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Abstract

Data-driven methods for personalizing treatment assignment have garnered much attention 

from clinicians and researchers. Dynamic treatment regimes formalize this through a sequence 

of decision rules that map individual patient characteristics to a recommended treatment. 

Observational studies are commonly used for estimating dynamic treatment regimes due to the 

potentially prohibitive costs of conducting sequential multiple assignment randomized trials. 

However, estimating a dynamic treatment regime from observational data can lead to bias in 

the estimated regime due to unmeasured confounding. Sensitivity analyses are useful for assessing 

how robust the conclusions of the study are to a potential unmeasured confounder. A Monte 

Carlo sensitivity analysis is a probabilistic approach that involves positing and sampling from 

distributions for the parameters governing the bias. We propose a method for performing a Monte 

Carlo sensitivity analysis of the bias due to unmeasured confounding in the estimation of dynamic 

treatment regimes. We demonstrate the performance of the proposed procedure with a simulation 

study and apply it to an observational study examining tailoring the use of antidepressant 

medication for reducing symptoms of depression using data from Kaiser Permanente Washington.
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1 | INTRODUCTION

Precision medicine focuses on data-driven methods for personalizing treatment assignment 

to improve health care. Dynamic treatment regimes (DTRs) operationalize clinical decision-

making through a sequence of functions that map individual patient characteristics to a 
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recommended treatment (Chakraborty and Moodie, 2013; Tsiatis et al., 2019). An optimal 

DTR is one that maximizes the mean of some desirable measure of clinical outcome when 

applied to select treatment for all patients in the population of interest (Murphy, 2003; 

Robins, 2004). Optimal DTRs have been estimated to improve care for many different 

medical conditions including HIV (Cain et al., 2010; van der Laan et al., 2005), bipolar 

disorder (Wu et al., 2015; Zhang et al., 2018), diabetes (Ertefaie and Strawderman, 2018; 

Luckett et al., 2018), and cancer (Murray et al., 2018; Thall et al., 2000).

Data for estimating an optimal DTR are ideally collected through the use of a sequential 

multiple assignment randomized trial (SMART) (Lavori and Dawson, 2000, 2004; Murphy, 

2005). However, longitudinal observational studies are frequently used due to the availability 

of data collected from electronic health records (EHRs) and the potentially prohibitive cost 

of conducting an SMART. These analyses rely on assuming that there is no unmeasured 

confounding; this assumption is not verifiable from the observed data. Not adjusting for all 

of the confounding variables can result in a biased estimate of the optimal DTR.

Sensitivity analyses have been used as a way to assess how the estimated effect would 

change if there was an unmeasured confounder. There has been much work on conducting 

sensitivity analyses for unmeasured confounding when estimating average causal effects 

from observational data beginning with Cornfield et al. (1959), in which they studied 

whether the causal link found between smoking and lung cancer could be due to unmeasured 

confounding. A wide array of different approaches have been proposed since. Rosenbaum 

and Rubin (1983) proposed a method for examining how sensitive the conclusions of a 

study with a binary outcome are to a binary unmeasured confounder by assessing what 

odds ratios between the unmeasured confounder and each of the treatment and the outcome 

would cause the effect to be no longer significant. Lin et al. (1998) proposed positing a 

regression model for the outcome containing the effect of the unmeasured confounder and 

probability distributions for the unmeasured confounder in each treatment group. Under 

certain assumptions, this allows for simple expressions of the bias in the treatment effect that 

can then be used to calculate treatment effects for a wide range of different effect sizes of the 

unmeasured confounder on the outcome and exposure.

An alternative to formulaic approaches are probabilistic sensitivity analyses, which posit 

probability distributions for the bias parameters and average over the distributions to obtain 

bias-adjusted estimates. There are two different existing approaches to implementing a 

probabilistic sensitivity analysis, Bayesian sensitivity analysis, and Monte Carlo sensitivity 

analysis (McCandless and Gustafson, 2017). A Bayesian sensitivity analysis (McCandless 

et al., 2007) works by positing prior distributions for the bias parameters and uses 

Bayes theorem to generate a posterior distribution for the causal effect that accounts 

for the uncertainty due to the unmeasured confounder. In a Monte Carlo sensitivity 

analysis (Greenland, 2005; Phillips, 2003; Steenland and Greenland, 2004), we posit prior 

distributions for the bias parameters in the same way and then draw values from the prior 

distributions and calculate a bias-adjusted estimate for the parameter of interest for each 

Monte Carlo repetition. This allows for a straightforward implementation that corrects bias 

while incorporating uncertainty due to the unmeasured confounding within a frequentist 

framework.
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There has been some work on estimating DTRs in the presence of unmeasured confounding. 

This has mainly focused on using instrumental variables to estimate an optimal DTR (Chen 

and Zhang, 2021; Cui and Tchetgen Tchetgen, 2021; Liao et al., 2021; Qiu et al., 2021). An 

instrumental variable is a pretreatment variable that is correlated with treatment, independent 

of all unmeasured confounders, and has no direct effect on the outcome of interest. In 

some applications, there is not an obvious choice for an instrumental variable based on 

domain knowledge and it is impossible to empirically check whether a variable satisfies 

the assumptions for being an instrumental variable (Hernan and Robins, 2006). Zhang et 

al. (2021) proposed a method for ranking individualized treatment rules when there is 

unmeasured confounding by creating a partial order under the framework proposed by 

Rosenbaum (1987). Kallus and Zhou (2019) examined estimating a DTR that maximizes 

the value for the worst-case scenario of an uncertainty set that quantifies the degree of 

confounding that is unmeasured.

We propose using a Monte Carlo sensitivity analysis for the estimation of DTRs. Section 2 

details setup and notation. In Section 3, we provide an overview of our proposed sensitivity 

analysis procedure. In Section 4, we examine the performance of our proposed method using 

a simulation study. Section 5 demonstrates applying the proposed procedure to EHRs when 

estimating DTRs to reduce symptoms of depression using data from Kaiser Permanente 

Washington (KPWA). A discussion of the proposed procedure is contained in Section 6.

2 | SETUP AND NOTATION

Suppose we have data from an observational study in which patients are treated throughout 

the course of K stages. We collect data of the form Dn = X1, i, A1, i, …, XK, i, AK, i, Y i i = 1
n , 

which consists of n i.i.d. replicates of X1, A1, …, XK, AK, Y  such that X1 ∈ ℝp1 denotes 

baseline patient characteristics, Ak ∈ 0, 1  denotes the treatment assigned at stage k for 

k = 1, …, K, Xk ∈ ℝpk for k = 2, …, K denotes patient information recorded during the course 

of the (k − 1)st treatment, and Y ∈ ℝ denotes the continuous patient outcome coded such that 

higher values are better. We let U denote an unmeasured time-fixed confounding variable 

that can be continuous or binary. This unmeasured confounder is measured at baseline and 

does not change over time, but influences treatment choices at any of the K stages as well as 

the outcome Y . Let H1 = X1 and Hk = X1, A1, …, Ak − 1, Xk  for k = 2, …, K denote the history 

of a patient such that Hk is all of the information available to a clinical decision maker at 

stage k. Let d = d1, …, dK  denote a DTR such that dk:dom Hk dom Ak for k = 1, …, K is a 

function that maps a patient’s history to a recommended treatment, where dom indicates the 

domain or set of possible treatments. Therefore, DTR d would recommend treatment dk hk

at stage k for a patient with history Hk = hk.

To allow us to reference components of the history and regimes, we will use overbar 

notation to indicate up to stage k such that xk = x1, …, xk , ak = a1, …, ak , and dk = d1, …, dk . 

We will suppress the subscript when denoting the entire sequence, for example, x = xK. 

