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Abstract

Leaf nitrogen content (LNC) is an important indicator for scientific diagnosis of the nutrition

status of crops. It plays an important role in the growth, yield and quality of wolfberry. This

study aimed to develop new spectral indices (NSIs) and constructed machine learning

regression (MLR) models for predicting wolfberry tree LNC. By utilizing four smoothing

methods and five mathematic transformation methods, we obtained the original spectral

dataset and five spectral transformation datasets for quantitative analysis and model estab-

lishment. Subsequently, published vegetation indices (PVIs) were acquired, sensitive wave-

lengths (SWs) were screened and NSIs were calculated based on SWs. Then MLR models

were constructed by combining NSIs from six spectral datasets with three machine learning

algorithms. Finally, a comparison was made among the MLR models. The study indicated

that the application of mathematical transformation highlighted the differences in spectra,

the square root, first-derivative and second-derivative transformation improved the predic-

tion accuracy of MLR models constructed based on NSIs (MLR-NSIs models). However,

these transformations had little impact on improving the prediction ability of MLR models

constructed based on PVIs (MLR-PVIs models). Additionally, The optimal model for predict-

ing the LNC of wolfberry tree was obtained by using the Random Forest (RF) algorithm com-

bined with NSIs developed by first-derivative transformation spectra. The determination

coefficient of validation (Rv
2) and ratio of percentage deviation (RPD) was 0.71 and 1.90,

respectively. In conclusion, this study has demonstrated that the combination of hyperspec-

tral transformation and machine learning is useful for improving the accuracy of LNC estima-

tion in wolfberry trees.

Introduction

Wolfberry is an important economic crop with the most local characteristics and advantages,

and it becomes a pillar industry for local ecological governance and poverty alleviation in
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Ningxia Province, China. In 2021, the area of wolfberry trees accounted for about 28666.7 ha

in Ningxia Province, with a production of 25 billion RMB. By 2027, Ningxia plans to double

the cultivated area and output value of wolfberry. Therefore, the high-quality development of

wolfberry in Ningxia province receives much attention.

Nitrogen is an essential element for plant growth [1,2] and plays an important role in crop

yield and quality [3]. Also, it is the mineral nutrient most commonly used in wolfberry orchard

fertilization. Due to the high economic benefits, farmers usually use excessive chemical fertiliz-

ers in the planting of wolfberry. However, excessive nitrogen not only increases agricultural

costs and pollutes the environment and underground water [4,5] but also affects crop yield

and quality [6,7]. Currently, precision water and fertilizer integration technologies are imple-

mented to reduce economic costs,mitigate environmental impacts, and promote the high-

quality and sustainable development of the wolfberry industry. Evaluating wolfberry tree LNC

is important and necessary to provide a scientific reference for better nitrogen nutrition

administration by using water and fertilizer integration technologies.

Traditional methods commonly used for diagnosing crop nitrogen status include appear-

ance diagnostic and chemical diagnostic methods. The appearance diagnostic methods involve

assessing plant leaf color, growth patterns and symptoms. However, these method are subjec-

tive and prone to inaccuracy due to its reliance on visual identification of characteristic symp-

toms by individuals with varying levels of experience [8]. Some chemical diagnostic methods

of laboratory determination based on field sampling are widely used to analyze the nitrogen or

photosynthetic pigment content of plants, and they are proven to be accurate and repeatable,

but these methods are destructive, time-consuming and laborious [9,10]. Additionally, tradi-

tional nitrogen estimates provide limited information due to sampling being restricted to a

small number of sites within a given field [11,12]. Therefore, efficient alternatives are neces-

sary. Hyperspectral remote sensing technology provides a new way to solve this problem

owing to its high spectral resolution, simplicity, effectiveness, and non-destructiveness. Near-

earth remote sensing offeres a reliable method for data collection in precision agriculture

through spectral monitoring [13].

There have been many studies on hyperspectral techniques for predicting nitrogen and

chlorophyll levels in plants. such as wheat [14–17], rice [18,19], maize [20–22], apple trees [23]

and olive trees [11]. Recently, the combination of hyperspectral feature parameters derived

from transformation spectra and machine learning algorithms is being utilized to develop pre-

dictive models with high accuracy [24,25]. Previous studies have shown the feasibility of using

hyperspectral remote sensing for monitoring plant nutrition, and hyperspectral remote sens-

ing technology has become a major development trend in monitoring the nitrogen content of

crops[26]. Despite the wide literature on nitrogen estimation by spectral measurements, very

few studies are related to this work.

LNC is the most important indicator for evaluating the growth status of wolfberry trees.

The timely and effective observation of nitrogen level is essential for guiding fertilization

and controlling the growth, yield and quality of wolfberry [27,28]. However, to the best of

our knowledge, as for the wolfberry tree, there is no study on predicting wolfberry LNC by

hyperspectral data. In this study, our aims are to develop some NSIs and to construct the

models for predicting wolfberry tree LNC by combining transformation hyperspectral data

with machine learning algorithms. To achieve this goal, the following sub-objectives need

to be addressed:

Testing four different smoothing methods (Savitzky–Golay smoothing, fast Fourier trans-

form, continuous wavelet transform and nine-point weighted moving average method) to

reduce the noise of the reflectance.
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Using five mathematical transformations (reciprocal, logarithm, square root, first-deriva-

tive and second-derivative) to obtain spectral transformation datasets and analyzing the poten-

tial of the spectral datasets for estimating the LNC in Wolfberry trees.

Applying a wavelength combination-based method (difference, ratio and normalization) to

develop new spectral indices (NSIs) that improve the fit of published vegetation indices (PVIs)

to the LNC in wolfberry trees.

Comparing the predictive power for wolfberry tree LNC of three machine learning regres-

sion (MLR) models constructed based on PVIs and NSIs.

