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Abstract Fibro-adipogenic progenitors (FAPs) are muscle-resident mesenchymal progenitors 
that can contribute to muscle tissue homeostasis and regeneration, as well as postnatal maturation 
and lifelong maintenance of the neuromuscular system. Recently, traumatic injury to the peripheral 
nerve was shown to activate FAPs, suggesting that FAPs can respond to nerve injury. However, ques-
tions of how FAPs can sense the anatomically distant peripheral nerve injury and whether FAPs can 
directly contribute to nerve regeneration remained unanswered. Here, utilizing single-cell transcrip-
tomics and mouse models, we discovered that a subset of FAPs expressing GDNF receptors Ret 
and Gfra1 can respond to peripheral nerve injury by sensing GDNF secreted by Schwann cells. Upon 
GDNF sensing, this subset becomes activated and expresses Bdnf. FAP-specific inactivation of Bdnf 
(Prrx1Cre; Bdnffl/fl) resulted in delayed nerve regeneration owing to defective remyelination, indicating 
that GDNF-sensing FAPs play an important role in the remyelination process during peripheral nerve 
regeneration. In aged mice, significantly reduced Bdnf expression in FAPs was observed upon nerve 
injury, suggesting the clinical relevance of FAP-derived BDNF in the age-related delays in nerve 
regeneration. Collectively, our study revealed the previously unidentified role of FAPs in peripheral 
nerve regeneration, and the molecular mechanism behind FAPs’ response to peripheral nerve injury.

eLife assessment
The study has identified a cell type in muscle that is characterized as an adipogenic progenitor cell 
that is capable of promoting regeneration through the action of BDNF, a prominent growth factor 
regulated by GDNF in Schwann cells. These results represent an important cellular explanation for 
nerve regeneration. The revised analysis is solid but the work remains incomplete due to a lack of 
evidence that BDNF is produced during the process through the action of GDNF.

Introduction
Positioned in the interstitial space between myofibers (Uezumi et al., 2010), fibro-adipogenic progen-
itors (FAPs) interact with cellular components within a skeletal muscle to ensure normal development, 
homeostasis, and regeneration of muscle tissue. During developmental myogenesis, embryonic FAPs 
expressing Osr1 contribute to limb muscle patterning by regulating the expression of extracellular 
matrix (ECM) genes that makeup muscle connective tissue (Vallecillo-García et al., 2017). In young 
adults, FAPs are necessary for normal growth and long-term maintenance of skeletal muscle, which 
otherwise undergo progressive muscle atrophy in the absence of PDGFRα+ FAPs (Roberts et  al., 
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2013; Wosczyna et al., 2019; Uezumi et al., 2021). Upon muscle injury, FAPs proliferate in response 
to IL-4/IL-13 signals from eosinophils, and participate in the clearing of necrotic debris via phago-
cytosis (Heredia et al., 2013). Also, the proliferated FAPs regulate the expansion and asymmetric 
commitment of muscle stem cells (MuSCs) via secreted factors such as WISP1, leading to robust 
de novo myofiber formation (Joe et al., 2010; Lukjanenko et al., 2019; Wosczyna et al., 2019). 
Conversely, the absence of FAPs or its functional decline with age cause premature differentiation of 
MuSCs upon injury, resulting in the formation of smaller regenerated myofibers (Murphy et al., 2011; 
Lukjanenko et al., 2019; Wosczyna et al., 2019). After sufficient regeneration of myofibers occurs, 
FAPs undergo apoptosis via TNF signaling from monocyte/macrophages, such that its numbers return 
to those of unperturbed muscles (Lemos et al., 2015; Saito et al., 2020). Failure to remove excess 
FAPs after muscle regeneration results in unwanted fibrosis, which compromises muscle function 
(Uezumi et al., 2011; Uezumi et al., 2014).

In addition to the formation and maintenance of muscle tissue, FAPs also contribute to the matu-
ration and maintenance of the neural components within skeletal muscle. Previously, we reported that 
FAPs promote postsynaptic maturation of the neuromuscular junction (NMJ) through the BAP1/SMN 
axis during postnatal development (Kim et al., 2022). Selective inactivation of Bap1 in FAPs results 
in dysfunctional NMJs, with sustained expression of the immature form of acetylcholine receptor 
subunit, AchRγ, in skeletal muscle (Kim et al., 2022). Progressively, these mice exhibit denervation at 
the NMJ, retraction of motor axons, reduction of myelination and axon diameter, and eventually motor 
neuron loss, suggesting that FAPs prevent the dying-back loss of motor neurons (Kim et al., 2022). 
Recently, we also reported defective presynaptic maturation and maintenance in mice with selective 
Smn downregulation in FAPs, again suggesting the role of FAPs in postnatal NMJ development (Hann 
et al., 2024). In adult mice, BMP3B secretion by FAPs stabilize NMJs and Schwann cells by promoting 
the myelination program in Schwann cells, thereby directly contributing to the maintenance of neural 
components within skeletal muscle (Uezumi et al., 2021). In the absence of FAPs or Bmp3b, mice 
exhibit muscle weakness and myofiber atrophy along with destabilization of Schwann cells and dener-
vation at NMJs, which closely resemble the phenotypes observed in age-related sarcopenia (Uezumi 
et al., 2021). Similarly, conditional deletion of Bap1 in FAPs in adulthood cause denervation at the 
NMJs and eventually loss of motor neurons, demonstrating the requirement of FAPs in maintaining 
the neuromuscular system (Kim et al., 2022). Conversely, disturbance in the neural component can 
influence the behavior of FAPs; for instance, denervation is known to activate FAPs (Contreras et al., 
2016; Gonzalez et al., 2017; Madaro et al., 2018). This suggests that FAPs can somehow sense the 
anatomically distant peripheral nerve injury. However, the question of how FAPs are able to sense the 
distant peripheral nerve injury remains unanswered (Theret et al., 2021). Furthermore, whether FAPs 
are actually able to exert beneficial effects on peripheral nerve regeneration remains elusive.

In accordance with its various functions, heterogeneity within FAPs began to be recognized with 
the advent of single-cell analysis technology (Contreras et  al., 2021). By profiling the expression 
levels of 87-selected genes in isolated singlets of FAPs, dynamic transitions between heterogeneous 
subpopulations of FAPs, identified by different expression levels of TIE2 and VCAM1, was observed 
during postnatal and regenerative myogenesis (Malecova et al., 2018). The report showed that while 
activation of TIE2high FAPs is observed in neonatal mice, activation of VCAM1+ FAPs is observed in 
injured muscles, suggesting distinct functional involvement of FAPs in the two different contexts of 
myogenesis (Malecova et al., 2018). Additionally, single-cell RNA-sequencing (scRNA-seq) enabled 
the identification of heterogeneity within FAPs based on the genome-wide transcriptome data (Lieb-
erman et al., 2021). In homeostatic adult muscle, two distinct subpopulations within FAPs have been 
identified, namely Dpp4+ and Cxcl14+ FAPs (Scott et al., 2019; Oprescu et al., 2020). Functionally, 
we reported that DPP4+ FAPs contribute to the maturation and maintenance of the neuromuscular 
system via the BAP1/SMN axis (Kim et al., 2022). In juvenile muscle, five different subpopulations 
within FAPs were characterized, each having different contexts of activation and differentiation poten-
tials (Leinroth et al., 2022). Osr1+ FAPs are precursor cells that can form all other subpopulations; 
Clu+ FAPs are most potent in mineralization; Adam12+ and Gap43+ FAPs are immune-responsive; and 
Hsd11b1+ FAPs respond to nerve transection (Leinroth et al., 2022). The different activation cues 
and differentiation potentials in each subpopulation of FAPs suggest distinct roles those subsets can 
play in different contexts of skeletal muscle biology. Indeed, dynamic transcriptomic changes in FAP 
subpopulations in response to muscle injury (Scott et al., 2019; De Micheli et al., 2020; Oprescu 
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et al., 2020) or denervation Nicoletti et al., 2020; Proietti et al., 2021; Lin et al., 2022; Nicoletti 
et al., 2023 have been identified in studies that implemented scRNA-seq analysis. Still, the question 
of how FAPs may sense the distant nerve injury and whether FAPs can beneficially contribute to nerve 
regeneration remain largely unknown.

In response to nerve injury, various neurotrophic factors are expressed and secreted by the 
surrounding cells to facilitate regeneration. One of those neurotrophic factors is GDNF, previously 
reported to be expressed robustly by Schwann cells upon nerve injury (Hammarberg et al., 1996; 
Höke et  al., 2002; Arthur-Farraj et  al., 2012; Xu et  al., 2013; Proietti et  al., 2021). Canonical 
GDNF signaling pathway involves two well-known receptors of GDNF: RET and GFRα1. Binding 
of GDNF to GFRα1 induces complex formation with the receptor tyrosine kinase (RTK) RET, which 
initiates the downstream phosphorylation cascade via autophosphorylation upon dimerization (Jing 
et al., 1996; Treanor et al., 1996; Trupp et al., 1996). The downstream phosphorylation cascades 
include the Ras-MAPK pathway, the PI3K-Akt pathway, and the Src family kinase-mediated pathway, 
which are known to promote neuronal survival and neurite outgrowth (Encinas et al., 2001; Sariola 
and Saarma, 2003). Indeed, exogenous delivery of GDNF was shown to promote motor neuron 
survival and enhance axonal growth upon nerve injury, which resulted in improved functional recovery 
(Cintrón-Colón et al., 2020). Though the role and function of GDNF on the regenerating neuron have 
been demonstrated, other possible cellular targets of GDNF that may facilitate the nerve regenera-
tion process remain to be studied.