Similarly, we will use an underbar to denote treatments, covariates, and regimes after and 

including stage k such that xk = xk, …, xK  and likewise for ak and dk.
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We will use the potential outcomes framework to define an optimal DTR (Rubin, 1978). Let 

Y ∗(a) denote the potential outcome under the treatment sequence A = a and Hk
∗ ak − 1  denote 

the potential history at stage k under treatments Ak − 1 = ak − 1. Denote the set of all potential 

outcomes as O∗ = H2
∗ a1 , H3

∗ a2 , …, HK
∗ aK − 1 , Y ∗(a):a ∈ 0, 1 K . The potential outcome of 

a DTR, d, is then defined as.

Y ∗(d) = ∑
a ∈ 0, 1 K

Y ∗(a) I d1 h1 = a1 ∏
k = 2

K
I dk Hk

∗ ak − 1 = ak ,

where  is the indicator function (Murphy, 2003). Define the value of a DTR by 

V (d) = E Y ∗(d) . An optimal regime, dopt, is defined as a regime that satisfies V dopt ≥ V (d)
for all regimes d.

When estimating DTRs, it is standard to make the following causal assumptions (Robins, 

2004): (i) the stable unit treatment value assumption (SUTVA), Y = Y ∗(A) and Hk = Hk
∗ Ak − 1

for k = 2, …, K (ii) positivity, P Ak = ak ∣ Hk = hk > 0 with probability one for each ak ∈ 0, 1
for k = 1, …, K; and (iii) sequential ignorability, O∗ ⊥ Ak ∣ Hk for k = 1, …, K. We will assume 

SUTVA and positivity holds, but sequential ignorability does not hold because we have 

an unmeasured confounder, U. This is a key assumption and if it is violated, standard 

methods for estimating DTRs will lead to biased estimates of the optimal DTR. In addition, 

sequential ignorability is unverifiable from data and requires domain expertise to assess 

whether it is a reasonable assumption. Our proposed Monte Carlo sensitivity analysis 

requires making the following additional assumptions. We will assume that U is the only 

unmeasured confounder and O∗ ⊥ Ak ∣ U, Hk for k = 1, …, K. We will also assume that the 

unmeasured confounder has an additive effect on the outcome Y  and is conditionally 

independent of later-stage covariates, so we have that Xk ⊥ U ∣ Hk − 1, Ak − 1 for k = 2, …, K. 

These last two assumptions can be relaxed, though that would require more complex 

assumptions about the distribution and effect of the unmeasured confounder as well as a 

more complex expression for the bias.

2.1 | Dynamic weighted ordinary least squares

Dynamic weighted ordinary least squares (dWOLS) is a regression-based method for 

estimating DTRs (Wallace and Moodie, 2015). This method estimates an optimal DTR by 

estimating a contrast function that represents the difference in expected outcome of receiving 

a given treatment at stage k when compared to the reference treatment, which we take to be 

treatment Ak = 0, assuming that treatment is assigned optimally after stage k. This contrast 

function is referred to as the optimal blip-to-zero function, γ hk, ak , and is defined as

γK hK, aK = E Y ∗ aK − 1, aK − Y ∗ aK − 1, 0 HK = hK ,

γk hk, ak = E Y ∗ ak − 1, ak, dk + 1
opt − Y ∗ ak − 1, 0, dk + 1

opt ∣ Hk = hk for k = 2, …, K − 1,

γ1 h1, a1 = E Y ∗ a1, d2
opt − Y ∗ 0, d2

opt ∣ H1 = h1 .
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The optimal blip-to-zero function characterizes the optimal DTR (Robins, 2004). The 

optimal treatment rule at stage k is given by recommend treatment Ak = 1 if γk hk, 1 > 0, 

otherwise recommend Ak = 0. In general, when considering more than two treatment options, 

the optimal DTR at stage k is given by dk
opt hk = argmaxakγk hk, ak . dWOLS estimates an 

optimal DTR by positing models for the blip functions and estimating their parameters 

through a series of weighted ordinary least squares regressions. Let γk hk, ak; ψk  denote 

our posited model for the blip function. We will assume that the blip-to-zero function is 

correctly specified, so we have that γk hk, ak; ψk
∗ = γk hk, ak  for all k. The estimated optimal 

DTR is then given by dopt = d1
opt, …, dK

opt
 such that dk

opt hk = argmaxakγk hk, ak; ψk .

Denote the treatment-free outcome at stage k by Gk ψk  that represents a patient’s observed 

outcome adjusted by the expected difference in a patient’s outcome had they received 

treatment 0 at stage k and then treated optimally via the blip models with parameters ψk after 

stage k. Therefore, Gk ψk = Y − γk hk, ak; ψk + ∑j = k + 1
K γj hj, dj

opt hj ; ψj − γj hj, aj; ψj . We posit 

a model for the treatment-free outcome which we denote by gk hk, ak; βk . We assume linear 

models for the treatment-free and blip models, so a model for the outcome at stage K is 

given by

E Y ∣ HK = hK, AK = aK; βK, ψK = gK hK, aK; βK + γK hK, aK; ψK

= hK, β
T βK + aKhK, ψ

T ψK,

where hK, β and hK, ψ are components of hK with a leading one for the intercept and hK, ψ ⊂ hK, β. 

We also model the propensity score, πk hk = E Ak ∣ Hk = hk , which we denote by πk hk; αk

for k = 1, …, K. We estimate the blip model parameters using weighted ordinary least 

squares using weights wk ak, hk; αk  that satisfy πk hk; αk wk 1, hk; αk = 1 − πk hk; αk wk 0, hk; αk . 

Examples of weights that satisfy this equality are given by the inverse probability of 

treatment weights (IPTWs), ak π hk; αk
−1 + 1 − ak 1 − π hk; αk

−1 and overlap weights, 

ak − π hk; αk . First, we estimate the blip parameters for the final stage K using our posited 

model for the outcome. Then, form the pseudo-outcome which we define as

Y k = Y + ∑
j = k + 1

K
γj hj, d j

opt hj ; ψj − γj hj, aj; ψj .

At each stage starting with k = K − 1 and moving backwards, we model the pseudo-outcome 

by

E Y k ∣ Hk = hk, Ak = ak; βk, ψk = gk hk, ak; βk + γk hk, ak; ψk

and fit the model using weighted least squares. The resulting estimate of ψ is consistent 

as long as the blip model is correctly specified and at least one of the treatment free and 

propensity score models is correctly specified. When we have an unmeasured confounder, U, 
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both the treatment free and propensity score model will be misspecified leading to bias in 

the estimator of ψ.

3 | MONTE CARLO SENSITIVITY ANALYSIS

A Monte Carlo sensitivity analysis is a probabilistic approach to sensitivity analysis in 

which probability distributions are posited for the parameters governing the bias due to 

the unmeasured confounder. The posited probability distributions are repeatedly sampled 

from and used to calculate a series of bias corrected effect estimates (Greenland, 2005; 

McCandless and Gustafson, 2017). In what follows, we detail a Monte Carlo approach 

that seeks to posit models (and associated parameters) to describe the confounding due 

to the unmeasured variable U through its relationship to the outcome, the treatment, and 

other covariates, and to use that to impute the unmeasured confounder and hence assess 

and correct bias. Ideally, a secondary data set that contains data on the unmeasured 

confounder as well as the confounders, treatment, and outcomes measured in the current 

study with the potential unmeasured confounding is used to learn about the probability 

distributions for the bias parameters that must be posited. This allows us to fit the postulated 

unmeasured confounder models to the data from the secondary study and use the estimated 

parameters and standard errors to posit distributions that capture the uncertainty related 

to the unmeasured confounder. These data could be historical data or gathered from a 

concurrent or follow-up study and can be significantly smaller than the full study. If a 

secondary data set is unavailable, we can instead use subject matter expertise to posit 

probability distributions for the bias parameters with wide distributions to capture the 

additional uncertainty. For example, if we only know that the unmeasured confounder 

is positively associated with the outcome, we could posit a uniform distribution from 0 

to a conservative estimate of the maximum for the presumed effect of the unmeasured 

confounder on the outcome. If there are bias parameters for which we have no information, 

we could posit a uniform distribution that is centered at 0 with conservative estimates for 

the bounds of the distribution. When noninformative distributions for the bias parameters 

are used, the bias-adjusted point estimate of the parameters indexing the optimal regime 

will be closer to the unadjusted estimate, but the confidence intervals will still capture 

the uncertainty in the optimal regime due to both sampling variability and unmeasured 

confounding.