Materials and methods

Study area

The fieldwork was conducted from June to August 2019 in a wolfberry orchard located in Xinbu

town, Zhongning County (105˚26’~106˚7’E, 37˚9’~37˚50’N), Ningxia Province, China. Its climate

is continental arid and semi-arid in the north temperate zone, with an average annual temperature

of 11.3˚C and mean annual precipitation of 213 mm. The frost-free season is from 200 d to 205 d,

the total annual sunshine is about 3476 h, and the average wind speed is 2 m/second. The terrain

is hilly mixed with some alluvial valley plains, with an average altitude of 1140~1600 meters.

The study site has an area of 6.67 ha. According to the Chinese Soil Taxonomy System

(1992), the soil type is mainly sandy loam soil. A drip irrigation system is used in this study site

with water and nitrogen fertilizer integra-tion. All the wolfberry trees are planted with a fixed

spacing in the spring of 2015. The row spacing and the plant spacing of the wolfberry trees are

3 m and 1m, respectively.

Sample collection

Ningqi No.7, one of the most widely cultivated varieties in Ningxia Province, was selected as

the research object in this study. 52 healthy wolfberry trees were chosen as samples from the

study area. To determine the nutritional status of wolfberry trees, a leaf analysis was con-

ducted. Due to the variations in branch growth direction of wolfberry trees, leaves were ran-

domly collected from new shoots in the east, south, west and north of each tree to represent

the overall nutritional status. Each sample consisted of 100 g of healthy leaves collected from

four orientations, with approximately 25 g of leaves obtained from each direction. A total of 52

leaf samples were gathered. Then, the leaves were placed in bags. The bags were sealed, labeled,

placed in small mobile refrigerators filled with ice packs and brought back to the laboratory.

Leaf spectral reflectance measurement

The spectral reflectance was measured using an ASD FieldSpec 3 portable field spectrometer

(Analytical Spectral Devices Inc., Boulder, USA) in a darkroom. The leaves arranged in a pile

on a black mat with a thickness of 1 cm. A 50-Watt halogen lamp served as the light source,

entering at a constant angle (45˚ from horizontal) and position-ed 30 cm away from the center

of the leaf sample. The probe, with a field angle of 25˚, was placed perpendicular to the surface

of the leaf sample at a distance of 10 cm. The spectral reflectance for every leaf sample was

determined as the mean of 10 sample lines. Additionally, a white reference panel was utilized

for reflectance correction to ac-count for fluctuations in the light source.

LNC measurement

After measuring the spectra, all leaf samples were immediately placed in an oven at 104˚C for

30 min, dried to a constant weight at 70˚C, then ground into powder and passed through a
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0.25-mm screen. Subsequently, 0.1 g of powder extracted from each sample were used to deter-

mine nitrogen content. The nitrogen content was determined using a Kjeltec™ 8400 nitrogen

analyser (FOSS, Hillerød, Denmark). In total, 52 nitrogen data were obtained. The foliar analy-

ses (n = 52) indicated that LNC varied between 3.53% and 4.46%, with an average concentra-

tion of 4.098±0.224. The total samples are divided into a calibration set of 35 samples and a

verification set of 17 samples randomly. The statistical results are shown in Table 1.

Spectral data pre-processing

In the signal acquisition process, spectra are often prone to different interferences due to the

external environ-ment, the instrument’s error, the structural and physical properties of the

sample [11,29]. Therefore, to avoid the undesired influence on measured spectra, noise reduc-

tion is indispensable [30]. The common method to eliminate data noise is spectral smoothness.

In this study, the raw data were smoothed by using the following methods: Savitzky–Golay

Smoothing(S-G) [31], Fast Fourier Transform (FFT) [32], Continuous Wavelet Transform

(CWT) [33] and Nine-point Weighted Moving Average (NWMA) [34]. The smoothed spectral

data were labeled as the original spectra (R).

It was impossible to quantitatively judge the quality of smoothing methods by visual dis-

crimination, so the spectral smoothness index (SSI) [35] was adopted in this study to evaluate

the smoothness effect of spectral curves. The calculation of SSI is shown in Formula (1):

SSI ¼
P
ðl
0

iþ1
� l

0

iÞ
2

P
ðliþ1 � liÞ

2
ð1Þ

where SSI represents the spectral smoothness index; λi and l
0

i represent the spectrum of wave-

length i before spectral smoothness and after spectral smoothness, respectively. The smaller

the SSI, the smoother the whole spectral curve.

Mathematical transformation is one of the most effective analytic techniques for hyperspec-

tral data [36]. It can highlight spectral features [37] and extract vegetation biochemical infor-

mation [38,39]. In this study, five types of mathematical transformations including reciprocal

(1/R), logarithmic(logR), square root(R1/2), the first-derivative(R0) and the second-derivative

(R00) transformations were performed on the original spectra and the corresponding spectral

datasets were obtained. In the follow-up study, the original spectral dataset and five spectral

transformation datasets were used as the basis datasets for quantitative analysis and model

establishment.

Hyperspectral features

To explore the spectral indices applicable for LNC prediction of wolfberry tree, we gathered as

many published vegetation indices (PVIs) as possible, while also developing new spectral indi-

ces (NSIs). Table 2 summarizes the vegetation indices used by other studies to determine the

nitrogen status of crops.

Table 1. The nitrogen content of the leaf samples. The "Total" represents the collection of all wolfberry leaf samples (n = 52) in this study. The "Calibration set" and "Val-

idation set" represent wolfberry samples used for model construction and model validation respectively.

