex objectives based on biochemical tasks performed by a 

cell type such as neuron or hepatocyte can be used as an alternate optimization goal instead 

of optimizing biomass.[59]

CBM methods have also been recently applied to gain insight on how metabolic changes 

can influence histone modifications. For example, a variation of CBM called Dynamic 

Flux Activity (DFA) uses snapshots of metabolite levels taken at different time points and 

subsequently overlays this onto a metabolic network model.[28] DFA was used to compare 

the metabolism of embryonic- and induced-pluripotent stem cells using time-course 

metabolomics of each cell state. DFA revealed the activation of the one-carbon metabolic 

pathway in mouse embryonic stem cells transitioning from naïve to primed pluripotent state. 

This activation enhances the synthesis of SAM and supports extensive histone methylation 

in primed stem cells. Inhibiting this pathway reduced histone methylation in primed cells 

but not in naïve cells, as predicted by the model. DFA also uncovered differences in 

folate metabolism between mitochondria and cytosol, which is usually lost during bulk 

metabolomics measurement. These predictions were then experimentally confirmed using 

inhibition of folate enzymes in different compartments.

Notably, a new computational model based on CBM for directly simulating the dynamics 

of histone acetylation was recently developed by Shen et al.[32] This enabled them to 

predict the impact of metabolic alterations on histone acetylation (Figure 3). To simulate 

acetylation using the metabolic network model, the authors added biochemical reactions 

corresponding to histone acetylation and synthesis of acetyl-CoA in the nucleus.[43] This 

model enabled them to correctly predict the histone acetylation levels of various cell lines 

based on their metabolic activity, suggesting a quantitative relationship between the two 

processes. This model suggests that excess carbon that is not used for biomass synthesis 

supports acetylation. It also explains why acetylation can increase in certain nutrient stress 

conditions such as nitrogen starvation that result in excess carbon levels. Finally, it also 

revealed that the diversion of carbon flux for histone acetylation will have limited impact 

on overall metabolism in an actively dividing cell. This is significant given that histone 

acetylation accounts for 74% of all acetylated lysines in mammalian cells.[75]

CBM of metabolism-epigenome interactions is still in its infancy. Existing models cannot 

yet differentiate between specific histone sites (e.g. H3K9 or H3K27). Further, CBM in 

general cannot model the feedback regulation of metabolism by transcriptional regulation 

induced by metabolic changes. New approaches are being developed to model this feedback 

in microbes,[62,76] and may soon be able to tackle the regulatory complexity in mammalian 

cells.

Thermodynamic parameters such as Gibbs Free Energy can be used to set reaction 

directions. Finally, datasets such as transcriptomics, proteomics, and metabolomics can 
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be used to limit enzyme activity, flux bounds and substrate uptake rates. Together, these 

constraints can produce condition-specific metabolic profiles. Extending the metabolic 

network to include reactions required for histone PTMs can simulate metabolomic-

epigenomic interactions at the genome-scale.

6. Next-generation technologies for discovering new metabolic-epigenetic 

interactions

The development of new imaging, omics and modeling technologies can help discover new 

interactions between these two central cellular processes in the future. Ultimately these 

technologies together may make it possible to track a labelled metabolite in a live cell, 

watch its transition between cellular compartments and ultimately identify which histone 

modification it ends up in at which gene.

A major influence in this area of research was the surprising discovery that key 

mitochondrial energy metabolism enzymes are present in the nucleus and provide 

metabolites for histone modification.[77,78] These observations support the possibility that 

other metabolic enzymes, which are primarily thought to function in the mitochondria or the 

cytoplasm, may directly facilitate epigenetic change in the nucleus. Imaging techniques and 

sensors to locate enzymes and metabolites in space are likely to be powerful tools in this 

hunt.