Alternative approaches to sensitivity analyses for unmeasured confounding typically make 

assumptions about the association between the unmeasured confounder and treatment 

as well as the unmeasured confounder and outcome, often capturing these by a single 

sensitivity parameter (Groenwold et al., 2010; Hernan and Robins, 2020; Lash et al., 2009). 

When the bias due to unmeasured confounding is controlled by one or two parameters, a 

conditional analysis in which we examine the estimated effect for a fixed value of the bias 

parameters is appropriate. This type of analysis then allows for examining what values of 

the bias parameters would significantly change the conclusions of the study (Rosenbaum & 

Rubin, 1983). For the estimation of DTRs, we are interested in treatment interaction effects 

in addition to the main effect of treatment. To better quantify the bias in the interaction 

effects, we make additional assumptions about the association between the unmeasured 

confounder and the measured covariates. These assumptions lead to the bias being dictated 
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by many more parameters. The additional parameters make it very difficult to succinctly 

describe the potential bounds of the bias parameters with a conditional analysis, as the 

regions for which the results would be consistent could be very complex in addition to being 

multidimensional. By instead positing distributions for the bias parameters, we can quantify 

the uncertainty in the estimated DTR while accounting for the uncertainty in the posited 

models for the unmeasured confounder and can integrate over the posited distributions to 

calculate a bias-adjusted estimate.

Recall that we assume that the unmeasured confounder has an additive effect on the outcome 

Y  in addition to linear models for the treatment-free and blip models. Therefore, a model for 

the outcome Y  is given by

E Y ∣ HK = hK, AK = aK, U = u; βK, ψK, βu = hK, β
T βK + βuu + aKhK, ψ

T ψK .

We will also posit a model for the conditional mean of the unmeasured confounder given by 

E U ∣ HK = hK, AK = aK; ζ  such that ζ denotes the parameters of the model. This will typically 

be given by a linear or logistic regression model depending on whether U is continuous or 

binary, but there are no restrictions on the form of this model. We then have that βu and ζ
are the parameters that dictate the bias due to the unmeasured confounding with ζ indexing 

the model for the conditional mean of U, and βu controlling the effect of the unmeasured 

confounder on the outcome Y .

Let Bk = Hk, β
T , AkHk, ψ

T T  and wk = wk Ak, Hk; αk  for k = 1, …, K. If the unmeasured confounder 

U is not included in the regression, and then the estimated coefficients are given by

(β K

ψK
) = ℙn wKBKBK

T −1ℙn wKBKY

such that ℙn denotes the empirical expectation. Recall we assume that the unmeasured 

confounder, U, has an additive effect on the outcome and let βu denote the coefficient for the 

unmeasured confounder. In Section A of the Supporting Information, we show that the bias 

is given by

bias ψK = E ψK − ψK

= −E wKAKHK, ψHK, β
T E wKHK, βHK, β

T −1E wKAKHK, βHK, ψ
T

+E wKAKHK, ψHK, ψ
T −1 E wKAKHK, ψβuU

−E wKAKHK, ψHK, β
T E wKHK, βHK, β

T −1E wKHK, ββuU .

(1)

We can estimate the bias in finite samples by replacing the expectations with empirical 

expectations and imputing an estimate of E U ∣ HK, AK  for U which we will denote by 

bias ψK . Note that this is then a function of the data and the parameters of the unmeasured 

confounder models.
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If we proceeded with dWOLS, the bias in the blip parameters would bias the pseudo-

outcome given by Y K − 1 = Y + γK hK, dK
opt hK ; ψK − γK hK, aK; ψK . Additionally, estimating the 

blip model at stage K − 1 without accounting for the unmeasured confounder would 

introduce additional bias that further compounds as we move backward through the stages. 

We can use the bias-corrected estimate of ψ to calculate the pseudo-outcome and, if we 

assume that Xk ⊥ U ∣ Hk − 1, Ak − 1 for k = 2, …, K, we have that Equation (1) for k = K holds for 

k = 1, …, K. This assumption can be relaxed at the expense of additional assumptions about 

the effect of U on Xk and a more complex expression for the bias. Being able to accurately 

posit models and parameter distributions for U when a more complex relationship exists 

could be potentially difficult without data. Therefore, a different approach to sensitivity 

analysis may be more appropriate when secondary data are unavailable if this assumption is 

unreasonable.

ALGORITHM 1

Monte Carlo sensitivity analysis

1: Posit a model for E U ∣ HK = hK, AK = aK  given by E U ∣ HK = hK, AK = aK; ζ)
2: Posit distributions f(ζ) and f βu  for the bias parameters ζ and βu

3: forb ∈ 1, …, B  Monte Carlo/bootstrap repetitions do

4:  Draw a bootstrap sample from Dn

5:  Sample ζ(b), βu
(b)

 from the distributions posited in step 2

6:
 Impute U(b)

 from E U ∣ HK = hK, AK = aK; ζ(b))

7:  Estimate αK
(b)

 with the propensity score model and calculate weights wK
(b)

8:  Estimate ψK
(b)

 using weighted least squares, i.e. perform a dWOLS estimation using the bootstrap sample

9:
 Calculate bias in ψK

(b)
 with equation 1 using U(b)

 and βu
(b)

 as estimates for U  and βu

10:  Calculate bias-adjusted estimate ψK
adj, (b) = ψK

(b) − bias ψK
(b)

11:  fork = K − 1, …, 1do

12:   Calculate pseudo-outcome

Y k
(b) = Y + ∑j = k + 1

K γj hj, d j
opt hj ; ψj

adj, (b) − γj hj, aj; ψj
adj, (b)

13:   Estimate αk
(b)

 with the propensity score model and calculate weights wk
(b)

14:   Estimate ψK
(b)

 using weighted least squares

15:
  Calculate bias in ψK

(b)
 with equation 1 using U(b)

 and βu
(b)

 as estimates for U  and βu

16:   Calculate bias-adjusted estimate ψk
adj, (b) = ψk

(b) − bias ψk
(b)

17:  end for

18: end for

19: Calculate bias-adjusted estimate ψk
adj = B−1∑b = 1

B ψk
adj, (b)

 for k = 1, …, K

The primary objective of conducting sensitivity analyses in this context is to quantify the 

uncertainty in the estimated DTR when there is bias due to unmeasured confounding. If we 
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generated confidence intervals for the bias by taking the percentiles of our adjusted results 

across the Monte Carlo samples, these interval estimates would only capture the variability 

due to the uncertainty in our bias parameters and would not account for the uncertainty 

in our estimate of the parameters of interest. Therefore, we take a bootstrap sample for 

each Monte Carlo repetition and confidence intervals are formed by taking percentiles of 

the bias-adjusted values of ψ. To account for nonregularity in estimators resulting from the 

nonsmoothness in the pseudo-outcome when estimating a multistage DTR, we will adapt the 

m‐out‐of‐n bootstrap (Chakraborty et al., 2013).