Sample n Maximum Minimum Mean Median standard deviation variance Coefficient of variation

g kg-1

Total 52 4.46 3.53 4.098 4.155 0.224 0.050 0.055

Calibration set 35 4.34 3.53 4.090 4.16 0.222 0.049 0.054

Validation set 17 4.46 3.77 4.114 4.11 0.236 0.056 0.057

https://doi.org/10.1371/journal.pone.0306851.t001
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Mltivariable stepwise regression (MSR) is a simple and effective method to avoid multicolli-

nearity among factors and screen characteristic variables [68]. Therefore, it was employed to

screen sensitive wavelengths (SWs) that can represent the LNC of wolfberry tree. The screen-

ing SWs was performed through forward selection by using the Scientific Platform Serving for

Statistics Professional (SPSSPRO) in china. The reflectance values of the original, reciprocal,

logarithmic, square root, first-derivative, and second-derivative spectra within the range of

350 nm to 2500 nm were considered as independent variables, with LNC being the dependent

variable. The significance level of the selected variable was set to 0.01 and the excluded variable

was set to 0.05. Subsequently, new spectral indices (NSIs) were calculated based on the

screened SWs. These NSIs included difference spectral index (DSI), ratio spectral index (RSI)

Table 2. Published vegetation indices used by other studies.

Vegetation Indices Calculation formula Reference

RVI R800/R670 [40]

NDVI (R800-R670)/(R800+R670) [41]

VOG1 R740/R720 [42]

VOG3 (R734-R747)/(R715+R720) [43]

MTCI (R750-R710)/(R710-R680) [44]

GM R750/R700 [45]

SR705 R750/R705 [46]

mSR705 (R750-R445)/(R705-R445) [47]

ND705 (R750-R705)/(R750+R705) [46]

mND705 (R750-R705)/(R750+R705-2R445) [47]

CIred edge R750/R720-1 [48]

NDVIgb (R573-R440)/(R573+R440) [49]

VIopt (1+0.45)(R800
2+1)/(R670+0.45) [50]

NDRE (R790-R720)/(R790+R720) [51]

MCARI (R700-R670-0.2(R700-R550))(R700/R670) [52]

MTVI2 1.5(1.2(R800-R550)-2.5(R670-R550))/sqrt((2R800+1)2-(6R800-5sqrt(R670))-0.5) [53]

CVI1 MCARI/MTVI2 [54]

PPR (R550-R450)/(R550+R450) [55]

PRI (R570-R531)/(R570+R531) [56]

GNDVI (R750-R550)/(R750+R550) [57]

NPCI (R430-R680)/(R430+R680) [58]

NRI (R570-R670)/(R570+R670) [59]

SIPI (R810-R460)/(R810+R460) [60]

TVI 0.5[120(R750-R550)-200(R670-R550)] [61]

VARI (R550-R670)/(R550+R670-R445) [62]

TGI -0.5[(λ670-λ480)(R670-R550)-(λ670-λ550))(R670-R480)] [63]

TCARI 3((R700- R670)-0.2(R700-R550)(R700/R670)) [64]

OSAVI 1.16(R800-R670)/(R800+R670+0.16) [65]

CVI2 TCARI/OSAVI [64]

DCNI (R720-R700)/(R700-R670)/(R720-R670+0.03) [15]

SR550,670 R550/R670 [66]

SR780,550 R780/R550 [66]

SR780,670 R780/R670 [66]

NDI780,670 (R780−R670)/(R780+R670) [66]

REP (R670+R780)/2 [67]

https://doi.org/10.1371/journal.pone.0306851.t002
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and normalized difference spectral index (NDSI). The NSIs are calculated as follows:

DSI ¼ Rli � Rlj ð2Þ

RSI ¼ Rli=Rlj ð3Þ

NDSI ¼ ðRli � RljÞ=ðRli þ RljÞ ð4Þ

where R represents the spectral reflectance, and λi represents the wavelength.

Machine learning regression model

Construction of the machine learning regression model. In this study, the hyperspectral

feature was used as the independent variable, and three machine learning algori-thms, namely,

Adaptive Boosting (AdaBoost), Extra Trees(ET) and Random Forest (RF) were used to con-

struct LNC prediction models.

AdaBoost is an iterative algorithm that combines multiple weak classifiers (typically single

decision stumps) to form a strong classifier [69]. Weak classifiers usually refere to classifiers

with slightly better generalization ability than random guessing, while strong classifiers have a

generalization ability very close to the true value. In AdaBoost, each round of iteration adjusts

sample weights based on the previous learning results so that the misclassified samples receive

more attention in the subsequent round. Simultaneously, the algorithm assign a weight to each

weak classifier based on its performance on the current training set (giving high weight to clas-

sifiers with low rates and low weight to classifiers with high rates) [69,70]. All weak classifiers

are combined in a weighted manner to form the final strong classifier. RF is an ensemble learn-

ing algorithm that consists of multiple decision trees. It is often used in classification and

regression problems. And it produces good results for both linear and nonlinear data [71]. ET

is a relatively new machine-learning algorithm and is developed as an extension of the random

forest algorithm. It employs the same principle as RF and uses a random subset of features to

train each base estimator [72]. Meanwhile, it uses the whole training dataset to train each

regression tree. In contrast, RF uses a bootstrap replica to train the model [72].