A limitation of metabolomics and tracing approaches is that they lack spatial resolution 

within a compartment like nucleus. Many metabolic substrates are synthesized in the 

nucleus and metabolism driven epigenetic alterations may happen in specific regions of 

the chromatin. Histone modifications may change spatially at different loci even though 

the bulk levels may remain the same. Next-generation sequencing approaches such as 

chromatin-immunoprecipitation and sequencing (ChIP-seq) allow identification of gene-

specific epigenetic effects of metabolism. Notably, Aranda et al recently developed a 

DNA-mediated chromatin pull-down technology to identify chromatin-bound proteins in 

pluripotent stem cells.[79] Using this approach, they discovered that the enzyme adenosyl-

homocysteinase (AHCY) influences SAM/SAH ratio, thereby affecting methylation in 

chromatin sub-compartments. Linking spatial metabolite levels coupled with genome-

wide and spatial measurements of histone marks using ChIP-seq or chromatin capture 

technologies[80] will enable the characterization of these local effects.

The advent of machine learning algorithms has revolutionized many areas of biology.[81] 

Unlike traditional biochemical modeling approaches, machine learning algorithms can 

learn patterns in data without relying on prior knowledge. In contrast, the mechanistic 

models (CBMs) employed in studies highlighted above were built using biochemical 

data on enzymes and substrates curated from literature.[32] Using advanced machine 

learning algorithms like Deep learning may soon make it possible to directly predict 

histone modifications and ramifications of metabolic alterations on the epigenome without 

knowledge of underlying mechanism. While mechanistic modeling is limited to known 

reactions or interactions in literature, machine learning algorithms are ideally suited for 

uncovering novel interactions. However, machine learning algorithms are data-driven. 
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Hybrid approaches that integrate machine-learning and mechanistic modeling[82,83] can 

enable us to effectively harness large-scale metabolic and epigenomic datasets in the future.

7. Future directions for metabolism-epigenetics research

Technological advances described above will reveal important metabolic-epigenetic 

interactions in diverse areas of biology, as well as opening up new research areas, and 

breathing life into old biological puzzles. They can provide insights on the impact of the 

tissue micro-environment on the epigenome during tumorigenesis, development, or ageing. 

Identification of unique growth requirements of stem cells based on their epigenetic state 

to improve their viability in culture can transform regenerative medicine applications such 

as disease modeling and stem-cell therapy.[84] Recent discoveries in neuroscience on the 

importance of metabolism and epigenetics for memory and behavior[85–89] and altered 

brain energy metabolism in conditions such as obesity and aging[90,91] could underlie 

known associations between diet and the brain.[92] Another area that links metabolism 

and epigenetics is transgenerational epigenetic inheritance. Research has now confirmed 

that environmental exposures (e.g. diet, stress, toxins) can alter the phenotypes of future 

generations without altering DNA sequences.[93,94] In some cases, these changes appear 

to provide a mechanism of short-term adaption to the exposure, which contrasts with the 

slower evolutionary process of natural selection.[95,96] Numerous cases of transgenerational 

epigenetic inheritance in rodents, C. elegans and Drosophila stimulated by nutritional 

exposures suggests that metabolism-epigenetic interactions may be part of these inheritance 

mechanisms. Future work will reveal how widespread and important these mechanisms are 

for adaptation in all species, including our own.

The growth of metabolism-epigenetic research will bring translational benefits through 

modulation of physiology for therapy and agriculture. Manipulation of metabolism-

epigenetic mechanisms is a consequence of the ketogenic diet, a treatment for epilepsy 

and some current cancer therapies.[97,98] Considering the recently discovered importance of 

metabolism-epigenetic regulation of immune cell development[99] it is likely that therapies 

targeting those mechanisms will be developed for a variety of inflammatory and infectious 

diseases. Understanding the interdependencies of metabolic epigenetic processes can 

identify synergistic and antagonistic combinations of epigenetic and metabolic inhibitors. 

Epigenetic drugs such as histone deacetylase inhibitors are being explored for treating 

immunological, oncological, and neurological disorders.[100] Similarly, anti-metabolites 

such as methotrexate, gemcitabine and nucleotide analogs are widely used for cancer 

therapy.[101] Thus, identifying synergistic combinations of antimetabolites with epigenetic 

inhibitors can enhance the efficacy of current therapies.[102] Finally, as more is learned 

about how metabolism-epigenetic interactions influence growth, health and inheritance, 

there could be improvements in animal production and crop yields through nutritional 

supplementation at multiple stages of the life cycle or even multi-generationally.[103]