We perform a Monte Carlo sensitivity analysis by first positing a model for the conditional 

mean of the unmeasured confounder given by E U ∣ HK = hK, AK = aK; ζ . We also posit 

distributions f(ζ) and f βu  for the bias parameters ζ and βu. We then draw B bootstrap 

samples which we will denote by Dn
(b) for b = 1, …, B. For each bootstrap sample, we 

sample ζ(b) and βu
(b) from the posited distributions, f(ζ) and f βu . We use the sampled 

value of ζ(b) and the bootstrap data to impute values for the unmeasured confounder, U, 

which we denote by U(b). Then use the bootstrap data, the sampled bias parameter βu
(b), 

and the imputed values of U to calculate a bias-adjusted estimate of ψ(b) which we will 

denote by ψadj, (b). This is done by implementing dWOLS to estimate ψK
(b) and then using 

Equation (1) to calculate a bias-adjusted estimate, ψK
adj, (b). This bias-adjusted estimate is 

then used to calculate the pseudo-outcome Y K − 1
(b)

. We continue implementing dWOLS to 

estimate ψK
adj, (b) at each stage by estimating ψK

(b) and using Equation (1) to adjust for the 

bias due to the unmeasured confounder. A bias-adjusted estimate for ψk is then given by 

ψk
adj = B−1∑b = 1

B ψk
adj, (b) for k = 1, …, K. A step-by-step procedure for generating bias-adjusted 

estimates for the parameters indexing the optimal regime, ψ, is given in Algorithm 1.

To construct a confidence interval for ψ for a single-stage DTR, we calculate the percentiles 

of the bias-adjusted estimates from each bootstrap sample. When the number of stages is 

greater than 1, we have that the pseudo-outcome is a nonsmooth function of the generative 

model, and therefore, the estimator for ψk for k < K is nonregular (Laber et al., 2014; 

Moodie and Richardson, 2009; Robins, 2004). Therefore, we adapt the m‐out‐of‐n bootstrap 

that is a method for producing confidence intervals for nonsmooth functionals in which we 

take bootstrap samples with a smaller resample size of m < n (Bickel et al., 1997; Dumbgen, 

1993; Shao, 1994; Swanepoel, 1986). Chakraborty et al. (2013) proposed using a resample 

size of m = n
1 + κ(1 − p)

1 + κ  such that κ is a tuning parameter and p = P H2
Tψ2 = 0  to construct a 

confidence interval for ψ1 when K = 2. The tuning parameter controls the minimum resample 

size because, for a fixed n, the resample size takes values within the interval n
1

1 + x , n . 

Chakraborty et al. (2013) proposed using a double bootstrap procedure to choose the tuning 

parameter κ. The nonsmoothness in the pseudo-outcome occurs at and near the point(s) 

where H2
Tψ2 = 0, so large values of p indicate a high degree of nonregularity. They propose 

using a plug-in estimator for p given by
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p = ℙn I n H2, ψ
T ψ2

2 ≤ H2, ψ
T Σψ2H2, ψχ1, 1 − ν

2 ,

where Σψ2 denotes an estimate of nCov ψ2, ψ2  and χ1, 1 − v
2  denotes the (1 − ν) × 100 percentile of 

a chi-squared distribution with 1 degree of freedom. To generalize this to K > 2 stages, we 

define pk = P Hk
Tψk = 0  and construct an estimate, pk, for each stage (Rose et al., 2022). We 

first calculate a resample size mK = n
1 + κ 1 − pK

1 + κ  such that

pK = ℙn I n HK, ψ
T ψK

adj 2 ≤ HK, ψ
T ΣψKHK, ψχ1, 1 − ν

2 .

We then take bootstrap samples of size mK to construct a confidence interval for 

hK − 1, ψ
T ψK − 1

adj  for each HK − 1, ψ = hK − 1, ψ in the sample. This confidence interval is created by 

estimating ψK − 1, mK − 1
adj, (b)  for each bootstrap sample by drawing from the posited distributions 

for the bias parameters and adjusting the estimated parameters using Equation (1) 

as before. This allows us to obtain an estimate, pK − 1, of pK − 1 = P HK − 1
T ψK − 1 = 0  by 

calculating the proportion of individuals in the study for which the confidence interval 

for hK − 1, ψ
T ψK − 1

adj  contains zero. This procedure is repeated for k = K − 2, …, 1. We then 

calculate p = maxkpk and the corresponding resample size m = n
1 + κ(1 − p)

1 + k . Finally, we take 

B bootstrap samples of size m and estimate ψk, m
adj,(b) for each bootstrap sample by again 

sampling from the posited distributions for the bias parameters, βu and ζ, and adjusting 

for the bias using Equation (1). To construct a 1 − ϑk × 100% confidence region for ψk, 

calculate ϑk/2 × 100 and 1 − ϑk/2 × 100 percentiles of m ψk, m
adj, (b) − ψk

adj , denoted as l k and 

uk, respectively, for k = 1, …, K. A 1 − ϑk × 100% confidence region for ψk is then given 

by ψk
adj − uk/ m, ψk

adj + l k/ m  for k = 1, …, K. A step-by-step procedure for constructing a 

confidence interval for ψ that accounts for uncertainty in the unmeasured confounder and 

random sampling variability is outlined in Algorithm 2.

4 | SIMULATION EXPERIMENTS

We conducted a series of simulation experiments to evaluate the effectiveness of the 

proposed method. We applied the proposed method to two different data-generating models, 

the first being a one-stage study and the second a two-stage study. Additional simulations 

are contained in Sections B and C of the Supporting Information with B containing 

simulations with a binary unmeasured confounder and C containing a different generative 

model in which the bias does not meaningfully affect the performance of the estimated 

regime. The data-generating model for the one-stage study was given by:
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U ∼ N 0, σu
2 ,

X1 = ϕ10 + ϕ11U + ϵx1, ϵx1 ∼ N 0, σx1
2 ,

X2 = ϕ20 + ϕ21U + ϵx2, ϵx2 ∼ N 0, σx2
2 ,

P A1 = 1 ∣ X = x, U = u = 1 + exp − α0 + α1x1 + α2x2 + α3u −1,
Y = β0 + β1X1 + β2X2 + βuU + A1 ψ0 + ψ1X1 + ψ2X2 + ϵy, ϵy ∼ N 0, σy

2 .

ALGORITHM 2

Monte Carlo sensitivity analysis: confidence intervals

1:
Calculate pK = ℙn I n HK, ψ

T ψK
adj 2 ≤ HK, ψ

T ΣψKHK, ψχ1, 1 − ν
2

 where ΣψK denotes an estimate of 

nCov ψK, ψK

2:
Calculate resample size mK = n

1 + κ 1 − pK
1 + κ

3: fork = K − 1, …, 1do

4:  Draw B bootstrap samples of size mk

5:  Estimate ψk, mk
adj, (b)

 for b = 1, …, B
6:  For each given Hk, ψ = hk, ψ, construct a confidence interval for hk, ψ

T ψk
adj

7:  Calculate pk by the proportion of confidence intervals for hk, ψ
T ψk

adj
 that contain zero

8:
 Calculate the resample size mk = n

1 + κ 1 − pk
1 + κ

9: end for

10:
Calculate p = maxkpk and m = n

1 + κ(1 − p)
1 + κ

11: Draw B bootstrap sample of size m
12: Estimate ψk, m

adj, (b)
 for k = K, …, 1, b = 1, …, B

13: Calculate ϑk/2 × 100 and 1 − ϑk/2 × 100 percentiles of m ψk, m
adj, (b) − ψk

adj
 which we denote by l k and uk

respectively for k = 1, …, K
14: Calculate a confidence interval for ψk by ψk

adj − uk/ m, ψk
adj + l k/ m  for k = K, …, 1

We conducted 1000 repetitions for the simulation study. We let the sample size be given 

by n = 1000 and conducted B = 500 Monte Carlo repetitions for the sensitivity analysis. The 

parameter values were given by:

ψ = ψ0, ψ1, ψ2 = ( − 1, 0.5, 0.5), α = α0, α1, α2, α3 = (0, 1, 1, 2),
ϕ1 = ϕ10, ϕ11 = (0, 1), β = β0, β1, β2, βu = (1, 1, 1, 2),
ϕ2 = ϕ20, ϕ21 = (0, − 1), σu

2 = σx1
2 = σx2

2 = σy
2 = 1.