Robustness and model performance analysis. The application of multiple evaluation

indicators can provide insights into the overall accuracy, variability, and explanatory power of

the model. In this study, the determination coefficient (R2), the root mean square error

(RMSE), mean absolute error (MAE) and ratio of percentage deviation (RPD) were used to

evaluate the robustness of the prediction models. R2 is a statistical measure of the correlation

between variables, with values ranging from 0 to 1[73]. The larger R2 was, the better the fit

between the predicted values and the observed values. RMSE is the square root of Mean Square

Error (MSE) which is the average of the squared differences between the predicted values and

the observed values [73]. MAE measures the average absolute difference between predicted

values and observed values [74]. The smaller RMSE and MAE are indicating that predicted val-

ues are closer to observed value. RPD is defined as a ratio of the standard deviation (SD) of the

laboratory measured data to the root-mean-square error (RMSE) of prediction [75,76]. There-

fore, when R2 approaches 1 while RMSE and MAE approach 0, it indicates better predictive

ability for a model. An RPD value less than 1.4 suggests poor prediction quality; an RPD value

between 1.4 and 1.8 indicates fair prediction suitable for assessment; an RPD value between

1.8 and 2.0 suggests good prediction where quantitative predictions are possible; an RPD value

larger than 2.0 indicates very good ability to estimate samples[77]. The robustness of the pre-

diction models was evaluated by:

determination coefficient of calibration (Rc
2);
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determination coefficient of validation (Rv
2);

root mean square error of calibration (RMSE c);

root mean square error of validation (RMSEv);

mean absolute error of calibration (MAEc);

mean absolute error of validation (MAEv);

ratio of percentage deviation (RPD).

The R2, RMSE, MAE and RPD are given as follows:

R2 ¼

Pn
i¼1
ðXi �

�XÞðYi �
�Y Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðXi �

�XÞ2
q

Pn
i¼1
ðYi �

�Y Þ2

2

6
4

3

7
5

2

ð5Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðXi � YiÞ

2

n

s

ð6Þ

MAE ¼
1

n

Xn

i¼1
jXi � Yij ð7Þ

RPD ¼
SD

RMSE
ð8Þ

where Xi and Yi represent the estimated and measured values, respectively. n represents the

number of samples. �X and �Y represent the average of estimated and measured values, respec-

tively. SD and RMSE are the standard deviation and root mean square error of the validation

set, respectively.

Results

Spectral data preprocessing

The raw spectra of 52 wolfberry leaf samples are smoothed by using S-G, FFT, CWT and

NWMA methods and the mean reflectance of four smoothed spectra is calculated, respectively.

The four smoothing methods have similar effects on spectral curves. It is difficult to determine

which smoothing method worked best by visual discrimination. Therefore, SSI is used to eval-

uate the smoothing quality. FFT has the smallest SSI, so the spectra smoothed by FFT are

selected as the original spectra(R) in this study (S1 Fig).

Six types of spectral curves (S1 Fig) are shown in Fig 1. Compared with the original spectra,

reciprocal, logarithmic and square root transformations all enhance the difference of spectral

reflectance in the VIS and in the SWIR region to varying degrees. Meanwhile, the first-deriva-

tive and second-derivative transformation effectively improve the resolution of the overlap-

ping spectra, so the difference at the red-edge position (680~760nm) is increased. Therefore,

the mathematical transformation can improve the spectral features to a certain extent, which

helps to distinguish the impact of the difference in nitrogen content on the spectra.

Hyperspectral features analysis

Relationship of PVIs to LNC. Fig 2 represents the correlation coefficient between PVIs

and LNC(S2 Fig). In the original spectra, the 24 PVIs (accounting for 69%) pass the 0.01-sig-

nificance test and are significantly correlated with LNC. The absolute values of the correlation

coefficients of PRI, REP, and VOG3 are the largest, which are -0.544,-0.528 and -0.521,
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respectively. In reciprocal spectra, there are19 PVIs with a significance level of 0.01, accounting

for 54% of all PVIs. The absolute values of the correlation coefficients of PRI, VOG3 and GM

are the largest, which are -0.535, -0.511 and 0.487, respectively. In the logarithm spectra, 23

PVIs pass the 0.01-significance test, accounting for 66%. The absolute value of the correlation

coefficient of VOG3 is the largest, which is -0.525. Followed by PRI and GM, with the correla-

tion coefficients of -0.519 and 0.507, respectively. In the square root spectra, 26 PVIs pass the

0.01-significance test, accounting for 74%. PRI has the largest correlation coefficient of 0.535.

The mSR705 and mND705 have the second highest correlation coefficients, both with value of

-0.515. In the first-derivative and second-derivative spectra, 3 and 9 PVIs pass the 0.01-signifi-

cance test, accounting for 37% and 26%, respecttively. In the first-derivative spectra, the top

three PVIs with the absolute value of the correlation coefficients are GM, TVI and CIred edge,

with values of -0.497, -0.489 and -0.442. In second-derivative spectra, the top three PVIs are

Fig 1. The curves of the original spectra and five types of transformation spectra. Each color line represents a sample reflectance curve, with a total

of 52 samples. (a) represents the original spectra (R); (b), (c), (d), (e) and (f) represent the reciprocal (1/R), logarithmic (logR), square root (R1/2), first-

derivative (R’) and second-derivative spectra (R0 0), respectively.

https://doi.org/10.1371/journal.pone.0306851.g001

Fig 2. The correlation coefficient between PVIs with LNC in different spectral datasets. R, 1/R, logR, R1/2, R0 and

R0 0 represent the original spectra, reciprocal spectra, logarithmic spectra, square-root, first-derivative and second-

derivative spectra, respectively.

https://doi.org/10.1371/journal.pone.0306851.g002
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VOG3, MTCI and TVI, with values of -0.561, -0.538 and 0.502. Overall, the spectral transfor-

mation has little effect on improving the correlation between PVIs and LNC. Only there is the

VOG3 in second-derivative spectra whose correlation coefficient is slightly greater than that of

the original spectra.

Relationship of NSIs to LNC. Sensive wavelengths selection. The selected SWs are pre-

sented in Table 3. The SWs of the original, reciprocal, logarithmic and square root reflectance

are observed at 359 nm in the VIS region and near 770nm in the NIR region. A total of 16 SWs

are identified from the first-derivative spectra, including 379nm, 388nm and 449nm distrib-

uted in the VIS region, as well as 745 nm and 1128nm distributed in the NIR region and the

remaining SWs distributed in the SWIR region. However, the SWs of the second-derivative

reflectance don’t appeare in VIS region but are instead distributed in the NIR and SWIR

region. Upon comparing the SWs from different spectral datasets, it is found that the first-

derivative transform spectra have the higher number of SWs and cover the wider spectral

range.