Here, using the scRNA-seq approach, we aimed to identify the response mechanism of FAPs to 
nerve injury, by uncovering its nerve injury-sensing mechanism and its potentially beneficial effect 
on nerve regeneration. To obtain a comprehensive scRNA-seq database of FAPs’ response to nerve 
injury, FAPs from both chronic, non-regenerating nerve injury (denervation)- and acute, regeneration-
prone nerve injury (crush)-affected muscles were collected at different time points over the course of 
regeneration. As a result, distinct transcriptomic profiles of FAPs at different time points post the two 
types of nerve injuries were captured in single-cell resolution, from which the response mechanism 
of FAPs to nerve injury was identified and validated using mouse models. Specifically, we found that 
upon peripheral nerve injury, GDNF from Schwann cells can activate FAPs, which in turn express BDNF 
to promote remyelination during nerve regeneration. Our study suggests FAPs as an important player 
that actively participates in the nerve regeneration process, of which we believe should be considered 
in future studies aiming for an improved understanding of the peripheral nerve regeneration process.

Results
Single-cell transcriptome profiling of nerve injury-affected FAPs
To establish a comprehensive transcriptome database of nerve injury-affected FAPs at single-cell reso-
lution, we performed scRNA-seq using FAPs isolated from sciatic nerve crush injury (SNC)- or dener-
vation (DEN)-affected muscles at different time points over the course of regeneration (Figure 1A, 
Figure 1—figure supplement 1). Four-time points (3, 7, 14, and 28 days post-injury, hereafter dpi) 
along the regeneration process were chosen for analysis to capture the transcriptomes of FAPs at 
both early and late stages of regeneration. Selection of such time points was based on a previous 
report that showed the reinnervation process of the tibialis anterior (TA) muscle after SNC, where 
Wallerian degeneration was evident at 7 dpi, and reinnervation was mostly completed at 28 dpi 
(Magill et al., 2007). Including the uninjured control, scRNA-seq data from a total of nine samples 
(Uninjured, SNC-3dpi, SNC-7dpi, SNC-14dpi, SNC-28dpi, DEN-3dpi, DEN-7dpi, DEN-14dpi, and 
DEN-28dpi) were obtained via the 10x Genomics platform (Figure 1A). Quality control and filtering 
of the sequenced cells yielded a total of 44,597 cells for further analysis, where 4955.2±1022.8 cells 
were captured from each sample. Prior to downstream analysis, integration (Hao et al., 2021) of 
our scRNA-seq data with a publicly available scRNA-seq data of mononuclear cells from denervated 
muscles at 0, 2, 5, and 15 dpi (Nicoletti et al., 2023) was carried out for data validation. Expectedly, 
most (97.7%) of the filtered cells in our scRNA-seq data clustered with the denervation-affected 
FAPs in the published scRNA-seq data, confirming the validity of the data produced in our study 
(Figure 1—figure supplement 2).
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Distinct response profiles of FAPs upon nerve crush injury versus 
denervation
To look into the chronological transcriptomic changes that occur in FAPs in response to SNC or DEN 
on a global level, we analyzed our scRNA-seq data by samples. Visualization of the scRNA-seq data 
on uniform manifold approximation and projection (UMAP) plots showed similar changes in the early 
stages of regeneration (3 and 7 dpi) compared to uninjured FAPs, regardless of the type of injury 
(Figure 1B). However, as FAPs reached later stages of regeneration (14 and 28 dpi), SNC-affected 
FAPs returned to states similar to uninjured control, while DEN-affected FAPs stayed in the activated 
state (Figure 1B). The similarities and differences observed on the UMAP plots could also be found in 
the differentially expressed gene (DEG) analyses as well as in the hierarchical clustering analysis using 
those DEGs (Figure 2A–D, Figure 2—figure supplement 1). As a result of pairwise DEG analyses 
comparing all nine samples, different numbers of DEGs were identified, of which correlated with the 
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Figure 1. Single-cell transcriptome profiling of nerve injury-affected fibro-adipogenic progenitors (FAPs). (A) Experimental scheme depicting the 
procedures for sample collection and single-cell RNA-sequencing (scRNA-seq). The types of nerve injuries and time points for FAP isolation for 
each sample are specified. (B) Single-cell transcriptome data of nerve injury-affected FAPs displayed separately by samples on uniform manifold 
approximation and projection (UMAP) plots.

© 2024, BioRender Inc. Figure 1A was created using BioRender, and is published under a CC BY-NC-ND license. Further reproductions must adhere to 
the terms of this license.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Fluorescence-activated cell sorting (FACS) isolation of muscle-resident fibro-adipogenic progenitors (FAPs).

Figure supplement 2. Validation of single-cell RNA-sequencing (scRNA-seq) data produced in this study.
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similarities between samples observed on UMAP plots (Figure 1B, Figure 2A–D, Figure 2—figure 
supplement 1A ,B). Hierarchical clustering of the nine samples using all unique DEGs identified from 
the pairwise comparisons showed clustering of uninjured control with SNC-14dpi and SNC-28dpi, 
suggesting FAPs’ return to homeostatic state (Figure 2—figure supplement 1C). On the other hand, 
DEN-14dpi and DEN-28dpi clustered with each other, but not with uninjured control, suggesting the 
chronic activation of FAPs in response to DEN as reported previously (Madaro et al., 2018; Figure 2—
figure supplement 1C). Samples that captured the early responses of FAPs to nerve injuries (3 or 7 
dpi) were clustered together by dpi rather than the type of injury, suggesting similar response profiles 
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Figure 2. Distinct response profiles of f﻿ibro-adipogenic progenitors (FAPs) upon nerve crush injury versus denervation. (A–D) Volcano plots showing 
different numbers of differentially expressed genes (DEGs) identified from comparing sciatic nerve crush (SNC)- versus denervation (DEN)-affected FAPs 
at (A) 3, (B) 7, (C) 14, (D) 28 days post injury (dpi). (E–G) Pathway terms enriched from gene set overrepresentation analyses using g:Profiler. DEGs used 
as input were (E) DEN-28dpi-upregulated versus SNC-28dpi, (F) SNC-28dpi-upregulated versus DEN-28dpi, and (G) DEGs upregulated commonly in 
SNC-3dpi, SNC-7dpi, DEN-3dpi, and DEN-7dpi versus uninjured control.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Differentially expressed gene (DEG) analyses reveal similarities and differences between f﻿ibro-adipogenic progenitors (FAPs) 
affected by sciatic nerve crush (SNC) or denervation (DEN) at different time points.

Figure supplement 2. Expression patterns of Il6 and Stat3 in nerve injury-affected f﻿ibro-adipogenic progenitors (FAPs).

Figure supplement 3. Gene set overrepresentation analyses using differentially expressed genes (DEGs) from pairwise comparisons of the nine single-
cell RNA-sequencing (scRNA-seq) samples.
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of FAPs to both types of nerve injuries (Figure 2—figure supplement 1C). Indeed, the numbers of 
DEGs between SNC-3dpi versus DEN-3dpi and SNC-7dpi versus DEN-7dpi were among the lowest 
identified in the pairwise analyses (Figure 2A and B, Figure 2—figure supplement 1A). Overall, the 
number of DEGs between SNC- and DEN-affected FAPs increased significantly with dpi, showing the 
bifurcation of FAP’s response to the different types of nerve injuries in the later stages of regeneration 
(Figure 2A–D).

In a previous study, chronic activation of the STAT3/IL-6 pathway in FAPs in response to DEN was 
reported (Madaro et al., 2018). Indeed, Il6 was identified as one of the genes upregulated at all 
four-time points in response to DEN compared to uninjured control in our data (Figure 2—figure 
supplement 2A, B). Although it did not pass the fold change (FC) threshold (FC ≥ 2) in the DEG anal-
yses, expression of Stat3 also showed significant chronic upregulation in all DEN-affected FAPs as well 
(Figure 2—figure supplement 2C, D). In response to SNC, however, only transient upregulation of 
both genes was observed (Figure 2—figure supplement 2).

To obtain biological insights on the different responses of FAPs to SNC versus DEN in the later 
stage of regeneration, we subjected the two lists of genes from Figure 2D (28 dpi, SNC_UP and 
DEN_UP) to gene set overrepresentation analysis (ORA) using g: Profiler (Kolberg et al., 2023). From 
both sets of genes, pathways related to tissue regeneration/wound healing were enriched (Figure 2E 
and F, Figure 2—figure supplement 3A, B). In contrast, pathways related to immune cell recruit-
ment, inflammation, and ECM regulation by collagen biosynthesis were enriched specifically in DEN-
28dpi (Figure 2E, Figure 2—figure supplement 3A), which is consistent with the previous report that 
showed the direct contribution of FAPs to fibrosis in denervated muscles (Contreras et al., 2016; 
Madaro et al., 2018). Also, mild immune cell infiltration into affected muscles in response to DEN 
was previously described (Lin et al., 2022; Nicoletti et al., 2023); our results suggest the role of FAPs 
in chemotactic recruitment of immune cells in denervated muscles. In addition, the pathway ‘nega-
tive regulation of neuron apoptosis’ was enriched in DEN-28dpi, suggesting a prolonged attempt of 
FAPs to preserve neurons that must be alive for reinnervation of the denervated muscle (Figure 2E, 
Figure 2—figure supplement 3A). On the other hand, some pathways were exclusively enriched in 
SNC-28dpi, such as negative regulation of chemotaxis and prostaglandin metabolism (Figure  2F, 
Figure 2—figure supplement 3B). It is generally understood that after a successful tissue regener-
ation process, the resolution of the immune response allows for the tissue to return to homeostasis 
(Ortega-Gómez et al., 2013; Aurora and Olson, 2014; Julier et al., 2017); our results suggest the 
role of FAPs in regulating immune resolution near the end of nerve regeneration. Furthermore, the 
role of prostaglandin in peripheral nerve regeneration has recently been described (Forese et al., 
2020; Bakooshli et al., 2023); our ORA results suggested that FAPs may also be involved in the regu-
lation of prostaglandin levels during peripheral nerve regeneration.