We posited four different sets of distributions for the parameters in the unmeasured 

confounder models. This allowed us to assess how sensitive our proposed method 

is to bias in the distributions for these parameters. The four different simulation 

scenarios were given by: (i) narrow normal, centered properly; (ii) wide normal, centered 

properly; (iii) narrow normal, off-center; (iv) wide normal, off-center. For scenario (i), 
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we posited models given by βu
(b) ∼ N βu, 0.1  and ζj

(b) ∼ N ζj
∗, 0.1  for j = 0, …, 3 such that 

ζ∗ = minζE U − ζ0 − ζ1X1 − ζ2X2 − ζ3A1
2 . For the wide distribution settings, the variance was 

increased to 0.5 and for the off-center scenarios, the distribution was centered at the true 

mean plus 0.1.

Figure 1 shows boxplots of the point estimates of ψ0, ψ1, and ψ2 across 1000 repetitions when 

not adjusting and adjusting for the unmeasured confounder using a Monte Carlo sensitivity 

analysis with different distributions for the bias parameters. We can see that when we did 

not adjust for bias due to the unmeasured confounder, the estimate of ψ0 is biased with a 

root mean squared error (rMSE) of 1.094. When the parameter distributions were centered 

on the true value, the adjusted estimate of ψ0 was unbiased. There was some bias in the 

adjusted values of ψ0 when the distribution is off-center as expected. We can see that for the 

narrow distribution, the rMSE increased from 0.125 to 0.259 and for the wide distribution, 

rMSE increased from 0.134 to 0.264. The unmeasured confounder did not cause bias in the 

estimation of ψ1 and ψ2, so the adjusted estimates using a Monte Carlo sensitivity analysis 

were very similar to the unadjusted results.

Bias in the blip model parameters that index the optimal DTR can cause the estimated 

regime to differ from the true optimal regime. For each repetition of the simulation study, 

we simulated 10,000 new patients and assessed what proportion of the patients’ treatment 

would match the recommended treatment of the true optimal DTR when following each 

one of the adjusted and unadjusted estimates of the optimal regime. Table 1 displays the 

proportion of patients who would receive the treatment recommend by the true optimal 

regime across all 1000 repetitions of the simulation study. We can see that the bias in ψ0

causes the treatment recommended by the estimated regime to match the optimal regime 

52.8% of the time. When adjusting for the unmeasured confounder, this increased to 95.6% 

in the ideal scenario of a narrow, centered parameter distribution and to 95.8% when we 

used a wide, off-centered parameter distributions.

In practice, if we do not have external data to help posit the mean model for the unmeasured 

confounder and distributions for the parameters, we will have less belief that the bias-

adjusted DTR is close to the true optimal regime. The proposed method should be used 

to examine confidence intervals to assess whether the unmeasured confounder could be 

introducing bias to our estimated regimes. Table 2 displays the coverage and width of 

95% confidence intervals generated using a Monte Carlo sensitivity analysis and from the 

unadjusted analysis that assumes no unmeasured confounding. For the unadjusted analysis, 

the empirical coverage of the confidence interval for ψ0 was 0%. Even for ψ1 and ψ2, 

which did not appear to have any bias in the estimation, the coverage was still below the 

nominal rate of 95%. For all of the different posited parameter distributions, Monte Carlo 

sensitivity analysis produced confidence intervals that attained or were close to the nominal 

coverage probability. The width of the confidence intervals for ψ0 increased significantly 

when conducting sensitivity analysis, indicating that this parameter is sensitive to the 

unmeasured confounding. Note that the width of the confidence intervals increased when 

the variability in the parameter distributions was increased.
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To compare our proposed procedure to an alternative method for sensitivity analysis, we 

conducted a simulation study for estimating an optimal DTR with G-estimation using 

the same single-stage generative model (Hernan and Robins, 2020; Robins et al., 1999). 

G-estimation for a single-stage study proceeds by defining H(ψ) = Y − γ1 H1, A1; ψ  (Robins, 

2004). H(ψ) then represents a candidate potential outcome for Y ∗(0) for a given value of ψ. 

Consider the model

logit P A1 = 1 ∣ H(ψ), H1 = h1 = ξ0 + H(ψ) h1, ψ
T ξ1 + h1

Tξ2 .

(2)

We assume sequential ignorabilty holds, which implies that ξ1 = 0 for the true value of ψ
where 0 denotes the zero vector. Therefore, to estimate the true value of ψ, we find the value 

of ψ in H(ψ) that results in ξ 1 = 0 when fitting the logistic regression model in Equation (2). 

When there is unmeasured confounding, we have that ξ1 ≠ 0. Therefore, we can conduct a 

sensitivity analysis by setting ξ1 to a range of different fixed values and estimating ψ for each 

to examine how sensitive the estimated DTR is to an unmeasured confounder.

This approach leads to bias parameters that are far more difficult to interpret than the bias 

parameters in our proposed Monte Carlo sensitivity analysis. A sensitivity analysis could 

conclude that a given value of ξ1 would significantly alter the conclusions of the study, but it 

is unclear what degree of confounding would result in that value of ξ1. To avoid this problem, 

we can use a similar approach to our proposed Monte Carlo sensitivity analysis by collecting 

data from a small, secondary study that includes the unmeasured confounder to learn about 

the true value of the bias parameters ξ1. First, we use the secondary study to estimate ψ using 

G-estimation with the unmeasured confounder included in the logistic regression model 

given in Equation (2). We refit the logistic regression model with H(ψ) included and the 

unmeasured confounder removed to estimate ξ1. We then proceed in the same manner as the 

proposed Monte Carlo procedure. We posit distributions for ξ1 using the point estimate and 

standard error from the model fit to the secondary study. We then use the bootstrap, sample 

ξ1 from the posited distribution for each repetition, and calculate a bias-adjusted estimate of 

ψ for each Monte Carlo repetition. We then take the mean of the estimates for ψ to get a 

point estimate and take percentiles to construct a confidence interval.

We conducted a simulation study of this procedure using comparable distributions for the 

bias parameters to those used for the previous simulations. For this generative model, 

ξ1 = ξ10, ξ11, ξ12  is given by (0.52, 0, 0). For the simulation study, we will assume ξ11 = 0 and 

ξ12 = 0 and only posit a distribution for ξ10. The four different simulation settings will again 

be given by (i) narrow normal, centered properly; (ii) wide normal, centered properly; (iii) 

narrow normal, off-center; and (iv) wide normal, off-center. For scenario (i), we posited a 

distribution for ξ10 given by ξ10
(b) ∼ N ξ10, 0.1 . For the wide distributions settings, we increased 

the variance to 0.5, and for the off-center simulations, we centered the distribution at the true 

value of ξ10 plus 0.1.
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Figure 2 shows boxplots of the point estimates of ψ across the 1000 repetitions. For ψ0, 

adjusting for the unmeasured confounder using the narrow, correctly centered distribution 

reduced the rMSE from 1.104 to 0.188. This was worse than our proposed procedure 

that reduced the rMSE to 0.125. The G-estimation sensitivity analysis was also more 

sensitive to misspecification of the bias parameter distribution with the incorrectly centered 

distribution resulting in an rMSE of 0.383 and 0.488 for the narrow and wide distributions, 

respectively. For the interaction effect parameters, ψ1 and ψ2, the bias-adjusted estimates 

had a greater rMSE than the unadjusted estimates with the narrow, correctly centered bias 

distribution increasing the rMSE from 0.204 to 0.316 for ψ1 and from 0.125 to 0.184 for 

ψ2. Section D of the Supporting Information contains additional results on the coverage 

of confidence intervals and the proportion of new patients whose recommended treatment 

from the estimated regimes matched the optimal DTR for this simulation study. Section D 

also contains an additional simulation study in which we do not assume ξ11 = 0 and ξ12 = 0. 