Relationship of NSIs to LNC. NSI was calculated based on the SWS data in Table 3 resulting

in a total of 687 NSIs. Correlation analysis between NSIs and LNC was conducted. As indi-

cated in Table 4, the original spectra, the logarithmic spectra and the square-root spectra all

show that all NSIs pass the 0.01-significance test. The NSIs with the strongest correlation are

NDSIR(772,359), DSIlogR(770,359) and DSIR
1/2

(771,359), with a correlation coefficient of -0.556,

-0.563 and -0.599, respectively. In the reciprocal spectra, RSI1/R(771,359) and NDSI1/R(771,359)

pass the 0.01-significance test while DSI1/R(771,359) only passes the 0.05-significance test. In the

first-derivative spectra, a total of 51 NSIs are correlated with LNC at a significance level of 0.01

and the top three NSIs are DSIR’(1128,388), DSIR’(745,449) and DSIR’(1945,745), with correlation

coefficients of 0.597, -0.582 and 0.573, respectively. In the second-derivative spectra, a total of

29 NVIs passe the 0.01-significance test and the top three NSIs are DSIR’’(1641,787), DSIR’’

(1641,759) and DSIR’’(1518,759), with the correlation coefficients of -0.644, -0.600 and -0.551,

respectively.

The predicting model

Machine learning regression models based on PVIs. To assess the feasibility of using

PVIs to monitor wolfberry tree LNC and to evaluate the impact of spectral transformations on

the response of PVIs to wolfberry tree LNC change. The top three PVIs significantly correlated

with LNC were selected as independent variables to establish machine learning regression

models for predicting the LNC of wolfberry trees (S3 Fig). Fig 3 illustrates that among the

three types of MLR-PVIs models, the Ada-Boost models exhibites the highest Rc
2, with a value

exceeding 0.987. The Rc
2 values of RF and ET models are also high and similar, ranging from

0.837 to 0.891 and from 0.841 to 0.892, respectively. When considering six types of spectral

Table 3. The sensitive wavelengths selected by MSR. R, 1/R, logR, R1/2, R0 and R0 0 represent the original spectra,

reciprocal spectra, logarithmic spectra, square-root, first-derivative and second-derivative spectra, respectively. The

selected sensitive wave-lengths rank according to wavelength.

spectra Sensitive wavelengths (nm)

R 359, 772

1/R 359, 771

logR 359, 770

R1/2 359, 771

R’ 379, 388, 449, 745, 1128, 1610, 1945, 2005, 2051, 2073, 2092, 2102, 2109, 2153, 2240, 2442

R0 0 759, 774, 787, 1009, 1028, 1147, 1454, 1518, 1585, 1641, 1643, 1796, 1950, 2202, 2359

https://doi.org/10.1371/journal.pone.0306851.t003
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datasets, it is observed that the Rc
2 values for AdaBoost models constructed by using five trans-

formation spectra closely resemble those constructed by using original spectra. However,

Except for the first-derivative spectra, the Rc
2 values of the ET models constructed by using

other transformation spectra are lower than those constructed by using the original spectra.

Furthermore, it is only in the case of the first-derivative or logarithmic spectra were utilized

that the Rc
2 value of the RF models slightly exceed those obtained when utilizing original spec-

tra. The above analysis shows that spectral transformation can hardly improve the prediction

ability of the MLR-PVIs model.

As shown in Fig 4, the ET models of the three types of MLR-PVIs models exhibit the stron-

gest explanatory ability for LNC with the Rv
2 values ranging from 0.23 to 0.58, followed by the

RF models with the Rv
2 values ranging from 0.16 to 0.52 and then the AdaBoost models with

the Rv
2 values ranging from 0.03 to 0.35. Among the six types of spectral datasets, both original

spectra and logarithmic spectra utilized in constructing MLR-PVIs models show good explan-

atory ability for LNC change, with the Rv
2 values ranging from 0.35 to 0.58 and from 0.41 to

Table 4. The correlation coefficients of all new spectral indices in the original spectra, the reciprocal spectra, logarithmic spectra and square root spectra. And the

top three NSIs significantly correlated with LNC in first-derivative spectra and second-derivative spectra. The correlation coefficient refers to the result of correlation anal-

ysis between LNC and NSIs calculated by SWs from different spectral datasets. DSI, RSI and NDSI represent the difference spectra index, ratio spectral index and normal-

ized difference spectral index respectively. R, 1/R, logR, R1/2, R’ and R0 0 represent the original spectra, the reciprocal spectra, logarithmic spectra, square root spectra, first-

derivative spectra and second-derivative spectra respectively. The NSIs are listed in descending order of the absolute values of the correlation coefficients.

spectra NSIs Correlation Coefficients spectra NSIs Correlation Coefficients

R NDSIR(772,359) -0.556** R1/2 DSIR
1/2

(771,359) -0.599**
RSIR(772,359) 0.554** NDSIR

1/2
(771,359) -0.562**

DSIR(772,359) -0.467** RSIR
1/2

(771,359) 0.560**
1/R NDSI1/R(771,359) 0.556**

R’

DSIR’(1128,388) 0.597**
RSI1/R(771,359) -0.554** DSIR’(745,449) -0.582**
DSI1/R(771,359) 0.334* DSIR’(1945,745) 0.573**
DSIlogR(770,359) -0.563** R0 0 DSIR’’(1641,787) -0.644**

logR NDSIlogR(770,359) 0.501** DSIR’’(1641,759) -0.600**
RSIlogR(770,359) -0.410** DSIR’’(1518,759) -0.551**