To discover biological pathways behind the supposedly similar responses of FAPs to both SNC and 
DEN in the early phases of regeneration, we examined DEGs by comparing SNC-3dpi, SNC-7dpi, 
DEN-3dpi, and DEN-7dpi to uninjured controls. Many of the upregulated genes identified in the DEG 
analyses were shared amongst the four samples (Figure 2—figure supplement 3C). ORA using the 
shared upregulated genes revealed enrichment in pathways that were also enriched in DEN-28dpi 
compared to SNC-28dpi, such as immune cell recruitment and ECM regulation, supporting the idea 
that early-activated states within FAPs persist for a prolonged period in response to DEN (Figure 2E 
and G, Figure 2—figure supplement 3A and D). Collectively, analysis of our scRNA-seq data by 
samples revealed similar response profiles of FAPs to both SNC and DEN in the early stages of regen-
eration, which then bifurcated into chronic activation in response to DEN and return to homeostasis 
in response to SNC, showing correlative behaviors along with the degree of nerve regeneration and 
target muscle reinnervation.

Nerve injury-responsive subsets within FAPs
Although analysis of our scRNA-seq data on the population level provided general insights on how 
FAPs may respond to the different types of nerve injuries, the results could not provide us with 
sufficient clues on how FAPs can sense nerve injuries, or how they may directly contribute to nerve 
regeneration. Thus, we next analyzed our scRNA-seq data on the subpopulation level, hoping to 
distinguish subsets within FAPs that may be more relevant to the context of sensing and responding 
to nerve injury. To identify distinct subsets within nerve injury-affected FAPs, we applied unsupervised 
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clustering to the merged scRNA-seq data of all nine samples following the Seurat-R workflow (Hao 
et al., 2021). As a result, seven clusters with unique gene expression profiles were identified from the 
nerve injury-affected FAPs, with marker genes specifically expressed in each cluster (Figure 3A–C, 
Figure 3—figure supplement 1).

Interestingly, while clusters 4–7 showed little or no significant change in their proportions in 
response to nerve injury, clusters 1–3 exhibited dramatic changes upon nerve injury (Figure 3D and 
E). In particular, cluster 1 was mostly present in uninjured muscles or in muscles where reinnervation 
had occurred to at least some degree (SNC-14dpi and SNC-28dpi) (Magill et al., 2007; Figure 3D 
and E). In contrast, the presence of clusters 2 and 3 were mutually exclusive to cluster 1, such that 
their appearances were transient in response to SNC and chronic upon DEN (Figure 3D and E). Based 
on this mutual exclusivity of the three clusters, we speculated that cluster 1 can sense and respond to 
nerve injuries, and that clusters 2 and 3 may have arisen from cluster 1 upon nerve injury.

To obtain clues on whether such changes between FAP clusters could have actually occurred in 
response to nerve injury, we first performed RNA velocity analysis using R package velocyto.R (La 
Manno et al., 2018). RNA velocities on the UMAP plots predicted transcriptomic flow from cluster 1 
to clusters 2 and 3 in the early stages of regeneration in both SNC- and DEN-affected FAPs, which was 
in line with our speculation (Figure 3—figure supplement 2). Conversely, transcriptomic flow from 
clusters 2 and 3 back to cluster 1 was evident in SNC-affected FAPs in the later stages of regeneration 
(Figure 3—figure supplement 2). However, RNA velocities in DEN-affected FAPs were represented as 
dots instead of arrows on clusters 2 and 3 in the later stages, suggesting an unchanging, chronic state 
of their transcriptomes, which is consistent with the chronic activation of FAPs in response to DEN 
(Madaro et al., 2018; Figure 3—figure supplement 2). Additionally, hierarchical clustering of the 
seven FAP clusters using DEGs enriched in each cluster grouped clusters 1–3 together, supporting our 
speculation that clusters 2 and 3 originate from cluster 1 (Figure 3—figure supplement 3). Recently, 
Hsd11b1-expressing FAPs were identified as the FAP subset that is specifically activated in response 
to nerve transection injury (Leinroth et al., 2022). Since we speculated that cluster 1 in our scRNA-seq 
data can sense and respond to nerve injury, we examined the expressions of marker genes identified 
in the previous report – Hsd11b1, Mme, Ret, and Gfra1 (Leinroth et al., 2022) – in our scRNA-seq 
data. Indeed, all four markers were enriched in cluster 1 in our data (Figure 3—figure supplement 
4). Expressions of marker genes Hsd11b1 and Mme were also enriched in clusters 2 and 3, further 
supporting the idea that those clusters may have arisen from cluster 1 (Figure 3—figure supplement 
4A–C). Together, these data suggest that clusters 1–3 are the dynamic interchanging subsets of FAPs 
that specifically respond to nerve injury, where cluster 1 senses nerve injuries in unperturbed muscles 
and clusters 2 and 3 arise from cluster 1 to respond to nerve injury.

GDNF signaling pathway in the nerve injury-sensing mechanism by 
FAPs
Among the four marker genes expressed in cluster 1, Ret and Gfra1 are well-known as GDNF recep-
tors, where GFRα1 directly binds GDNF, which in turn activates the RTK RET for downstream signal 
transduction (Jing et al., 1996; Treanor et al., 1996; Trupp et al., 1996). Meanwhile, robust but 
specific expression of GDNF by Schwann cells in response to peripheral nerve injury has been reported 
(Hammarberg et al., 1996; Höke et al., 2002; Arthur-Farraj et al., 2012; Xu et al., 2013; Proietti 
et al., 2021). Accordingly, we presumed that FAPs, especially the Ret- and Gfra1-expressing cluster 
1 cells, may sense the distant nerve injury by detecting GDNF secreted from Schwann cells. Notably, 
both Ret and Gfra1 were among the top 10 DEGs specifically enriched in cluster 1, suggesting that 
they can readily respond to GDNF (Figure 4A). In addition, comparing the expression levels of Ret 
and Gfra1 in skeletal muscle-resident mononuclear cell populations isolated by fluorescence-activated 
cell sorting (FACS) revealed robust co-expression of both genes in FAPs, but not as much in other cell 
populations (Figure 4B and C). Thus, FAPs may be the main cell type within skeletal muscle that can 
respond to GDNF secreted by Schwann cells in case of a nerve injury.

To further investigate the relevance of GDNF signaling in the nerve injury-sensing mechanism by 
FAPs, we subjected lists of DEGs enriched in clusters 1–3 to ORA. Genes enriched in cluster 1 returned 
pathways ‘GDNF receptor signaling pathway,’ ‘regulation of cellular response to growth factor stim-
ulus,’ and ‘positive regulation of peptidyl-tyrosine phosphorylation,’ where tyrosine residues on the 
RTK RET is known to be phosphorylated upon activation (Jing et al., 1996; Treanor et al., 1996; 

https://doi.org/10.7554/eLife.97662
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Figure 3. Nerve injury-responsive subsets within f﻿ibro-adipogenic progenitors (FAPs). (A) Seven clusters were identified by unsupervised clustering 
using all nine single-cell RNA-sequencing (scRNA-seq) samples obtained in this study displayed on the uniform manifold approximation and projection 
(UMAP) plot. (B) Violin plots showing expressions of unique marker genes identified in each cluster. (C) Dotplot showing the expression levels and 
percentages of the top 10 differentially expressed genes (DEGs) enriched in each cluster. (D) UMAP plots of clustered scRNA-seq data displayed 
separately by samples. (E) Barplots showing the proportions of the seven clusters that comprise each scRNA-seq sample of nerve injury-affected FAPs. 
For 0 dpi, data from the same uninjured control sample is displayed for both SNC and DEN.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Marker gene expression in each f﻿ibro-adipogenic progenitor (FAP) cluster.

Figure supplement 2. Transcriptomic flow between f﻿ibro-adipogenic progenitor (FAP) clusters.

Figure supplement 3. Relatedness between f﻿ibro-adipogenic progenitor (FAP) clusters.

Figure supplement 4. Expression of nerve transection-responsive f﻿ibro-adipogenic progenitor (FAP) subset-specific genes reported by Leinroth et al., 
2022 in the seven FAP clusters identified in this study.

https://doi.org/10.7554/eLife.97662
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Figure 4. Glial cell line-derived neurotrophic factor (GDNF) signaling pathway in the nerve injury-sensing mechanism by f﻿ibro-adipogenic progenitors 
(FAPs). (A) Top 10 genes specifically enriched in cluster 1 FAPs. p-values were drawn from the Wilcoxon rank sum test. (B, C) RT-qPCR results show the 
expressions of (B) Ret and (C) Gfra1 in mononuclear cells isolated from uninjured muscles by fluorescence-activated cell sorting (FACS). MuSC, muscle 
stem cells; Lin+, lineage-positive cells; DN, Vcam1/Sca1 double-negative cells. n=4; one-way ANOVA with Bonferroni’s post hoc test. *p<0.05, **p<0.01, 
***p<0.001, n.s., not significant. (D) Shared pathway terms commonly identified from gene set overrepresentation analyses using differentially expressed 
genes (DEGs) specifically upregulated in clusters 1, 2, or 3. See Figure 4—figure supplements 1–3 for the full overrepresentation analysis (ORA) results. 
(E) Venn diagram showing the results from TRRUST analyses using DEGs enriched in clusters 2 and 3. Transcription factors predicted to regulate genes 
upregulated in each cluster are listed. (F) Simplified diagram of the GDNF/RET-MAPK signaling pathway. Blue: GDNF ligand; orange: GDNF receptor 
RET expressed in cluster 1; pink: downstream cascade genes expressed in clusters 1–3; red: transcription factors commonly predicted to regulate 
upregulated genes in clusters 2 and 3.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Pathway terms enriched in cluster 1 f﻿ibro-adipogenic progenitors (FAPs).

Figure supplement 2. Pathway terms enriched in cluster 2 f﻿ibro-adipogenic progenitors (FAPs).