The results for this were very poor with all four of the posited bias parameter distributions 

resulting in an increase in the rMSE in the estimates of ψ0, ψ1, and ψ2. These simulation 

results demonstrate how simpler sensitivity analysis methods that avoid positing a model for 

the relationship between the unmeasured confounder and the other covariates can reduce the 

number of models and bias parameters distributions that need to be posited, but can produce 

considerably less reliable results about the effect of the unmeasured confounding on the 

estimated DTR.

We conducted a similar simulation study with a two-stage study to assess the effectiveness 

of a Monte Carlo sensitivity analysis for the estimation of multistage DTRs. We let the 

data-generating model be given by:

U ∼ N 0, σu
2 ,

X11 = ϕ10 + ϕ11U + ϵx11, ϵx11 ∼ N 0, σx11
2 ,

X12 = ϕ20 + ϕ21U + ϵx12, ϵx12 ∼ N 0, σx12
2 ,

X2 = ϖ0 + ϖ1X11 + ϖ2X12 + ϵx2, ϵx2 ∼ N 0, σx2
2 ,

P A1 = 1 ∣ H1 = h1, U = u = 1 + exp − α10 + α11x11 + α12x12 + α13u −1,
P A2 = 1 ∣ H2 = h2, U = u = 1 + exp − α20 + α21x11 + α22x12 + α23a1 + α24x2 + α25u −1,
Y = β20 + β21X11 + β22X12 + β23A1 + β24A1X11 + β25A1X12

+β26X2 + βuU + A2 ψ20 + ψ21X11 + ψ22X12 + ψ23X2 + ϵy, ϵy ∼ N 0, σy
2 .

As before, we conducted 1000 repetitions for the simulation study, set the sample size to 

n = 1000, and conducted the sensitivity analysis using B = 500 Monte Carlo repetitions. The 

parameter values for this data-generating process were given by:

β2 = β20, β21, β22, β23, β24, β25, β26, βu = (1, − 1, 1, − 1, 1, 1, 1, 2),
ψ2 = ψ20, ψ21, ψ22, ψ23 = ( − 1, 0.5, 0.5, 0.5),
α1 = α10, α11, α12, α13 = (0, 1, 1, 2), ϕ1 = ϕ10, ϕ11 = (0, 1),
α2 = α20, α21, α22, α23, α24, α25 = (0, 1, 1, 1, 1, 3), ϕ2 = ϕ10, ϕ11 = (0, − 1),
σu

2 = σx11
2 = σx12

2 = σx2
2 = σy

2 = 1, ϖ = ϖ0, ϖ1, ϖ2 = (0, 1, 1) .
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We again varied the posited distributions for the parameters of the unmeasured confounder 

model and the effect of the unmeasured confounder using the same posited distributions as 

the single-stage simulation study.

Figures 3 and 4 show boxplots of the point estimates for ψ2 and ψ1, respectively, across 

the 1000 repetitions. The results for the two-stage study were very similar to the one-stage 

results. In the second-stage models, the unmeasured confounder caused significant bias in 

ψ20 in the unadjusted analysis leading to an rMSE of 1.201. Applying our Monte Carlo 

sensitivity analysis reduced the bias significantly with all scenarios having an rMSE of 0.242 

or less. We found that the unmeasured confounder did not cause bias in the estimates of ψ21, 

ψ22, and ψ23, leading to similar results between the unadjusted and adjusted estimates. There 

was significant bias in the unadjusted estimate of ψ10 for the first-stage blip model. The 

rMSE of the unadjusted estimate is 0.745, whereas the rMSE of the bias-adjusted estimate 

under the narrow, centered parameter distribution is 0.165. The rMSE increased to 0.25 

when using a wide parameter distribution that is not centered on the true parameter value.

As before, we simulated 10,000 additional patients and assessed whether the treatment 

recommended by each of the estimated regimes matched the recommendation of the true 

optimal regime for each of the 1000 repetitions. Table 3 displays the proportion of patients 

who were recommended the same treatment as the true optimal regime when following 

each of the different estimated regimes. The bias from the unmeasured confounder caused 

the unadjusted estimated regime to recommend the same treatment as the true optimal 

regime 81.4% of the time at the first stage and 70.2% of the at the second stage. After 

performing Monte Carlo sensitivity analysis using the narrow, centered posited distribution, 

the proportion increased to 95.1% at the first stage and 93.7% at the second stage. The 

alternative parameter distributions produced similar results.

We also examined the coverage and width of the confidence intervals generated using a 

Monte Carlo sensitivity analysis for the two-stage study. Table 4 contains the empirical 

coverage and width of 95% confidence intervals for the parameters of the second-stage 

blip model. The empirical coverage of ψ20 for the unadjusted analysis was 0% as it 

was significantly biased by the unmeasured confounder. Monte Carlo sensitivity analysis 

produced intervals for ψ20 with 100% coverage for all of the simulation scenarios at the 

expense of being much wider. The remaining second-stage blip parameters, ψ21, ψ22, and ψ23, 

were not biased in the unadjusted analysis, but the unmeasured confounder led to confidence 

intervals that did not achieve the nominal coverage probability. Monte Carlo sensitivity 

analysis produced confidence intervals that achieved the nominal coverage for all sets of 

posited parameter distributions.

Table 5 contains the empirical coverage and average width of 95% confidence intervals for 

the parameters of the first-stage blip model. The unadjusted confidence interval for ψ10 had a 

coverage of only 0.1%, whereas the sensitivity analysis resulted in conservative confidence 

intervals that had coverage of 100%. For ψ11 and ψ12, the unadjusted analysis resulted 

in confidence intervals that did not attain nominal coverage with empirical coverages of 

86.1% and 86.8%, respectively, despite the unmeasured confounder not resulting in bias 
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in the parameters estimation. The sensitivity analysis intervals were instead conservative 

with coverages of 100% and 98.9% for ψ11 and ψ12, respectively, for the narrow, centered 

parameter distributions. The confidence intervals resulting from the sensitivity analysis for 

the first-stage blip model were considerably wider than those for the second-stage blip 

model parameters.

5 | ILLUSTRATION USING KPWA EHR DATA

We applied the proposed method to data from EHRs. KPWA is a health system that 

provides heath care and insurance to its members. This study used data from EHRs 

and health insurance claims for all KPWA clients to study the use of antidepressants 

for treating depression. The data include information on demographics, prescription 

fills, and depressive symptom severity for 82,691 patients with depression who received 

antidepressant medication from 2008 through 2018. Severity of depression symptoms was 

assessed through the use of the Patient Health Questionnaire-8 (PHQ) (Kroenke et al., 2001). 

This is a self-report questionnaire that produces a score ranging from 0 to 24, such that 

higher values indicate more severe symptoms of depression. The inclusion criteria for the 

study were that patients must have been 13 years or older, have been enrolled in KPWA 

insurance for at least a year, have been diagnosed with a depressive disorder in the year 

before or 15 days after treatment initiation, had no prescription fills for antidepressant 

medications in the past year, and had no diagnosis for personality, bipolar, or psychotic 

disorders in the past year. We additionally required, for this analysis, that patients did 

not have missing information on obesity, baseline PHQ, or follow-up PHQ at 1 year after 

baseline. Our analysis focuses on demonstrating the impact of our sensitivity analysis but 

does not adjust for missing information; therefore, the estimated DTRs must be interpreted 

as potentially biased; any clinical findings should be viewed in this light.