** and * indicate a significant correlation at the levels of 0.01 and 0.05 respectively.

https://doi.org/10.1371/journal.pone.0306851.t004

Fig 3. Rc
2,RMSEc and MAEc distributions of the machine learning regression models based on PVIs (MLR-PVIs models) in differrent spectral

dataset. Rc2,RMSEc and MAEc represente determination coefficient, root mean square error and mean absolute error of calibration respecttively. R, 1/

R, logR, R1/2,R0 and R0 0 represent original spectra, reciprocal spectra, logarithmic spectra, square root spectra, first-drivative and second-derivative

spectra respectively. AdaBoost, ET and RF represent Adaptive Boosting models, Extra Trees models and Random forest models respectively.

https://doi.org/10.1371/journal.pone.0306851.g003
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0.50 respectively. However for the other four transformation spectra used in MLR-PVIs mod-

els, all show very poor predictive ability for wolfberry tree LNC, and the Rv
2 values ranging

from 0.03 to 0.35 (S4 Fig). Overall, In the MLR-PVIs models, the ET model constructed by

using the original spectra displays a good explanatory ability for LNC change, with the Rv
2 of

0.58, the RMSEc of 0.16 and the MAEc of 0.13. Followed by the RF model constructed by using

the original spectra and the ET model constructed by using the logarithmic spectra and their

Rv
2 values are 0.52 and 0.50, respectively. The analysis indicates that spectral transformations

had minimal impact on improving the predictive power within MLR-PVIs models.

Machine learning regression models based on NSIs

The NSIs listed in the Table 4 were used to construct AdBoost, ET and RF models for predict-

ing the wolfberry trees LNC. Fig 5 illustrates that among the three types of MLR-NSIs models,

the AdaBoost models exhibit the highest Rc
2, with a value exceeding 0.985. The Rc

2 values of

the RF and ET models are comparable, ranging from 0.868 to 0.922 and from 0.874 to 0.922,

respectively (S5 Fig). When considering six types of spectral datasets, it is observed that Rc
2 val-

ues for AdaBoost models constructed by using five transformation spectra closely resemble

those constructed by using original spectra. The Rc
2 values of ET and RF models constructed

by using the five transformation spectra are greater than those constructed by using the origi-

nal spectra.

Fig 4. Distribution of measured and predicted values of the machine learning regression models based on PVIs (MLR-PVIs models) in different

spectral datasets. AdaBoost, ET and RF represent Adaptive Boosting models, Extra Trees models and Random forest models respectively. Rv
2, RMSEv

and MAEv represent determination coefficient, root mean square error and mean absolute error of validation respectively.

https://doi.org/10.1371/journal.pone.0306851.g004
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As illustrated in Fig 6 (S6 Fig), the RF models of the three types of MLR-SIs models obtain

the highest Rv

2

, ranging from 0.433 to 0.710, followed by the AdaBoost models with the Rv

2

val-

ues ranging from 0.408 to 0.688, and then the ET models with the Rv
2 values ranging from

0.376 to 0.632. Among the six types of spectra datasets, it is found that the first-derivative spec-

tra utilized in constructing MLR-PVIs models showed the strongest explanatory ability for

LNC change, with the Rv

2

values ranging from 0.632 to 0.710. Followed by the second-deriva-

tive spectra with Rv

2

values ranging from 0.517 to 0.628, and then the square root spectra with

Rv

2

values ranging from 0.475 to 0.563. However, for the logarithmic and the reciprocal spec-

tra, it is observed that their Rv

2

values are lower than those of the original spectra, ranging

from 0.377 to 0.534 and ranging from 0.376 to 0.500, respectively. The original spectra used in

MLR-NSIs models shows Rv

2

values between 0.404 and 0.540.

Overall, in terms of MLR-NSIs models, the RF model constructed by using first-derivative

spectra demonstrates superior explanatory power with a Rv
2 value of 0.710, a RMSEv value of

0.124 and a MAEv value of 0.104. Followed by the AdaBoost model constructed by using the

first-derivative spectra, with a Rv

2

value of 0.688, a RMSEv value of 0.130 and a MAEv value of

0.108. Then the ET model constructed using the first-derivative spectra, with an Rv

2

value of

0.632, an RMSEv value of 0.141 and a MAEv value of 0.111. Additionally, the ET model con-

structed by using the second-derivative spectra exhibits good explanatory power as well, with a

Rv

2

value of 0.628. The analysis above indicates that the NSIs developed through spectral trans-

formation can enhance prediction capabilities within MLR-NSIs models.

Model accuracy comparison

As shown in Fig 7 (S7 Fig), the RPD values of the MLR-PVIs models constructed by using the

five transformation spectra are smaller than those constructed by using the original spectra.

Among the five transformation spectra, the logarithmic spectra yield the highest RPD values,

with a maximum value of only 1.355. In all MLR-PVIs models, only the ET model and RF

model constructed by using the original spectra achieve an RPD value slightly greater than

1.400, with PRD values of 1.513 and 1.483 respectively.

When utilizing the reciprocal transformation spectra, the RPD values of the MLR-NSIs

models are less than 1.4. By using the original spectra, the logarithmic spectra and the square

root spectra, only the RF models achieve RPD value of slightly larger than 1.4, with RPD values

Fig 5. Rc2, RMSEc and MAEc distributions of the machine learning regression models based on NSIs in different spectral dataset. Rc
2, RMSEc

and MAEc represent determination coefficient, root mean square error and mean absolute error of calibration respectively. R, 1/R, logR, R1/2, R0 and R0 0

represent original spectra, reciprocal spectra, logarithmic spectra, square root spectra, first-derivative and second-derivative spectra respectively.