Figure supplement 3. Pathway terms enriched in cluster 3 f﻿ibro-adipogenic progenitors(FAPs).

Figure supplement 4. Glial cell line-derived neurotrophic factor (GDNF) signaling pathway within the MAPK signaling pathway.

https://doi.org/10.7554/eLife.97662
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Trupp et al., 1996; Figure 4—figure supplement 1). The two latter pathways were also found in the 
ORA results using DEGs enriched in clusters 2 and 3, supporting the idea that those clusters originate 
from cluster 1 upon nerve injury (Figure 4D, Figure 4—figure supplements 1–3). The pathway ‘posi-
tive regulation of ERK1/2 cascade’ was enriched in cluster 2, suggesting the involvement of GDNF-
RET-Ras-ERK signaling cascade within the MAPK signaling pathway in this cluster, which is one of the 
known downstream pathways of canonical GDNF signaling (Airaksinen and Saarma, 2002; Sariola 
and Saarma, 2003; Kanehisa et al., 2023; Figure 4—figure supplements 2 and 4). In addition to 
ORA, we predicted upstream transcription factors (TFs) that could have regulated the expressions 
of the DEGs enriched in the two activated FAP subsets, clusters 2 and 3, using TRRUST (Han et al., 
2018). As a result, TFs Fos, Jun and NF-κB (Nfkb1, Nfkb2) were predicted from both lists of DEGs, all 
of which are known to act downstream of the GDNF/RET-induced MAPK signaling pathway (Fielder 
et al., 2018; Kanehisa et al., 2023; Figure 4E and F, Figure 4—figure supplement 4, Supplemen-
tary file 1a and b). Collectively, robust and specific co-expression of GDNF receptors in cluster 1, 
together with the prediction of RTK activation and involvement of GDNF signaling pathway down-
stream TFs in clusters 2 and 3, suggests that GDNF signaling could be the mechanism by which FAPs 
sense the distant nerve injury, where local Schwann cells act as the GDNF source upon nerve injury.

The GDNF-BDNF axis as FAP’s response mechanism to nerve injury
Next, to discover how FAPs may contribute to nerve regeneration, we screened the list of genes 
enriched in clusters 2 and 3 that were predicted to be downstream of the GDNF signaling pathway 
to identify candidate effector genes. From the TRRUST analysis results, 44 genes were identified to 
be regulated by either Fos, Jun, or NF-κB (Figure 5A, Supplementary file 1a, b and c). Since FAPs 
themselves do not constitute the neural components within skeletal muscle, we reasoned that secreted 
factors from FAPs would most likely exert a beneficial effect on the regenerating nerves. Also, consid-
ering the effector gene’s potential function in supporting nerve regeneration, we presumed that it 
regulates neurons or glial cells. Moreover, we anticipated that expression of the effector gene would be 
limited to the context of nerve injury and regeneration, since the vast majority of FAPs are in a quies-
cent state in unperturbed adult muscles (Scott et al., 2019). Thus, we applied the following criteria to 
narrow down our candidate gene list: (1) genes that are known to code secreted proteins, (2) genes that 
are known to regulate neurons or glial cells, and (3) genes that are expressed exclusively in activated 
FAPs in response to nerve injury (Figure 5A, Supplementary file 1c). Unexpectedly, after filtering out 
genes that did not fit the three criteria, only Bdnf remained in our candidate gene list that could act 
as the effector secreted by FAPs upon nerve injury to support nerve regeneration (Figure 5A). Expres-
sion patterns of Bdnf in FAPs upon nerve injury showed transient upregulation in SNC-affected FAPs, 
whereas chronic expression of Bdnf was observed in DEN-affected FAPs, showing correlation with 
its potential requirement during nerve regeneration (Figure 5B). The expression of Bdnf was mostly 
limited to cluster 2 (Figure 5B and C), where pathway analysis and TF prediction suggested the involve-
ment of GDNF-RET-Ras-ERK-Fos signaling cascade in this subset of FAPs (Figure 4D–F, Figure 4—
figure supplements 1–4). Accordingly, we hypothesized that FAPs secrete BDNF in response to GDNF 
from Schwann cells upon nerve injury, to actively take part in the regeneration process.

To validate our hypothesis in vivo, we first examined the expression profiles of Gdnf in Schwann 
cells and Bdnf in FAPs at early time points in response to SNC, using Plp1CreER; Rosa26LSL-tdTomato mice to 
specifically label and hence isolate Schwann cells (Doerflinger et al., 2003; Figure 5D). Expectedly, 
we could observe sequential upregulation of Gdnf and Bdnf from Schwann cells and FAPs, respec-
tively, where Gdnf levels peaked at 1 dpi in Schwann cells, followed by a gradual increase of Bdnf 
expression in FAPs, which peaked at 3 dpi (Figure 5E). Following mRNA expression validation in vivo, 
we performed western blot analysis using FAPs isolated from either SNC-affected muscles at 7 dpi 
or from the contralateral, uninjured muscles to validate the expression of BDNF protein upon nerve 
injury (Figure 5—figure supplement 1). FAPs from both uninjured muscles and SNC-affected muscles 
showed robust expression of PDGFRα, a well-known marker for FAPs (Joe et  al., 2010; Uezumi 
et al., 2010), indicating successful isolation and protein extraction from the sorted FAPs (Figure 5F). 
However, unlike PDGFRα, the mature form of BDNF protein could only be detected in SNC-affected 
FAPs, but not in uninjured FAPs, showing correlative results with the mRNA expression pattern of Bdnf 
in FAPs upon nerve injury (Figure 5E and F). These results demonstrate the expression of BDNF in 
nerve injury-affected FAPs, but not in uninjured FAPs, on both mRNA and protein levels.

https://doi.org/10.7554/eLife.97662
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Figure 5. The GDNF-BDNF axis as f﻿ibro-adipogenic progenitors (FAPs) response mechanism to nerve injury. (A) Identification of candidate genes 
expressed in FAPs in response to glial cell line-derived neurotrophic factor (GDNF) that may contribute to nerve regeneration. Number of genes that 
fit into each criterion is indicated. (B) Expression of Bdnf in each scRNA-seq sample shown on uniform manifold approximation and projection (UMAP) 
plots. (C) Violin plot displaying the expression levels of Bdnf in the seven FAP clusters. (D) Scheme for sampling Schwann cells and FAPs at different time 
points post sciatic nerve crush (SNC) for gene expression analyses. (E) RT-qPCR results showing expression levels of Gdnf in Schwann cells (orange dot 
and line, left y-axis) and Bdnf in FAPs (blue dot and line, right y-axis) at different time points post-SNC. n=4, except for 0 and 2 dpi, where n=3. One-way 
ANOVA with Bonferroni’s post hoc test. *p<0.05, ***p<0.001, n.s., not significant. (F) Western blot results showing BDNF protein expression in PDGFRα+ 
FAPs isolated from SNC-affected or uninjured contralateral muscles at 7 dpi. n=3. Mature form of BDNF is indicated with a red asterisk. Quantified 
values normalized to GAPDH is indicated below each protein. See Figure 5—figure supplement 1 for the experimental scheme. (G) Scheme for 
intramuscular injection of either PBS or recombinant mouse GDNF protein, with the time point for FAP isolation post-injection indicated. (H) RT-qPCR 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.97662
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Next, to validate the sufficiency of GDNF signaling in inducing Bdnf expression in FAPs in vivo, 
we injected recombinant mouse GDNF protein into the TA and the two gastrocnemius (GA) muscles 
(lateral and medial GA), from which FAPs were FACS-isolated 48 hr post-injection to investigate the 
expression of Bdnf (Figure  5G). Compared to PBS control, intramuscular injection of GDNF suffi-
ciently induced Bdnf expression in FAPs, even in the absence of a nerve injury (Figure 5H). Conversely, 
to show the necessity of GDNF signaling in the upregulation of Bdnf in FAPs upon nerve injury, we 
injected either IgG control or anti-GDNF antibodies into the TA and GA muscles 24 hr after SNC, 
and FACS-isolated FAPs 48  hr post-injection for analysis. Though the results were not statistically 
significant, injection of GDNF-blocking antibodies showed a tendency to reduce Bdnf expression 
compared to IgG-injected controls, which is in support of our hypothesis (Figure 5—figure supple-
ment 2). Together, we suggest that FAPs can respond to nerve injury via the GDNF-BDNF axis, since 
recombinant GDNF protein could sufficiently induce Bdnf expression in FAPs without nerve injury, and 
reduced GDNF activity could weaken Bdnf expression in the nerve injury-affected FAPs.

Remyelination by FAP-derived BDNF during peripheral nerve 
regeneration
Although BDNF is known to function in processes such as axon elongation (Oudega and Hagg, 
1999; English et al., 2013), survival of neurons (Ghosh et al., 1994; Baydyuk and Xu, 2014), and 
myelination by Schwann cells (Zhang et al., 2000; Chan et al., 2001; Xiao et al., 2009), the role 
of BDNF secreted by FAPs in nerve regeneration is unknown. To find out how FAP-derived BDNF 
can contribute to nerve regeneration, we produced conditional knockout (cKO) mice where Bdnf is 
specifically inactivated in mesenchymal progenitors including FAPs, by crossing Prrx1Cre mice (Logan 
et al., 2002; Kim et al., 2022; Leinroth et al., 2022; Hann et al., 2024) with Bdnf-floxed (Bdnffl) 
mice (Prrx1Cre; Bdnffl/fl, hereafter cKO) (Figure 6A, Figure 6—figure supplement 1A). Inactivation of 
Bdnf in FAPs in the cKO mice was confirmed on both genomic DNA and mRNA levels (Figure 6—
figure supplement 1B, C). Though Cre expression in Prrx1-expressing cells occurs from embryonic 
day 9.5 (Logan et al., 2002), no visible phenotypes were observed in the postnatal, juvenile, and 
adult cKO mice compared to littermate controls (hereafter, Ctrl). However, upon SNC in the right hind-
limb, cKO mice displayed a delay in nerve regeneration compared to Ctrl, measured by compound 
muscle action potential (CMAP) amplitude and latency via electromyography (EMG) on the GA muscle 
(Figure 6A–D, Figure 6—figure supplement 1D, E). At 4 weeks post-injury (wpi), nerve regeneration 
in both Ctrl and cKO mice showed insufficient recovery in the right, injured GA compared to the left, 
uninjured GA, where lower amplitude and prolonged latency in CMAP was observed (Figure 6B–D). 
However, at 6 wpi, while CMAP amplitude and latency in the left and right GAs became comparable 
in Ctrl mice, recovery of such values were stalled at levels comparable to 4 wpi in the cKO mice 
(Figure 6B–D). By 12 wpi, electrophysiological functions of the injured nerves became statistically 
comparable to that of its contralateral counterpart in the cKO mice, indicating a delayed regeneration 
in the cKO mice (Figure 6B–D).