Research has suggested that obesity increases the risk of depression (Luppino et al., 

2010). Weight gain has been found to be a side effect of taking antidepressants (Fava, 

2000), with different classes of antidepressants affecting weight differently; treatment 

guidelines for clinicians recommend using the current weight of a patient as a consideration 

when prescribing antidepressants (Santasieri and Schwartz, 2015). Obesity is therefore a 

potentially important confounder that, if unmeasured, could lead to bias in observational 

studies of their effects, whether average or individualized. We considered a patient to 

be obese if they had a body mass index (BMI) of 30 or larger. We used this data in 

two different ways. We assumed that obesity was unavailable and estimated a DTR to 

minimize depression symptoms without adjusting for obesity in the analysis. We then 

applied the proposed procedure to assess how sensitive the estimated regime was to obesity 

being unmeasured and compared this to the estimated regime with obesity measured. 

We also conducted a plasmode simulation study in which we used the real data with 

simulated obesity and patient outcomes. This allowed us to know the true optimal DTR and 

distribution of obesity.

Rose et al. Page 16

Biom J. Author manuscript; available in PMC 2024 September 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5.1 | Application to the study of first-line choice of antidepressant

Our outcome is the negative of the PHQ score after 1 year so that higher values correspond 

with better patient outcomes. Equally, we could use the PHQ score and find the regime that 

minimizes instead of maximizes the mean outcome. The PHQ score after 1 year was given 

by the PHQ score recorded between 305 and 425 days after initiating treatment that was 

measured closest to 365 days after medication initiation. Patients were treated with 1 of 17 

different antidepressants initially. Selective serotonin reuptake inhibitors (SSRIs) are a class 

of antidepressants that increase serotonin levels in the brain by decreasing reabsorption by 

nerve cells and are commonly prescribed due to having generally milder side effects. We 

classified the initial treatment received as an antidepressant from either the SSRI class or an 

alternative class of antidepressants.

We let Y  denote the negative of the PHQ score after 1 year. We denote treatment by A, 

such that A = 1 if assigned an SSRI and A = 0 if assigned a non-SSRI. We considered sex, 

age, baseline PHQ, and obesity as confounders and examined the bias that occurs if obesity 

was unmeasured. We centered the age variable to make the intercept more interpretable. Our 

outcome model was given by:

E(Y ∣ X, A; β, ψ) = β0 + β1SEX + β2AGE + β3PHQ + βuOBESE
+A ψ0 + ψ1SEX + ψ2AGE + ψ3PHQ

(3)

such that the optimal DTR is then given by recommend an SSRI if 

(ψ0 + ψ1SEX + ψ2AGE + ψ3PHQ) is greater than zero.

To posit the models for the unmeasured confounder and the distributions for the bias 

parameters in practice, we would ideally conduct a small, secondary study. To replicate this 

process for this example, we took a random subsample of 250 patients from our data and 

treated this as a secondary data set. We found that obesity was correlated with age, baseline 

PHQ, race, census block education level (EDU), and diagnosis of an anxiety disorder 

in the prior year (ANX). Race was categorized as Asian, Black or African American, 

Hispanic, Native Hawaiian/Pacific Islander, American Indian/Native Alaskan, White, other, 

or unknown and was coded using dummy coding with Asian as the reference group. EDU 

was given by an indicator for whether less than 25% of people living in the patient’s census 

block had a college degree. Therefore, to conduct a Monte Carlo sensitivity analysis for the 

bias if obesity is unmeasured, we posited a model for obesity given by:

P(OBESE = 1 ∣ X; ζ) = 1 + exp − ζ0 + ζ1AGE + ζ2PHQ + ζ3
TRACE

+ζ4EDU + ζ5ANX + ζ6A −1 .

(4)

We first estimated βu and ζ using the secondary data set. We then posited normal 

distributions for βu and ζ that were centered at the estimated values of the parameters with 

standard deviations equal to the estimated standard errors.
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We also examined using our proposed procedure when we do not have a secondary data set 

to help specify distributions for the bias parameters and instead need to use subject matter 

expertise. Recall that research has found that obesity increases the risk of depression that 

implies that obesity is negatively correlated with the negative of the PHQ score. Therefore, 

we will let the distribution for βu be given by a uniform distribution from −2 to 0. Since we 

centered the age variable, expit(ζ0) can be interpreted as the probability of being obese, given 

that an individual is 45 years old, Asian, has a baseline PHQ score of 0, has no diagnosis of 

an anxiety disorder, is not from a low education census block, and who received a non-SSRI. 

We used the overall prevalence of obesity in Asian people over 18 years old in the United 

States obtained from the 2017 National Health Interview Survey to center the distribution 

for ζ0 (Blackwell and Villarroel, 2018). Since the overall prevalence was given by 0.119, the 

distribution for ζ0 was selected to be a uniform distribution with support [logit(0.119) − 0.5, 

logit(0.119) + 0.5]. We chose to use a uniform distribution as using the prevalence in the 

entire Asian population in the United States as a surrogate for the conditional probability 

given by expit(ζ0) is an imperfect approach. We chose the distributions for each component 

of ζ3 in the same manner with a uniform distribution centered using the overall prevalence in 

the United States by race with a width of 1. The remaining parameters in ζ were given by a 

uniform distribution from −1 to 1 because we are unsure of how they are related to obesity.

Table 6 contains estimates and confidence intervals for ψ from the full model, the model 

with obesity unmeasured, and after adjusting for the bias with and without a secondary 

data set to posit the bias parameter distributions. The adjusted estimates of ψ using the 

secondary data set with obesity unmeasured were close to the estimates from the full model 

with obesity included; however, uncertainty was increased reflecting the lack of information 

available on the unmeasured confounder. The adjusted estimates using uniform distributions 

posited with subject matter expertise resulted in estimates close to the unadjusted estimate 

as expected. Both sensitivity analyses also produced confidence intervals that were wider 

for the parameters that were biased due to the unmeasured confounding. Section E of the 

Supporting Information contains a similar sensitivity analysis in which we used the full data 

set with obesity included to posit distributions for the bias parameters.

5.2 | Plasmode simulations

We also conducted a plasmode simulation study in which we used the real data with 

simulated obesity and patient outcomes. This allowed us to know the true optimal DTR and 

unmeasured confounder distribution. The data were simulated using models 3 and 4 that we 

used for the real data analysis with the outcome having a random error given by ϵ ∼ N(0, 1).

We let the value of β, ψ, and ζ be given by the estimated values from the data that can be 

found in Section F of the Supporting Information. For conducting the sensitivity analysis, 

we posited the same normal distributions for βu and ζ that were posited using the small, 

secondary study for the empirical evaluation in addition to the uniform distributions posited 

using subject matter expertise. We simulated 1000 data sets and estimated the adjusted 

parameter estimates for each data set. Table 7 contains the estimates of ψ averaged over 

the 1000 simulated data sets in addition to the empirical coverage and average width of 
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95% confidence intervals for ψ. The unadjusted estimate for ψ0 was biased with an average 

estimate of −1.432 as opposed to the true value of −1.556. Adjusting for obesity using a 

secondary study reduced the bias and resulted in an estimate of −1.538. Positing the bias 

parameter distributions with subject matter expertise resulted in an estimate of −1.446 that 

was closer to the unadjusted estimate than the true value. The 95% confidence intervals from 

the unadjusted analysis did not achieve the nominal rate for any of the parameters. Monte 

Carlo sensitivity analysis resulted in slightly wider intervals that had the correct coverage 

when we posited the bias parameter distributions using a secondary data set or subject matter 

expertise.

6 | DISCUSSION

We proposed a method for conducting sensitivity analysis for bias due to unmeasured 

confounding in the estimation of DTRs. We used a Monte Carlo sensitivity analysis to 

estimate a bias-adjusted DTR and construct confidence intervals for the parameters indexing 

the optimal regime that account for the uncertainty due to unmeasured confounding. This 

procedure is straightforward to implement and can be used for continuous or binary 

unmeasured confounders. This approach was found to perform well for both simulated and 

real data.