AdaBoost, ET and RF represent Adaptive Boosting models, Extra Trees models and Random forest models respectively.

https://doi.org/10.1371/journal.pone.0306851.g005
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of 1.456, 1.410 and 1.425 respectively. By using the second-derivative spectra, only the RPD

value of the ET model was 1.589, all other models have PRD values below 1.400. By using the

first-derivative spectra, the RPD values of the RF model, AdBoost model and ET model

are1.902, 1.816 and 1.678 respectively. So the MLR-NSIs models constructed by using the first-

derivative spectra are outstanding. Overall, the MLR-NSIs models constructed by using the

transformation spectra demonstrate better predictive capabilities for wolfberry tree LNC com-

pared to MLR-PVIs models-except for all models of the original spectra and the ET model of

the logarithmic spectra.

Discussion

Hyperspectral data contains a large amount of redundant information due to the relatively few

variables that really and effectively control the spectral signatures of vegetation [11,78].

Research has shown that while machine learning can effectively handle complex collinearity

problems, the predicttive ability of models are influenced by the varying capabilities of differ-

ent machine learning algorithms [79]. Additionally, studies have demonstrated that spectral

mathematical transformation plays a crucial role in amplifying the differences in spectral

reflectance and extracting spectral characteristics [80,81]. In order to identify suitable variables

for wolfberry tree LNC and mitigate the impact of collinearity in hyperspectral data on the pre-

dictive ability of MLR models, mathematical transformations were applied to the original

Fig 6. Distribution of measured and predicted values of the machine learning regression models based on NSIs (MLR-NSIs models) in di-fferrent

spectral datasets. AdaBoost, ET and RF represent Adaptive Boosting models, Extra Trees model and Random forest models respecttively. Rv
2, RMSEv

and MAEv represent determination coefficient, root mean square error and mean absolute error of valida-tion respectively.

https://doi.org/10.1371/journal.pone.0306851.g006
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spectra. Subsequently, SWs were selected from six transformed spectral datasets and NSIs

were calculated by combining with the SWs.

In this study, the reciprocal, logarithm and square-root transformation enhance the spectral

differences of the VIS and SWIR region. The first-derivative and the-second derivative trans-

formation highlight the subtle spectral differences in the red-edge region. The sensitive spectra

located at 359nm, 379nm, 388nm and 449nm in the VIS region are selected.They might be

directtly related to the chl a absorption pit at 430 nm and indirectly related to the N content

[64,82]. The spectra located at 745nm, 759nm, 774nm, 787nm in the NIR region are selected.

These spetra are close to 750nm and are in the limit between red domain of the VIS region and

red-edge domain of the NIR region. Several authors selected the hyperspectral reflectance at

750 nm to estimate Chl ab content [83,84]. Therefore, it also could be related to N content.

Meanwhile, the selected sensitive wavelengths are found to be consistent with previously pub-

lished vegetation indices. For example, the sensitive wavelengths from first-derivative spectra

(745nm and 449nm) closely match the wavelength of mSR705 (750nm and 450nm) in PVIs

[47]. Studies have shown characteristic absorption bands of nitrogen are primarily located in

the shortwave infrared (SWIR) region at specific wavelengths such as 1510nm, 1730nm,

1940nm, 1980nm, 2060nm, 2180nm, 2240nm, 2300nm and 2350nm [85]. However, the spec-

tra within the SWIR region are sensitive to leaf water content and the indices which included

Fig 7. RPD distribution of the MLR-PVIs models and the MLR-NSIs models. The RPD represents the ratio of the standard deviation (SD) of the

measured LNC to the root mean square error of predicted LNC. The MLR-PVIs models and the MLR-NSIs models represent the machine learning

regression models constructed by using the published vegetation indices and by using the new spectral indices. AdaBoost, ET and RF represent Adaptive

Boosting models, Extra Trees models and Random forest models respectively. R, 1/R, logR, R1/2, R0 and R0 0 represent original spectra, reciprocal spectra,

logarithmic spectra, square root spectra, first-derivative and second-derivative spectra respectively.

https://doi.org/10.1371/journal.pone.0306851.g007
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the 1770nm absorption feature are least affected by leaf water content [86]. The 1128nm,

1610nm, 1945nm, 2051nm, 2073nm, 2092nm, 2153nm and 2240nm selected from first-deriva-

tive spectra and the 1641nm, 1643nm, 1796nm, 1950nm, 2202nm, 2359nm selected from sec-

ond-derivative spectra are located in the SWIR region, which might be related to N and water

content [82]. The 1518nm and 1585nm selected from the second-derivative spectra fell within

the spectral range of 1500-1600nm, which is a region dominated by absorption features caused

by stretching of N-H bonds at 1510nm [82] and this bond is related to the amount of N present

in protein [11]. Furthermore, research indicat that employing spectral mathematical transfor-

mation can enhance model accuracy by transforming linear relationships between spectral

reflectance and observed objects into nonlinear ones [87]. In this study, spectral transforma-

tions have little impact on improving the correlation between PVIs and LNC and the predic-

tive power of MLR-PVIs models. However, except for the ET models constructed base on the

logarithmic transformation spectra, the response capacity of all the MLR-NSIs models con-

structed base on the transformation spectra to wolfberry tree LNC are improved compared

with the MLR-PVIs models. And compared to the original spectra, the square root, first-deriv-

ative and second-derivative transformations have improved the predicttive ability of the

MLR-NSIs models.

Many crop nitrogen monitoring models have utilized various types of multiple regressions

techniques, including stepwise multiple linear regression [88,89], partial least squares regres-

sion [89], and machine learning regression (e.g., support vector machine regression, random

forest regression, adaptive boost and bagging.et al) [79,89]. These nonlinear modeling methods

can incorporate more spectral information to provide more accurate results. Hyper-spectral

evaluation of nitrogen accumulation in winter wheat leaves based on different regression mod-

els shows that the model constructed by machine learning can effectively utilize the character-

istic information of chlorophyll absorption and improve the estimation accuracy [26].