Generally, a decrease in CMAP amplitude and prolonged CMAP latency can be explained by two 
main causes: axonal loss and defective myelination (Mallik and Weir, 2005; Chung et al., 2014). Since 
complete regeneration of the injured nerves on the electrophysiological level could be achieved after 
a sufficient period of time in the cKO mice (Figure 6B–D), we presumed that axonal loss would not 
have occurred, since it would result in permanent defects by loss of motor units. Instead, we thought 

results show the expression level of Bdnf in FAPs 48 hr post intramuscular injection of either PBS (n=4) or GDNF (n=5). Unpaired t-test with Welch’s 
correction. **p<0.01.

© 2024, BioRender Inc. Figure 5G was created using BioRender, and is published under a CC BY-NC-ND license. Further reproductions must adhere to 
the terms of this license.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. The zip file contains raw western blot images, a marker image, and a marker-merged, labeled image obtained for Figure 5F.

Figure supplement 1. Scheme for western blot analysis.

Figure supplement 2. Decreased intramuscular glial cell line-derived neurotrophic factor (GDNF) activity can weaken Bdnf induction in f﻿ibro-
adipogenic progenitors (FAPs) upon nerve injury.

Figure 5 continued
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Figure 6. Remyelination by f﻿ibro-adipogenic progenitor (FAP)-derived BDNF during peripheral nerve regeneration. (A) Experimental scheme 
displaying mice used and the time points selected for electromyography (EMG) measurements and sciatic nerve dissection. wpi, weeks post-injury. 
(B) Representative EMG measurement results of both injured and uninjured gastrocnemius (GA) muscles from Ctrl or conditional knockout (cKO) mice at 
the indicated time points post-sciatic nerve crush (SNC). (C, D) Quantified results of EMG measurement showing (C) compound muscle action potential 
(CMAP) amplitude and (D) CMAP latency. n=5. One-way ANOVA with Bonferroni’s post hoc test. *p<0.05, **p<0.01, ***p<0.001, n.s., not significant. 
(E) Representative images showing toluidine blue-stained, semi-thin cross-sections of sciatic nerves dissected from Ctrl or cKO mice at 6 wpi. Scale bars, 
10 μm. (F–G) Quantification of (F) calculated G-ratio values and (G) axon diameters from analyzing toluidine blue-stained sciatic nerve sections dissected 
from Ctrl or cKO mice at 6 wpi. 50 axons were randomly selected from each sciatic nerve for quantification. n=5. Mann-Whitney U test. ***p<0.001, n.s., 
not significant.

© 2024, BioRender Inc. Figure 6A was created using BioRender, and is published under a CC BY-NC-ND license. Further reproductions must adhere to 
the terms of this license.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Figure supplement 1. Validation of conditional knockout (cKO) mice used in this study and methods used for analysis.

Figure 6 continued on next page
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that defective myelination could have occurred in the cKO mice, considering the fact that BDNF is 
already known to promote remyelination during peripheral nerve regeneration (Zhang et al., 2000; 
Chan et al., 2001; Zheng et al., 2016), and that defective myelination alone can affect both CMAP 
amplitude and latency (Mallik and Weir, 2005). Thus, we investigated the effect of conditional Bdnf 
inactivation in FAPs on regenerative myelination by examining the sciatic nerves from Ctrl versus cKO 
mice at 6 wpi, when the delayed functional recovery of the injured nerves in the cKO mice was promi-
nent (Figure 6A–D). Toluidine blue staining of the semi-thin sections of injured sciatic nerves revealed 
significantly reduced myelin thickness in the cKO mice compared to Ctrl mice (Figure 6E). Indeed, 
higher G-ratio values were calculated from cKO mice compared to Ctrl, confirming the reduced myelin-
ation in the regenerating nerves in cKO mice (Figure 6F, Figure 6—figure supplement 1F–H). This 
decrease in myelin thickness was independent from axon diameter, which were comparable in both 
Ctrl and cKO mice, implying that no axonal loss or defect had occurred in the cKO mice compared 
to controls (Figure 6G). Taken together, our results revealed the direct involvement of FAP-derived 
BDNF in the remyelination process during peripheral nerve regeneration, such that inadequate levels 

Figure supplement 1—source data 1. The zip file contains raw DNA electrophoresis gel images and labeled images obtained for Figure 6—figure 
supplement 1B.
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of Bdnf expression in FAPs caused delayed remyelination and hence delayed nerve regeneration in 
the cKO mice.

Implication of FAP-derived BDNF in the age-related delay in nerve 
regeneration
Finally, to seek the clinical relevance of Bdnf expression in FAPs during nerve regeneration, we 
compared the expression levels of Bdnf in adult (5–6 months) versus aged (24 months) mice in FAPs 
post-SNC. At 7 dpi, Bdnf expression was significantly reduced in the aged mice compared to adult 
mice (Figure 7A and B). Such a difference could be one of the factors that lead to the delayed or 
failed regeneration of injured nerves in the elderly compared to healthy, young adults, suggesting the 
clinical role of FAPs in a timely, successful peripheral nerve regeneration process.

Discussion
Traumatic injury to the peripheral nerve has severe consequences, including lifelong paralysis of the 
injured limb that can compromise the quality of life significantly (Grinsell and Keating, 2014). Thus, 
understanding the regeneration process of the peripheral nerves is fundamental for treating the 
potentially devastating injury. Previously, several cellular components in and outside the injured nerve 
were discovered to actively participate in the regeneration process, including the injured neurons 
(Hanz et al., 2003), glial cells (Arthur-Farraj et al., 2012), immune cells (Mueller et al., 2001; Kalinski 
et al., 2020), and nerve-resident mesenchymal cells (Parrinello et al., 2010; Toma et al., 2020), via 
diverse mechanisms so that the nerve can regain its function (Scheib and Höke, 2013). In this study, 
we investigated the response mechanism of muscle-resident FAPs to both acute and chronic periph-
eral nerve injury via scRNA-seq, and revealed that this population of cells can also actively take part 
in the nerve regeneration process. Here, we discovered that muscle-resident FAPs can recognize the 
distant nerve injury by sensing GDNF secreted by Schwann cells. Though GDNF secretion by Schwann 
cells in response to nerve injury had previously been recognized (Hammarberg et al., 1996; Höke 
et al., 2002; Arthur-Farraj et al., 2012; Xu et al., 2013; Proietti et al., 2021), we identified FAPs 
as a major target cell population of GDNF within skeletal muscle, based on the enriched expression 
of GDNF receptors. In-depth, exploiting the technical advantage of scRNA-seq, we suggested that 
a subset of FAPs, named cluster 1 in this study, can sense the local GDNF by expressing GDNF 
receptors Ret and Gfra1, and that upon GDNF sensing, cluster 1 FAPs turn into clusters 2 and 3 to 
contribute to the nerve regeneration process. Specifically, we discovered that FAPs, especially the 
F2rl1-expressing cluster 2, express Bdnf in response to nerve injury and/or GDNF, which in turn was 
shown to promote the remyelination process by Schwann cells during nerve regeneration, using our 
cKO mouse model (Figure 7C). Since epineurial and perineurial, but not endoneurial mesenchymal 
cells share their origins with the muscle-resident FAPs and, therefore, are Prrx1-positive (Joseph 
et al., 2004; Carr et al., 2019), the possibility that the delayed remyelination observed in our cKO 
mice could be due to the combined effect of Bdnf depletion in both muscle- and nerve-resident 
mesenchymal cells cannot be eliminated. To resolve such an issue, further investigations using muscle-
resident FAP-specific Cre mouse lines are required, but such a line is currently unavailable as no such 
specific marker has been found. Nevertheless, our findings show that muscle-resident FAP-derived 
BDNF is indeed important for nerve regeneration, since intramuscular injection of recombinant BDNF 
can sufficiently accelerate the nerve regeneration process (Zheng et  al., 2016). Conversely, intra-
muscular injection of BDNF-neutralizing antibodies can sufficiently delay nerve regeneration (Zheng 
et al., 2016). Thus, endogenous supply of intramuscular BDNF by the muscle-resident FAPs in our Ctrl 
mice would likely have supported remyelination by Schwann cells, while the lack of such BDNF supply 
by FAPs in our cKO mice would have resulted in delayed remyelination. Also, we found that while 
muscle-resident FAPs robustly express both GDNF receptor genes, neither epineurial nor perineurial 
mesenchymal cells express significant levels of Ret and Gfra1 (Carr et al., 2019; Toma et al., 2020; 
Zhao et al., 2022; Figure 8), implying that the GDNF-BDNF axis found in this study could be valid 
uniquely in muscle-resident FAPs. Collectively, we suggest that muscle-resident mesenchymal progen-
itors can directly contribute to nerve regeneration via the GDNF-BDNF axis (Figure 7C), of which was 
previously unidentified; we suggest that in future studies regarding peripheral nerve regeneration, 
active participation of this intramuscular mesenchymal population should be taken into consideration. 

https://doi.org/10.7554/eLife.97662
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In that process, our scRNA-seq data may provide valuable insights, which may lead to additional 
discoveries on FAP’s contributions to nerve regeneration by other mechanisms, and/or provide clues 
on the cell-to-cell communications of FAPs with other cell types that may lead to facilitation of the 
regeneration process.