This method requires positing parametric models for the relationship between the 

unmeasured confounder(s) and the outcome, treatment, and measured confounders. 

Moreover, the model for the conditional mean of the unmeasured confounder needs to 

be of high quality, which can be challenging without external data or domain expertise. 

We also must posit probability distributions for the parameters indexing these models. 

These distributions do not need to be centered on the true value of the parameter to 

construct confidence intervals, and they only need the true value to not be in the tails 

of the distribution. If there are high levels of uncertainty about these parameters, wider 

distributions can be posited resulting in wider confidence intervals for the parameters 

indexing the estimated optimal DTR. We posited normal distributions for these parameters, 

but any probability distribution can be used that accurately reflect the prior information 

about the true value of these parameters. Here, we focused on DTRs that are estimated using 

dWOLS, though this approach can be applied to any regression-based method of estimation. 

Direct-search or value-search estimators are an alternative approach to estimating DTRs that 

our proposed method could not be directly applied to (Laber and Zhao, 2015; Orellana et al., 

2010). We leave extensions to direct-search estimators as future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Boxplots of the point estimates for ψ under an unadjusted model and when using Monte 

Carlo sensitivity analysis to adjust for bias due to unmeasured confounding for the one-stage 

data-generating model.
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FIGURE 2. 
Boxplots of the point estimates for ψ under an unadjusted model and when using G-

estimation sensitivity analysis to adjust for bias due to unmeasured confounding for the 

one-stage data-generating model when we assume we know ξ11 and ξ12.
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FIGURE 3. 
Boxplots of the point estimates for ψ2 under an unadjusted model and when using Monte 

Carlo sensitivity analysis to adjust for bias due to unmeasured confounding for the two-stage 

data-generating model.
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FIGURE 4. 
Boxplots of the point estimates for ψ1 under an unadjusted model and when using Monte 

Carlo sensitivity analysis to adjust for bias due to unmeasured confounding for the two-stage 

data-generating model.
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TABLE 1

Proportion of patients whose recommended treatment when following each of the estimated regime matches 

the recommendation of the true optimal regime for the one-stage data-generating model.

Parameter Distr. Proportion optimal

Unadjusted 0.528

Narrow, Centered 0.956

Wide, Centered 0.953

Narrow, Off-center 0.959

Wide, Off-center 0.958
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TABLE 2

Coverage (Cvr.) and average width (Wth.) of the 95% confidence intervals for ψ for the unadjusted analysis 

and sensitivity analysis under each of the posited parameter distributions for the one-stage data-generating 

model.

Parameter Distr. Cvr. (Wth.) ψ0 Cvr. (Wth.) ψ1 Cvr. (Wth.) ψ2

Unadjusted 0.000* (0.359) 0.897* (0.426) 0.887* (0.300)

Narrow, Centered 1.000* (2.628) 0.946 (0.520) 0.947 (0.365)

Wide, Centered 1.000* (6.212) 0.954 (0.520) 0.959 (0.365)

Narrow, Off-center 1.000* (2.764) 0.950 (0.519) 0.951 (0.366)

Wide, Off-center 1.000* (6.495) 0.955 (0.519) 0.936* (0.367)

*
indicates coverages that are significantly different than 95%.
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TABLE 3

Proportion of patients whose recommended treatment when following each of the estimated regime matches 

the recommendation of the true optimal regime at each stage for the two-stage data-generating model.

Parameter Distr. Stage 1 Stage 2

Unadjusted 0.814 0.702

Narrow, Centered 0.951 0.937

Wide, Centered 0.949 0.936

Narrow, Off-center 0.951 0.948

Wide, Off-center 0.948 0.947
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TABLE 4

Coverage (Cvr.) and average width (Wth.) of the 95% confidence intervals for ψ2 for the unadjusted analysis 

and sensitivity analysis under each of the posited parameter distributions for the two-stage data-generating 

model.

Parameter Distr. Cvr. (Wth.) ψ20 Cvr. (Wth.) ψ21 Cvr. (Wth.) ψ22 Cvr. (Wth.) ψ23

Unadjusted 0.000* (0.339) 0.810* (0.529) 0.810* (0.435) 0.801* (0.359)

Narrow, Centered 1.000* (2.634) 0.948 (0.803) 0.953 (0.658) 0.943 (0.541)

Wide, Centered 1.000* (6.208) 0.948 (0.804) 0.951 (0.654) 0.941 (0.537)

Narrow, Off-center 1.000* (2.775) 0.932* (0.803) 0.949 (0.657) 0.936* (0.542)

Wide, Off-center 1.000* (6.483) 0.934* (0.805) 0.937 (0.659) 0.941 (0.540)

*
indicates coverages that are significantly different than 95%.
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TABLE 5

Coverage (Cvr.) and average width (Wth.) of the 95% confidence intervals for ψ1 for the unadjusted analysis 

and sensitivity analysis under each of the posited parameter distributions for the two-stage data-generating 

model.

Parameter Distr. Cvr. (Wth.) ψ10 Cvr. (Wth.) ψ11 Cvr. (Wth.) ψ12

Unadjusted 0.001* (0.456) 0.861* (0.542) 0.868* (0.382)

Narrow, Centered 1.000* (4.236) 1.000* (2.609) 0.989* (2.439)

Wide, Centered 1.000* (7.362) 1.000* (2.828) 1.000* (2.590)

Narrow, Off-center 1.000* (4.607) 1.000* (2.833) 0.995* (2.663)

Wide, Off-center 1.000* (7.857) 1.000* (3.081) 1.000* (2.840)

*
indicates coverages that are significantly different than 95%.
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TABLE 6

Estimates and 95% confidence intervals for treatment decision rule parameters ψ from models with and 

without obesity and adjusted estimates from the sensitivity analysis for unmeasured confounding of obesity.

Covariate Full model Obesity unmeasured Adjusted Est. secondary data Adjusted est. subject expertise

A −1.56 (−3.11, 0.00) −1.46 (−3.02, 0.10) −1.60 (−3.37, 0.12) −1.48 (−3.13, 0.42)

A × SEX 0.72 (−0.34, 1.79) 0.69 (−0.38, 1.76) 0.73 (−0.58, 2.05) 0.69 (−0.70, 1.98)

A × AGE 0.00 (−0.03, 0.03) 0.00 (−0.03, 0.03) 0.00 (−0.04, 0.04) 0.00 (−0.04, 0.04)

A × PHQ 0.12 (0.02, 0.22) 0.12 (0.02, 0.22) 0.12 (0.00, 0.25) 0.12 (−0.01, 0.24)
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TABLE 7

Estimates (Est.), coverage (Cvr.), and average width (Wth.) of 95% confidence intervals for treatment decision 

rule parameters ψ after adjusting for the unmeasured confounder obesity averaged over 1000 plasmode data 

sets using data from KPWA.

Est. ψ0 Est. ψ1 Est. ψ2 Est. ψ3

True Value −1.556 0.724 0.001 0.119

Unadjusted −1.432 0.714 0.001 0.118

Adjusted—Secondary Data −1.538 0.721 0.001 0.119

Adjusted—Subject Expertise −1.446 0.715 0.001 0.119

Cvr. (Wth.) ψ0 Cvr. (Wth.) ψ1 Cvr. (Wth.) ψ2 Cvr. (Wth.) ψ3

Unadjusted 0.822* (0.665) 0.880* (0.455) 0.870* (0.012) 0.880* (0.042)

Adjusted—Secondary Data 0.975* (0.958) 0.949 (0.586) 0.958 (0.016) 0.959 (0.054)

Adjusted—Subject Expertise 0.940 (0.889) 0.953 (0.588) 0.975* (0.018) 0.981* (0.057)

*
indicates coverages that are significantly different than 95%.
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