Ensemble machine learning models (RF, AdBoost and Bagging) have good predictive ability

for crop nitrogen nutrition [79]. In this study, the three ensemble machine learning models

(AdBoost, ET and RF) constructed based on first-derivative spectra all exhibit strong predic-

tive performance for wolfberry tree LNC. Notably, the RF model constructed using first-deriv-

ative spectra demonstrates optimal predictive power. This outcome may also be attributed to

the NSIs utilized in the model: DSIR’(1128,388), DSIR’(745,449) and DSIR’(1945,745). These three

NSIs encompass spectral features at 449nm in the VIS region, 745nm in the red-edge region,

1128nm in the NIR region and 1945nm in the SWIR region. Spectral information significantly

impact a model’s predictive ability and an abundance of such information can enhance it to a

certain extent.

Studies have shown that nitrogen content changes with the progression of growth stages

[90,91]. Furthermore, it has been indicated that the small sample quantity is not a negligible

factor that affects the robustness of the estimation model [26]. As our study was conducted

using specific synthetic datasets composed of different growth stages and with limited data

(only 52 samples), our models inherently possess limitations in applicability. Addi-tionally,

previous studies have mainly focused on farmland with artificially controlled nitrogen levels

where high and low N levels were easily obtained [91]. However, variable rate fertilization is

rarely carried out in Chinese agriculture, making it challenging to obtain data with large

changes in biochemical components as observed in the experiment [91]. Therefore, despite

achieving a model with high prediction accuracy in the experiment, its practical application

was limited. In this study, wolfberry plantation under normal fertilization conditions of local

farmers in Ningxia province was selected as the sample collection area. Consequently, the opti-

mal model for predicting LNC of wolfberry tree obtained in this study holds certain practical

reference value for the diagnosis of nitrogen nutrients during specific growth stages of
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wolfberry (June to August). Additionally, this study combines mathematical transformation

with machine learning to provide a spectral selection method and a modeling framework for

monitoring wolfberry LNC, which may serve as a useful and valuable tool in nitrogen monitor-

ing and management. To develop accurate, robust and fast model with high reliability, practi-

cability and applicability, the next step should be to validate these models by collecting

extensive data for different growth stages, and develop nitrogen prediction models suitable for

each growth stages.

Conclusions

Currently, there is limited research on diagnosing nitrogen levels in wolfberry tree using

hyperspectral data. In this study, new spectral indices based on transformation spectra were

developed and combined with machine learning (ML) to explore the monitoring of wolfberry

tree LNC. The study indicates that spectral transformations enhance the reflectance difference

in the VIS and SWIR region, highlight the subtle spectral difference in the red-edge region and

improve the accuracy of the MLR-NSIs models. However, they do not have a significant effect

on the accuracy of the MLR-PVIs models. In the MLR-PVIs models, it is found that ET model

constructed by using the original spectra is optimal, with Rc
2, Rv

2 and RPD values of 0.892,

0.576 and 1.510 respectively. In contrast, in the MLR-NSIs models, the RF model constructed

by using the first-derivative spectra datasets is optimal for predicting wolfberry LNC, with Rc
2,

Rv
2 and RPD values of 0.90, 0.71 and 1.90 respectively. Therefore, although it is feasible to use

PVIs to predict wolfberry LNC, the MLR-PVIs models perform worse than the MLR-NSIs

model. This study combines spectral transformation with machine learning algorithms to

identify a set of NSIs and a machine learning model suitable for detecting wolfberry tree LNC.

The set of NSIs are DSIR’(1128,388), DSIR’(745,449) and DSIR’(1945,745) developed by using first-

derivative spectral data. This model is a RF model constructed by using this set of NSIs.

Supporting information

S1 Fig. Spectral dataset. The original spectra are derived from the rapid Fourier transform of

the raw spectral data.

(XLSX)

S2 Fig. Correlation coefficient. PVIs represents published vegetation indices. Origin-PVIs,

reciprocal-PVIs, logarithm-PVIs, square root-PVIs,FD-PVIs, and SD-PVIs represents pub-

lished vegetation indices calculated from the original spectra, reciprocal spectra, logarithm

spectra, square-root spectra, first-derivative spectra and second-derivative spectra datasets,

respectively.

(XLSX)

S3 Fig. Determination coefficient, root mean square error and mean absolute error of cali-

bration of the machine learning regression models based on published vegetation indices.

Rc
2, RMSEc and MAEc represent determination coefficient, root mean square error and mean

absolute error of calibration respectively. R, 1/R, logR, R1/2, R0 and R00 represent original spec-

tra, reciprocal spectra, logarithmic spectra, square root spectra, first-drivative and second-

derivative spectra respectively. AdaBoost, ET and RF represent Adaptive Boosting models,

Extra Trees models and Random forest models respectively.

(XLSX)

S4 Fig. Determination coefficient, root mean square error and mean absolute error of vali-

dation of the machine learning regression models based on published vegetation indices.

Rv
2, RMSEv and MAEv represent determination coefficient, root mean square error and mean
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absolute error of validation respectively.

(XLSX)

S5 Fig. Determination coefficient, root mean square error and mean absolute error of cali-

bration of the machine learning regression models based on new spectral indices. Rc
2,

RMSEc and MAEc represent determination coefficient, root mean square error and mean

absolute error of calibration respectively.

(XLSX)

S6 Fig. Determination coefficient, root mean square error and mean absolute error of vali-

dation of the machine learning regression models based on new spectral indices. Rv
2,

RMSEv and MAEv represent determination coefficient, root mean square error and mean

absolute error of validation respectively.

(XLSX)

S7 Fig. Ratio of percentage deviation of the machine learning regression models.

MLR-PVIs models and the MLR-NSIs models are the machine learning regression models

based on published vegetation indices and new spectral indices, respectively.

(XLSX)
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