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INTRODUCTION

In the field of stroke, hemorrhagic stroke is a significant con-
cern, accounting for approximately 10%–15% of all strokes and 
exhibiting high rates of morbidity and mortality.1,2 In 2016, the 

global age-standardized incidence rate for intracerebral hem-
orrhage was 22.2 per 100000 person-years, with hemorrhagic 
stroke associated with a 30-day mortality rate of up to 40%.3,4 
Furthermore, survivors often experience severe long-term 
disabilities.5 Early detection of hemorrhagic stroke is crucial for 
improving patient outcomes, as timely intervention can signifi-
cantly reduce morbidity and mortality.6,7 Additionally, the pre-
diction of hematoma expansion or other complications, such 
as herniation or hydrocephalus, as well as prognostication of 
neurological outcomes, hold great importance. As a result, the 
field has seen a rise in artificial intelligence (AI)/machine learn-
ing (ML)-based publications to fulfill the requirements of time-
ly diagnosis, prediction, and prognostication.

AI research has been conducted in various fields using di-
verse methods, leading to a lack of uniformity. This lack of con-
sistency hampers the translation of AI research into clinical 
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application. Consequently, there is a need for consistent eval-
uation criteria and guidelines. Recently, a few checklists and 
quality assessment tools have been developed and are in de-
velopment specifically for AI research, such as Minimum In-
formation for Medical AI Reporting (MINIMAR) and Mini-
mum Information About Clinical Artificial Intelligence Mod-
eling (MI-CLAIM). These tools aim to assist researchers and 
reviewers in assessing the methodological rigor and reporting 
quality of AI/ML studies.8-16 However, systematic evaluations 
of AI/ML papers on neuroimaging using these tools remain 
limited.

The objective of the present study was to evaluate the quali-
ty of ML and AI papers in the field of hemorrhagic stroke us-
ing these innovative tools. The study aimed to identify areas 
that need improvement and further development to enhance 
clinical application.

MATERIALS AND METHODS

Systematic search strategy and study selection
A comprehensive review was performed, including all clinical 
radiological papers that utilized AI/ML to address tasks related 
to hemorrhagic stroke. This study specifically included hospi-
tal-based human studies that employed these techniques to 
assist in the radiological diagnosis or intervention of patients. 
Studies utilizing radiography, computed tomography (CT), 
and magnetic resonance imaging (MRI) were considered. 
PubMed, MEDLINE (n=1166), and Embase (n=962) databases 
were searched on March 10, 2023 to collect all original research 
papers utilizing ML-based analysis published until March 10, 
2023. Due to the characteristics of the current study, the au-
thors did not have access to information that could identify in-
dividual participants. The terms used for the search are listed 

in Supplementary Material 1 (only online). Out of the 2128 pa-
pers identified in the search, 697 duplicate articles were re-
moved, and an additional 900 articles were excluded for the 
following reasons: conference abstracts (n=411), not in the 
field of interest (n=390), review articles (n=73), non-AI studies 
(n=9), Erratum (n=9), non-human study (n=6), and short note 
(n=2). Among the remaining 531 articles, studies on ischemic 
stroke (n=416) and carotid artery disease (n=86) were also ex-
cluded. Finally, a total of 29 articles were included in the anal-
ysis (Supplementary Table 1, only online). The flow of study 
selection is depicted in Fig. 1.

AI reporting quality based on MINIMAR
Each article was assessed for the presence of the four essential 
components outlined in MINIMAR, which consist of 21 fea-
tures. The four essential components are study population and 
setting, patient demographics, model architecture, and model 
evaluation. The MINIMAR evaluation was carried out by the 
reviewers, who received education on the MINIMAR system 
through a research conference prior to the assessment. Two re-
viewers (with 14 and 4 years of radiology experience, respec-
tively) independently rated each paper using MINIMAR, fo-
cusing on the four components. Any disagreements between 
the reviewers were resolved through consensus. The MINI-
MAR checklist can be found in Supplementary Material 2 (only 
online).

AI reporting quality based on MI-CLAIM
The evaluation of each article involved assessing the four es-
sential components of MI-CLAIM, which encompassed 18 fea-
tures. The four essential components are study design, data 
and optimization, model performance, and model examina-
tion. Furthermore, the analysis of MI-CLAIM also included the 
task of categorizing into one of the four categories based on the 
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Fig. 1. Flowchart of study selection. AI, artificial intelligence.
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level of transparency. The MI-CLAIM evaluation was conduct-
ed by the same reviewers, who received education on the MI-
CLAIM system through a research conference prior to the as-
sessment. Two reviewers (with 14 and 4 years of radiology 
experience, respectively) independently rated each paper us-
ing MI-CLAIM. The MI-CLAIM checklist is available in Supple-
mentary Material 3 (only online).