Here, we have primarily investigated the roles of Ret-expressing and F2rl1-expressing FAPs in 
sensing and responding to nerve injury, respectively. However, possibilities that other subpopulations 
can exert distinct beneficial effects on nerve regeneration remain largely unexplored. For example, 
although identified as a nerve injury-relevant subpopulation in this study, specific contributions of 
the Alkal2-expressing cluster 3 FAPs to nerve regeneration are yet to be discovered. Identification of 
effector genes such as Bdnf from this subpopulation may lead to the discovery of an additional mech-
anism by which FAPs can contribute to nerve regeneration. Although other subpopulations (clusters 
4–7) did not exhibit dramatic fluctuations in population percentage, some of the genes expressed 
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specifically in those subpopulations showed patterns that followed the regeneration process 
(Figure 9). Such gene expression patterns suggest subpopulation-specific functions even in the less 
dynamic subpopulations within FAPs in peripheral nerve regeneration, and require further investiga-
tions to reveal their possible contributions.

The role of BDNF in peripheral nerve regeneration has been identified previously, where it was 
found to promote both intrinsic axonal regeneration in neurons as well as remyelination by Schwann 
cells (Zhang et  al., 2000; Chan et  al., 2001; Zheng et  al., 2016). In such circumstances, various 
cellular sources of BDNF have been identified. Bone marrow transplantation of wild-type cells into Bdnf 
heterozygotic knockout mice revealed the involvement of bone marrow-derived cells in expressing 
Bdnf that can promote nerve regeneration in the sciatic nerve (Takemura et al., 2012). Schwann cells 
themselves are cellular sources of BDNF during nerve regeneration (Wilhelm et al., 2012). In this 
study, we showed that BDNF from FAPs can also promote myelination of the regenerating axons post-
injury, suggesting FAPs as an additional cellular source of BDNF in peripheral nerve regeneration. The 
existence of cellular sources of BDNF other than FAPs such as Schwann cells would provide an expla-
nation for the delayed, but not failed, remyelination in our Bdnf cKO mice, where complete regener-
ation had occurred after a sufficient amount of time, despite the lack of Bdnf expression in FAPs. Still, 
ablation of Bdnf in FAPs displayed significant delays in the remyelination process during nerve regen-
eration, suggesting their requirement in the timely regeneration process of injured nerves. Meanwhile, 
scRNA-seq data of all mononuclear cells from denervated muscles (Nicoletti et al., 2023) suggested 
expression of Bdnf in tenocytes and pericytes in addition to Schwann cells and FAPs (Figure 10A 
and B). Although this may imply the involvement of those cellular components in providing BDNF 
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for nerve regeneration, expression of Bdnf in such cells were not altered as significantly in response 
to nerve injury as in FAPs or Schwann cells (Figure 10C). Moreover, while Ret-expressing FAPs and 
Schwann cells are known to be in proximity to the NMJ or relevant nerve regeneration sites (Leinroth 
et al., 2022), such locational enrichment of tenocytes and pericytes have not been reported so far. 
Thus, it is likely that FAPs, together with Schwann cells, are the main sources of BDNF within skeletal 
muscle that can act in the remyelination process during peripheral nerve regeneration.

Aging is one of the well-known factors that can slow down the nerve regeneration process (Verdú 
et al., 2000; Maita et al., 2023). Since multiple cell types are known to participate in this process 
(Scheib and Höke, 2013), the determination of the cell types that can cause age-related delays in 
nerve regeneration is important for the development of therapeutic approaches targeting the rele-
vant cell types. Of note, previous research emphasized the importance of niche factors, rather than 
the intrinsic regenerative capacity of the injured neurons, in the age-related decline in nerve regener-
ation (Painter et al., 2014). Specifically, the inability of Schwann cells to adopt repair cell phenotypes 
has been pointed out as one of the age-related changes (Painter et al., 2014; Wagstaff et al., 2021). 
In addition, age-related changes in immune cells, especially macrophages, were suggested as causal 
factors that delay nerve regeneration (Büttner et al., 2018). In particular, chronic inflammatory pheno-
types were shown to interfere with the remyelination process by Schwann cells (Büttner et al., 2018), 
and failed macrophage infiltration in the early stages of regeneration resulted in defective Wallerian 
degeneration and myelin debris clearing (Scheib and Höke, 2016). In addition to the involvement 
of Schwann cells and immune cells, we have identified muscle-resident FAPs as an additional cellular 
component that can contribute to nerve regeneration, by promoting remyelination via BDNF secre-
tion. Surprisingly, expression of Bdnf by FAPs was significantly reduced in aged mice compared to 
adult mice, suggesting the clinical relevance of FAP’s involvement in the age-related delay in periph-
eral nerve regeneration. We believe that further studies on age-related changes in FAPs may provide 
valuable clues to understanding clinical observations from aged individuals, which can lead to the 
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development of additional therapeutic strategies that include FAPs as target cells in treating both 
young and aged nerve injury patients.

Materials and methods

 Continued on next page

Key resources table 

Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Antibody
APC anti-mouse CD31 (Rat 
monoclonal) BioLegend Cat# 102510, RRID:AB_312917 FACS, 1:100

Antibody
APC anti-mouse CD45 (Rat 
monoclonal) BioLegend Cat# 103112, RRID:AB_312977 FACS, 1:100

Antibody
PE anti-mouse TER-119 
(Rat monoclonal) Biolegend Cat# 116208, RRID:AB_313709 FACS, 1:100

Antibody
Biotin anti-mouse CD106 
(Vcam1) (Rat monoclonal) Biolegend Cat# 105704, RRID:AB_313205 FACS, 1:100

Antibody
FITC anti-mouse Ly-6A/E 
(Sca1) (Rat monoclonal) BD Pharmingen Cat# 553335, RRID:AB_394791 FACS, 1:100

Antibody
anti-GAPDH (rabbit 
polyclonal) Bethyl Laboratories Cat# A300-641A, RRID:AB_513619 WB, 1:1000

Antibody
anti-PDGFRα (rabbit 
polyclonal) Santa Cruz Biotechnology Cat# sc-338, RRID:AB_631064 WB, 1:200

Antibody
anti-BDNF (rabbit 
polyclonal) Alomone Labs Cat# ANT-010, RRID:AB_2039756 WB, 1:1000

Antibody
anti-GDNF (rabbit 
polyclonal) Alomone Labs Cat# ANT-014, RRID:AB_2039876 10 μg per injection

Antibody
Normal rabbit IgG 
(polyclonal) Sino Biological Cat# CR1, RRID:AB_3073921 10 μg per injection

Antibody

horseradish peroxidase-
conjugated anti-rabbit IgG 
(goat polyclonal) Promega Cat# W4011, RRID:AB_430833 1:10,000

Chemical compound, 
drug Tamoxifen Sigma-Aldrich Cat# T5648

Chemical compound, 
drug

2,2,2-Tribromoethanol 
(Avertin) Sigma-Aldrich Cat# T48402

Chemical compound, 
drug

7-aminoactinomycin D 
(7-AAD) Sigma-Aldrich Cat# SML1633 1:1000

Chemical compound, 
drug PE/Cyanine7 Streptavidin Biolegend Cat# 405206 1:100

Chemical compound, 
drug TRIzol Reagent Invitrogen Cat# 15596–018

Chemical compound, 
drug Paraformaldehyde Sigma-Aldrich Cat# P6148

Chemical compound, 
drug Sodium cacodylate buffer Electron Microscopy Sciences Cat# 11652

Chemical compound, 
drug Osmium tetroxide Electron Microscopy Sciences Cat# 19190

Chemical compound, 
drug Uranyl acetate solution Electron Microscopy Sciences Cat# 22400

Chemical compound, 
drug Propylene oxide Tokyo Chemical Industry Cat# E0016

Chemical compound, 
drug Spurr’s resin Electron Microscopy Sciences Cat# 14300

Chemical compound, 
drug Toluidine blue Sigma-Aldrich Cat# 89640

Chemical compound, 
drug Sodium borate Sigma-Aldrich Cat# B9876

Strain, strain 
background (Mus 
musculus) wild type B6: C57BL/6 J The Jackson Laboratory RRID:IMSR_JAX:000664
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Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Strain, strain 
background (Mus 
musculus)

Prrx1Cre: B6.Cg-Tg(Prrx1-
cre)1Cjt/J The Jackson Laboratory RRID:IMSR_JAX:005584

Strain, strain 
background (Mus 
musculus) Bdnffl: Bdnftm3Jae/J The Jackson Laboratory RRID:IMSR_JAX:004339

Strain, strain 
background (Mus 
musculus)

Plp1CreER: B6.Cg-Tg(Plp1-
cre/ERT)3Pop/J The Jackson Laboratory RRID:IMSR_JAX:005975

Strain, strain 
background (Mus 
musculus)

Rosa26LSL-tdTomato: B6.Cg-
Gt(ROSA)26Sortm14(CAG-

tdTomato)Hze/J The Jackson Laboratory RRID:IMSR_JAX:007914

Peptide, recombinant 
protein

Recombinant mouse 
GDNF Sigma-Aldrich Cat# SRP3200 10 μg/ml, 10 μl per injection

Commercial assay 
or kit

Chromium Next GEM 
Single Cell 3ʹ Kit v3.1 10 X Genomics Cat# PN-1000268

Commercial assay 
or kit

ReverTra Ace qPCR RT 
Master Mix Toyobo Cat# FSQ-201

Commercial assay 
or kit

ORA SEE qPCR Green 
ROX L Mix HighQu Cat# QPD0550

Software, algorithm CellRanger v3.1.0 10 X Genomics RRID:SCR_023221

Software, algorithm Velocyto v0.17 La Manno et al., 2018 RRID:SCR_018167

Software, algorithm R package Seurat v4.3.0 Hao et al., 2021 RRID:SCR_016341

Software, algorithm
R package SeuratWrappers 
v0.3.1 Satija Lab RRID:SCR_022555

Software, algorithm
R package pheatmap 
v1.0.12 pheatmap RRID:SCR_016418

Software, algorithm R package velocyto.R v0.6 La Manno et al., 2018 RRID:SCR_018167