8. Conclusion

Regulation of gene expression through epigenetic chemical modifications is highly 

responsive to various metabolic cues. Mass spectrometry-based proteomics and 
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metabolomics technologies are helping us uncover these interactions between metabolism 

and the epigenome. Yet interpreting these vast datasets to understand the interdependencies 

between these processes is challenging. Building virtual biochemical models represents an 

important and timely opportunity to harness the vast amounts of omics data and gain a better 

understanding of interaction mechanisms. Further, it is likely that we have only scratched 

the surface on the interplay between these two central cellular processes. Combining cutting-

edge tools from systems biology, imaging, mass spectrometry and artificial intelligence can 

ultimately uncover interactions between metabolism, histone marks, and gene regulation that 

underlie numerous biological processes and diseases.
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Figure 1. 
Interactions between metabolites and epigenetic enzymes impact the histone code. Cells 

normally utilize glucose (red) to synthesize the acetylation substrate acetyl-CoA. There 

are several nuclear metabolic enzymes that supply a local source of acetyl-CoA for 

histone acetylation, including PDH, ACLY, and ACSS2. Acetyl-CoA in the nucleus is 

used by histone acetyltransferases (HAT) to modify lysine groups on histone tails. Sirtuins 

are histone deacetylases (HDACs) that depend on local NAD+ to deacetylate histone 

tails. Histone methylation (blue) depends on one-carbon donors - methionine and folate. 

The metabolic enzyme MAT in the cytosol and the nucleus, converts L-methionine to S-

adenosylmethionine, the substrate for histone methylation. Histone lysine methyltransferases 

(KMT) use SAM to methylate lysine groups on histone tails. Folate allows recycling of 

homocysteine (Hcy) back to L-methionine to continue the production of SAM. Histone 

demethylases (KDMT) remove methyl groups using two distinct mechanisms. LSD family 

demethylases act using a FAD-dependent amine oxidase reaction to demethylate histone 

lysine residues. JmjC domain family demethylases use an α-ketoglutarate-Fe(II)-dependent 

dioxygenase reaction for demethylation.
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Figure 2. 
Flux tracing experiments and proteomic profiling under different conditions reveal the 

impact of metabolic rewiring on histone acetylation and other histone PTMs. A. Histone 

acetylation labeling using 13C-labeled glucose and acetate. Measuring incorporation of the 

labeled acetyl-group over time using mass spectrometry enables quantification of histone 

acetylation dynamics and kinetic profiles of different histone writers and erasers. To quantify 

the impact of metabolite concentrations on histone acetylation, Metabolic Flux Analysis 

(MFA) can be used to infer intracellular fluxes for small metabolic networks. The rate 

of labeling incorporation over time can be used to measure metabolic activity for various 

metabolic pathways. Combining both proteomic kinetic profiling and MFA under different 

nutrient- and genetic perturbation conditions can reveal unique metabolic dependencies 

of various histone PTMs. B. A schematic of a pulse-chase analysis to quantify histone 

acetylation/deacetylation rates from different nutrient sources. In a pulse-chase experiment, 

an isotope tracer is introduced (pulse), and an unlabeled form of the nutrient replaces the 

tracer over time (chase). The time it takes for the unlabeled acetyl-groups to replace the 

labeled acetylated histones is the deacetylation rate for a given acetylation species.
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Figure 3. 
Using Constraint-based Modeling (CBM) to compute metabolic fluxes through the 

metabolic network. Genome-scale metabolic network reconstructions map all known gene-

protein-reaction associations using an iterative process of literature curation, database 

mining, and model refinement. The resulting metabolic network is converted to a 

mathematical form as a matrix of the stoichiometries (S) for every single reaction-metabolite 

pair. The product of the stoichiometric matrix (S) and the desired vector of metabolic fluxes 

going through each reaction (v) is equal to the rate of change of metabolites (b). If b is set 

to 0, this represents quasi-steady state conditions. Solving for v provides steady-state fluxes 

from the metabolic reconstruction. To get a unique biologically feasible flux distribution, 

several constraints must be imposed on the model. A cellular objective is set, where a cell is 

assumed to fulfill a specific metabolic task such as maximizing biomass production. Further, 

the structure of the metabolic network itself (S), given that each reaction is mass- and 

charge-balanced, provides another constraint.
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