Statistical analysis
The current study examined the quality of 29 articles, assessing 
21 MINIMAR criteria and 18 MI-CLAIM criteria. To represent 
each article’s compliance with the MINIMAR or MI-CLAIM 
criteria, the adherence rate was defined as the proportion of 
criteria met out of the total applicable criteria for each study, 
expressed as percentage. Cohen’s kappa was calculated to esti-
mate the interobserver agreement between the two reviewers 
regarding MINIMAR and MI-CLAIM compliance. Statistical 
analyses were conducted using R (version 4.0.2; R Foundation 
for Statistical Computing, Vienna, Austria).

RESULTS

Characteristics of the AI studies on hemorrhagic 
stroke 
Fig. 2 and Supplementary Table 2 (only online) present the 
characteristics of the 29 AI/ML investigations included in this 
study. The median number of patients included in 28 out of 29 
studies was 224.5 (range: 16–5244734). One study did not re-
port the number of patients included. The publications includ-
ed in the analysis consisted of 14 computer science journals 
(48.3%), 10 clinical journals (34.5%), and 5 radiology journals 
(17.2%). The outcomes of the AI/ML-based investigations were 
19 diagnostic (65.5%), 7 predictive (24.1%), 2 efficiency (6.9%), 
and 1 combination of diagnostic and predictive (3.4%). Among 
the 29 studies, 26 (89.7%) utilized CT, 2 (6.9%) utilized MRI, 
and 1 (3.4%) utilized both CT and MRI. Three (10.3%) out of 
the 29 articles had publicly shared their codes.17-19

Adherence to reporting AI/ML research using 
MINIMAR
All 29 studies included in the analysis reported the task of their 
model, with 28 of them providing information on the output of 
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Fig. 2. Characteristics of AI/ML studies on hemorrhagic stroke. (A) The type of journal publication included 14 computer science journals (48.3%), 10 clini-
cal journals (34.5%), and 5 imaging journals (17.2%). (B) Of the 29 studies, 26 (89.7%) utilized CT, 2 (6.9%) utilized MRI, and 1 (3.4%) utilized both CT and MRI. 
(C). Outcomes of AI/ML-based investigations were 19 diagnostic (65.5%), 7 predictive (24.1%), 2 efficiency (6.9%), and 1 combination of diagnostic and 
predictive (3.4%). (D) Three (10.3%) of 29 articles had shared their code publicly. AI, artificial intelligence; ML, machine learning.
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their model. The initial evaluation between the two radiologists 
showed a Cohen’s kappa of 0.811. After reaching a consensus, 
the overall adherence rate to MINIMAR was found to be 47.6%. 
Table 1 illustrates the conformity rates for the four essential 
components of MINIMAR: study population and setting, pa-
tient demographics, model architecture, and model evaluation. 
The adherence rates for each component were 77.6%, 25.5%, 
55.6%, and 37.9%, respectively. The adherence to each MINI-
MAR item is also presented in Table 1. It was observed that none 
of the studies reported the socioeconomic status of the patients 
or how missing data had been addressed.

Adherence to reporting AI/ML research using 
MI-CLAIM
Cohen’s kappa was 0.779 at the initial evaluation between the 
two radiologists. After consensus had been reached, the total 
MI-CLAIM adherence rate was 46.0%. Table 2 describes the fun-
damental conformance rate to reporting adherence to MI-
CLAIM by its four essential components: study design, data and 

optimization, model performance, and model examination. 
The adherence rates of the components were 64.1%, 55.2%, 
51.7%, and 20.7%, respectively. Table 2 shows the adherence to 
each MI-CLAIM item. Only two studies applied model exami-
nation techniques to improve model interpretability.20,21 Only 
one study discussed the feasibility and interpretability of its 
suggested model.22 Among the 29 papers, 26 (89.7%) excluding 
three17-19 received the lowest category rating in terms of trans-
parency level. 