Software, algorithm Cytoscape v3.10.1 Shannon et al., 2003 RRID:SCR_003032

Software, algorithm EnrichmentMap v3.3.6 Merico et al., 2010 RRID:SCR_016052

Software, algorithm AutoAnnotate v1.4.1 Kucera et al., 2016 https://apps.cytoscape.org/apps/autoannotate

Software, algorithm ImageJ v1.51 NIH RRID:SCR_003070

Software, algorithm GRatio for ImageJ Goebbels et al., 2010 RRID:SCR_015580 http://gratio.efil.de/

Software, algorithm Prism v5.01 GraphPad RRID:SCR_002798

Software, algorithm R v4.2.1
The R Project for Statistical 
Computing RRID:SCR_001905

Other DMEM/High glucose HyClone Cat# SH30243.01 Medium used during FACS isolation of cells

Other
Horse serum, heat 
inactivated Gibco Cat# 26050–088 Serum used during FACS isolation of cells

Other Collagenase, type 2 Worthington Biochemical Cat# LS004177 Dissociation enzyme used during FACS isolation of cells

Other Dispase II Gibco Cat# 17105–041 Dissociation enzyme used during FACS isolation of cells

Other HiSeq X Ten Illumina Cat# SY-412–1001 scRNA-seq device

Other TRRUST v2 Han et al., 2018 RRID:SCR_022554 https://www.grnpedia.org/trrust/

Other KEGG PATHWAY Database Kanehisa Laboratories RRID:SCR_018145 https://www.genome.jp/kegg/pathway.html

Other g:Profiler Kolberg et al., 2023 RRID:SCR_006809 https://biit.cs.ut.ee/gprofiler/gost

Other Isolated Pulse Stimulator A-M Systems Model 2100 Electric pulse generator used during CMAP measurement

Other Data Recorder iWorx IX-RA-834 Data recorder used during CMAP measurement

Other Ultramicrotome Leica EM UC7 Used for sciatic nerve semi-thin section generation

Other Light microscope Thermo Fisher Scientific EVOS FL Auto 2 Used for imaging toluidine blue-stained sciatic nerve sections
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Animals
C57BL/6  J (RRID:IMSR_JAX:000664), Prrx1Cre (RRID:IMSR_JAX:005584), Bdnffl (RRID:IMSR_
JAX:004339), Plp1CreER (RRID:IMSR_JAX:005975), and Rosa26LSL-tdTomato (RRID:IMSR_JAX:007914) mice 
were all obtained from The Jackson Laboratory. To generate Prrx1Cre; Bdnffl/fl mice, Prrx1Cre/+; Bdnffl/+ 
males; and Bdnffl/fl females were crossed to avoid germline recombination in the female reproductive 
cells, and littermates were used as controls. To generate Plp1CreER; Rosa26LSL-tdTomato mice, Plp1CreER/+ 
mice were crossed with Rosa26LSL-tdTomato/+ mice, and the line was kept by breeding Plp1CreER/+; Rosa26LSL-

tdTomato/LSL-tdTomato males; and females. Only mice that had the Plp1CreER allele was used. Primers used for 
genotyping are listed in Supplementary file 1d. All mice were bred on the B6 background, except for 
the Prrx1Cre; Bdnffl/fl mice, and littermates that were kept in the mixed B6, 129S4, and BALB/c back-
ground. All mice were housed in a specific-pathogen-free (SPF) animal facility, with a 12 hr light/12 hr 
dark cycle at room temperature (RT, 22℃) and 40–60% humidity, and were fed with a normal chow 
diet and water ad libitum. Tamoxifen administration, sciatic nerve crush injury, denervation, and intra-
muscular injection of GDNF or GDNF-blocking antibodies were all given to 3–4  month-old adult 
mice. When comparing aged mice versus adult mice, 24-month-old and 5–6 month-old mice were 
used, respectively. In all cases except for Plp1CreER; Rosa26LSL-tdTomato mice, male mice were used for 
the experiments. No sex-specific differences were observed in experiments using Plp1CreER; Rosa26LSL-

tdTomato mice. All experimental procedures were approved by the Institutional Animal Care and Use 
Committee at Seoul National University and were carried out according to the guidelines provided.

Tamoxifen administration
To label Schwann cells, 3-month-old Plp1CreER; Rosa26LSL-tdTomato mice were administered orally with 
tamoxifen (20 mg/ml in corn oil, 160 mg/kg body weight; Sigma-Aldrich) three times every other day.

Sciatic nerve injury
Mice were deeply anesthesized via intraperitoneal injection of Avertin (32 mg/ml, ~800 mg/kg; Sigma-
Aldrich), and the incision site on the posterior side of the right hindlimb was shaved and depilated 
using surgical clippers and hair removal cream. After cleansing the incision site with 70% ethanol, the 
incision was made on the skin with surgical scissors, and the biceps femoris muscle was punctured 
open with fine-tip forceps to expose the sciatic nerve. For sciatic nerve crush injury, the exposed nerve 
was crushed with fine forceps for 30 s at the site just proximal to where the tibial, peroneal, and sural 
nerves branched out from the sciatic nerve. For denervation, ~5 mm of the sciatic nerve proximal from 
the crush injury site was cut and removed. The punctured biceps femoris muscle and skin were then 
sutured, and the incision site was sterilized with povidione-iodine.

Intramuscular injection of GDNF
Tibialis anterior muscle and the two gastrocnemius muscles (GA, lateral, and medial) were each injected 
with 10  μl of either PBS or recombinant mouse GDNF (10  μg/ml, Sigma-Aldrich) using 31-gauge 
insulin syringes without damaging any innervating nerves. The injected muscles were then dissected 
48 hr post-injection for isolation of FAPs and further analysis. Mice in the same litter were randomly 
selected for either PBS or recombinant mouse GDNF injection.

Intramuscular injection of GDNF-blocking antibodies
Tibialis anterior muscle and the two gastrocnemius muscles (GA, lateral, and medial) were each 
injected with 10 μg of either normal rabbit IgG (Sino Biological) or anti-GDNF antibodies (Alomone 
Labs) using 31-gauge insulin syringes 24 hr post-SNC. The injected muscles were then dissected 48 hr 
post-injection (72 hr post-injury) for isolation of FAPs and further analysis. Mice in the same litter were 
randomly selected for either IgG or anti-GDNF antibody injection.

Isolation of FAPs, Schwann cells, and others
Isolation of muscle-resident FAPs, Schwann cells, and others was performed according to a previously 
reported protocol (Liu et al., 2015) with minor modifications. Muscles indicated in each experiment 
were dissected, finely chopped with surgical scissors, and washed with 10% horse serum (Gibco), 
and DMEM (HyClone) for further dissociation. Enzymatic dissociation was carried out in 10% horse 
serum, DMEM containing collagenase II (800 U/ml, Worthington Biochemical) and dispase II (1.1 U/ml, 
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Gibco) for 40 min at 37℃ with mild agitation, and mechanical dissociation was performed by tritura-
tion of the dissociated solution with a 20-gauge needle 10 times. After filtering the solution through 
a 40 μm strainer, dissociated mononuclear single cells were stained with the following antibodies: 
APC anti-mouse CD31, APC anti-mouse CD45, PE anti-mouse TER-119, biotin anti-mouse CD106 
(Vcam1) (Biolegend), and FITC anti-mouse Ly-6A/E (Sca1) (BD Pharmingen). 7-aminoactinomycin D 
(7-AAD, Sigma-Aldrich) was added to stain dead cells, and PE/Cy7 streptavidin was used to label 
Vcam1+ cells. Gating strategies used for the isolation of each cell type were as follows: FAPs, 7-AA
D-Ter119-CD31-CD45-Vcam1-Sca1+; MuSCs, 7-AAD-Ter119-CD31-CD45-Vcam1+Sca1-; lineage-positive 
cells, 7-AAD-Ter119-CD31+, or 7-AAD-Ter119-CD45+; double-negative cells, 7-AAD-Ter119-CD31-CD4
5-Vcam1-Sca1-. For Schwann cells, 7-AAD-tdTomato+ cells were sorted from tamoxifen-administered 
Plp1CreER; Rosa26LSL-tdTomato Rosa26LSL-tdTomato mice.

scRNA-seq library construction and sequencing
FAPs were isolated from sciatic nerve crush injury-affected or denervated muscles on days 3, 7, 14, 
and 28 post-injury using wild-type B6 mice, so that a total of nine samples, including uninjured control, 
were collected for library generation. For each sample, isolated FAPs were pooled from two mice. 
Chromium Next GEM Single Cell 3ʹ Kit v3.1 (10x Genomics) was used according to the manufacturer’s 
instructions for the nine collected FAP samples, and the target cell number for recovery was set to 
5000 in each sample. Sequencing of the libraries was carried out using HiSeq X Ten (Illumina).

Computational analysis of scRNA-seq data
Sequenced reads were aligned to the mouse reference genome mm10 using CellRanger v3.1.0 (10x 
Genomics), and aligned reads were transformed into gene-cell count matrices using velocyto v0.17 
(La Manno et al., 2018) to obtain count matrices for both spliced and unspliced mRNAs. Output loom 
files were then loaded with R package SeuratWrappers v0.3.1, and were preprocessed and analyzed 
using R package Seurat v4.3.0 (Hao et al., 2021) for downstream analysis. The preprocessing steps 
for quality control included doublet filtering, live cell filtering, and removal of non-FAPs as previously 
described (Kim et al., 2022). All nine sample data were merged and normalized for dimensionality 
reduction, where the top eight principal components from the principal component analysis using 
5000 variable genes were selected for two-dimensional UMAP embedding and visualization. Unsuper-
vised clustering of cells was achieved through FindNeighbors and FindClusters functions in the Seurat 
R package. To identify DEGs in the pairwise comparisons of scRNA-seq samples, the FindMarkers 
function in Seurat R package was used with the following parameters: fold change ≥ 2, ​pseudocount.​
use=​0.​01, ​min.​pct=​0.​01, adjusted <i>p-value <0.05. For identification of DEGs in each cluster, the 
FindAllMarkers function was used with the parameters: fold change ≥ 1.5, ​pseudocount.​use=​0.​01, ​
min.​pct=​0.​02, adjusted <i>p-value <0.05. For hierarchical clustering, the R package pheatmap v1.0.12 
was used. For RNA velocity analysis, R package velocyto.R v0.6 was used following the instructions 
provided by the developer (La Manno et al., 2018). For the prediction of upstream regulatory tran-
scription factors using lists of DEGs enriched in the selected FAP clusters, the web-based tool TRRUST 
v2 (Han et al., 2018) was used. For color mapping of the MAPK signaling pathway, the pathway image 
from the KEGG PATHWAY Database (Kanehisa et al., 2023) was retrieved and colored manually.

Gene set overrepresentation analysis
To identify pathways enriched in the lists of DEGs, a web-based version of g:Profiler (Kolberg et al., 
2023) was used with the following parameters: organism – Mus musculus; ordered query – YES; data 
sources – GO biological process without electronic GO annotations, Reactome, and WikiPathways; 
advanced options were set to default. Visualization of the results were done as previously described 
(Reimand et al., 2019), using the Cytoscape v3.10.1 (Shannon et al., 2003) application with tools 
EnrichmentMap v3.3.6 (Merico et al., 2010) and AutoAnnotate v1.4.1 (Kucera et al., 2016).

RNA extraction and qRT-PCR
Total RNA extraction and reverse transcription was carried out for isolated FAPs, Schwann cells, 
MuSCs, and others using TRIzol reagent (Invitrogen) and ReverTra Ace qPCR RT Master Mix (Toyobo) 
reagents respectively, following the manufacturer’s instructions. qPCR was performed using ORA SEE 
qPCR Green ROX L Mix (HighQu) reagent, with gene-specific primers listed in Supplementary file 
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1d. Quantitative analysis of mRNA levels were done using the 2-ΔΔCt method with β-actin (Actb) as the 
housekeeping gene for normalization.

Western blot analysis
FACS-isolated FAPs were lysed in RIPA buffer (Biosesang) added with 1  x Halt protease inhibitor 
cocktail (Thermo Scientific), and were sonicated. The lysate was then centrifuged at 13,000 rpm for 
30 min at 4℃, and the supernatant was mixed with Laemmli sample buffer before heating at 95℃ 
for 10 min. Samples were subjected to electrophoresis in 10% polyacrylamide gels and transferred to 
0.45 μm PVDF membranes (Immobilon). For GAPDH (rabbit anti-GAPDH, 1:1000, Bethyl Laboratories) 
and PDGFRα (rabbit anti-PDGFRα, 1:200, Santa Cruz Biotechnology), membranes were blocked in 
5% skim milk (LPS Solution), 0.1% Tween-20 (Sigma-Aldrich) in TBS, and incubated with primary anti-
bodies overnight at 4℃, and then with the secondary antibody (horseradish peroxidase-conjugated 
anti-rabbit IgG, 1:10,000, Promega) for 1 hr at RT. For BDNF (rabbit anti-BDNF, 1:1000, Alomone 
Labs), membranes were blocked in 5% bovine serum albumin (Bovogen Biologicals), 0.1% Tween-20 
in TBS, and incubated with the primary antibody in immunoreaction enhancer solution 1 (Toyobo) 
for 1 hr at RT, and then with the same secondary antibody in immunoreaction enhancer solution 2 
(Toyobo) for 1 hr at RT. The membranes were then developed using SuperSignal West Dura Extended 
Duration Substrate (Thermo Scientific) according to the manufacturer’s instructions, and imaged with 
FUSION Solo chemiluminescence imaging system (Vilber Lourmat). Densitometric quantification of 
the imaged data were performed using ImageJ v1.51n (NIH).

Electromyography and CMAP measurement
Intraperitoneal injection of Avertin (32 mg/ml,~800 mg/kg) for anesthetization of mice was carried 
out prior to CMAP measurement. Stimulation of the sciatic nerve was achieved by placing stimu-
lating electrodes subcutaneously on either side of the sciatic notch and applying supramaximal stimuli 
(~70 mA) at a rate of 1 pulse per second with a duration of 0.1 ms, using Isolated Pulse Stimulator 
Model 2100 (A-M Systems). Recording electrode was placed carefully on the GA muscle subdermally 
without puncturing the muscle, with the reference electrode placed near the Achilles tendon and 
the ground electrode placed on the tail for data recording using Data Recorder IX-RA-834 (iWorx). 
CMAP amplitude was determined by the absolute difference between potentials of positive and 
negative peaks, and CMAP latency was determined by the delay from stimulus peak to the beginning 
of response peak. Three individual measurements were taken from each animal’s GA muscle, and 
average values were used as representatives for statistical analysis. The measurements were obtained 
by a single evaluator (K. Y.) blinded to the genotype.

Toluidine blue staining of sciatic nerves
Sciatic nerve distal to the injury site was dissected at 6 weeks post-injury for analysis. The dissected 
nerves were fixed in 4% paraformaldehyde dissolved in Sorensen’s phosphate buffer (0.1 M, pH 7.2) 
at 4℃ overnight, followed by procedures described previously (Kim et al., 2022) with minor modi-
fications for semi-thin sectioning. Briefly, fixed samples were washed with 0.1 M sodium cacodylate 
buffer (pH 7.2), post-fixed with 1% osmium tetroxide in 0.1 M sodium cacodylate buffer (pH 7.2) for 
1 hr at RT, washed with distilled water (DW) and stained with 0.5% uranyl acetate at 4℃ overnight. 
Stained samples were then washed with DW and dehydrated using serial ethanol and propylene 
oxide. Samples were then embedded in Spurr’s resin (Electron Microscopy Sciences), and semi-thin 
sections (500 nm) were prepared with a diamond knife on an ultramicrotome EM UC7 (Leica). The 
sections were dried down on glass slides for staining and light microscopy. Toluidine blue staining 
were done using 1% toluidine blue solution containing 1% sodium borate on a slide warmer (70℃), 
and images were obtained with the light microscope EVOS FL Auto 2 (Thermo Fisher Scientific) for 
analysis.

G-ratio quantification
Semi-automated quantification of myelinated axon diameters were carried out using an ImageJ plugin 
for g-ratio quantification (Goebbels et al., 2010), where axon diameters and G-ratios were quanti-
fied and calculated, respectively. G-ratios were calculated as [naked axon diameter]/[myelinated axon 
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diameter]. Selection of axons for quantification was randomized by the ImageJ plugin, and a single 
evaluator (K. Y.) performed the semi-automated quantification blinded to the genotype.

Quantification and statistical analysis
All statistical analyses were performed using Prism v5.01 (GraphPad) and R v4.2.1. Continuous vari-
ables were tested for normal distribution with the Shapiro-Wilk test, and the F-test was used to check 
for equal variance. For comparison of significant differences in multiple groups, a one-way analysis 
of variance (ANOVA) followed by Bonferroni’s pairwise post hoc test was applied. For the compar-
ison of the two groups, an unpaired t-test was used for data with normal distribution and equal 
variance; Welch’s t-test was used for data with normal distribution and unequal variance; and the 
Mann-Whitney U test was used for non-normally distributed data. ANCOVA was applied to test for 
differences between slopes of linear regression lines. Two-way ANOVA was applied to compare two 
groups with two variables. For comparison of gene expression levels between scRNA-seq data, the 
Wilcoxon rank sum test was applied as a default in functions FindAllMarkers and FindMarkers within 
the R package Seurat v4.3.0. For RT-qPCR, the average of triplicate technical values were used for 
each biological replicate. All error bars represent mean ± SD. p-value of less than 0.05 was considered 
statistically significant at the 95% confidence level. The number of technical and biological replicates 
and statistical analyses used in each experiment are indicated in the figure legends.
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The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Carr MJ, Toma 
JS, Johnston AP, 
Steadman PE, Yuzwa 
SA, Mahmud N, 
Frankland PW, Kaplan 
DR, Miller FD

2019 Mesenchymal precursor 
cells in adult nerves 
contribute to mammalian 
tissue repair and 
regeneration

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE120678

NCBI Gene Expression 
Omnibus, GSE120678

Toma JS, 
Karamboulas K, Carr 
MJ, Kolaj A, Yuzwa 
SA, Mahmud N, 
Storer MA, Kaplan 
DR, Miller FD

2020 Peripheral Nerve Single-
Cell Analysis Identifies 
Mesenchymal Ligands that 
Promote Axonal Growth 
(scRNAseq data)

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE147285

NCBI Gene Expression 
Omnibus, GSE147285

Giger RJ, Johnson 
CN, Zhao X

2022 Injured Sciatic Nerve Atlas 
(iSNAT)

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE198582

NCBI Gene Expression 
Omnibus, GSE198582

Puri PL, Nicoletti C, 
Wei X

2023 Muscle denervation 
promotes functional 
interactions between glial 
and mesenchymal cells 
through NGFR and NGF

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE221736

NCBI Gene Expression 
Omnibus, GSE221736
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