In our evaluation of the 29 articles included in the study, vari-

Table 1. Adherence to MINIMAR Item in 29 Included Hemorrhagic Stroke 
Studies

Total (21 items) Value
Study population and setting 77.6%

Population 23 (79.3)
Setting 20 (69.0)
Data source 27 (93.1)
Cohort selection 20 (69.0)

Patient demographics 25.5%
Age 17 (58.6)
Sex 17 (58.6)
Race 2 (6.9)
Ethnicity 1 (3.4)
Socioeconomic status 0 (0)

Model architecture 55.6%
Model output 27 (93.1)
Target user 4 (13.8)
Data splitting 16 (55.2)
Gold standard 25 (86.2)
Model task 29 (100)
Model architecture 20 (69.0)
Features 8 (27.6)
Missingness 0 (0)

Model evaluation 37.9%
Optimization 10 (34.5)
Internal validation 19 (65.5)
External validation 12 (41.4)
Transparency 3 (10.3)

Mean adherence rate 47.6%
MINIMAR, Minimum Information for Medical AI Reporting.
Data are presented as n (%). Each number and its corresponding percentage in 
the criteria and category represent the count and proportion of articles that 
meet each specific criterion, respectively.

Table 2. Adherence to MI-CLAIM Items in 29 Included Hemorrhagic 
Stroke Studies

Total (18 items) Value
Study design 64.1%

Clinical problem 26 (89.7)
Research question 28 (96.6)
Cohort characteristics 21 (72.4)
Cohort representing real-world 13 (44.8)
State of the art as comparison 5 (17.2)

Data and optimization 55.2%
Data origin and format 27 (93.1)
Data transformations 18 (62.1)
Test set independence 17 (58.6)
Model evaluation and best selection 2 (6.9)
Input*

Structured 2 (6.9)
Unstructured 27 (93.1)

Model performance 51.7%
Performance metrics 23 (79.3)
Clinical utility metrics 17 (58.6)
Comparison with baseline models 5 (17.2)

Model examination 20.7%
Model examination technique 4 (13.8)

Examination technique 1-for structured e.g. SHAP† 1 (3.4)
Examination technique 2-for unstructured e.g. Grad-CAM† 3 (10.3)

Relevance discussion 16 (55.2)
Feasibility and interpretability discussion 1 (3.4)
Robustness discussion 3 (10.3)

Transparency 10.3%
Complete sharing of the code 3 (10.3)
Third party evaluation of the code 0 (0)
Release of a virtual machine 0 (0)

Mean adherence rate 46.0%
MI-CLAIM, Minimum Information About Clinical Artificial Intelligence Modeling.
Data are presented as n (%). Each number and its corresponding percentage in 
the criteria and category represent the count and proportion of articles that 
meet each specific criterion, respectively.
*The criterion was excluded from the calculation of each article’s adherence 
rate, as it is not scorable; †Common examination approaches based on the study 
type: for studies involving exclusively structured data, coefficients and sensitivity 
analysis are often appropriate; for studies involving unstructured data in the do-
mains of image analysis or natural language processing, saliency maps or 
equivalents are often appropriate.
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Fig. 3. Assessment of performance metrics of 29 reviewed AI/ML articles. (A) General performance metrics. (B) Clinical performance metrics. IoU, inter-
section over union; DICE, dice similarity coefficient; AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value; AI, artificial 
intelligence; ML, machine learning.

ous general performance metrics were reported with different 
frequencies. As shown in Fig. 3A, the dice similarity coefficient 
(DICE) was the most commonly reported metric featured in 12 
articles, corresponding to 41.4% of the total. This was followed 
by the area under the curve, which was present in 11 articles, 
accounting for 37.9%. The F1 score was reported in 3 articles, 
making up 10.3% of the studies. Less frequently reported met-
rics included intersection over union, Hausdorff distance, and 
location accuracy, which were used in 1 (3.4%), 2 (6.9%), and 
1 article (3.4%), respectively, reported in conjunction with 
DICE. Additionally, one paper that employed unsupervised 
learning used prediction strength as its metric. Various clini-
cal performance metrics reported in the 29 analyzed articles 
are summarized in Fig. 3B. Sensitivity was the most commonly 
reported metric that was observed in 19 articles (65.5%), indi-
cating its importance in the evaluation of clinical outcomes. 
Specificity was also frequently reported, featuring in 17 arti-
cles (58.6%), followed by accuracy and positive predictive val-
ue, each present in 14 articles (48.3%). The negative predictive 
value was included in 10 articles (34.5%).

Twenty-seven articles utilized unstructured data, while two 
articles utilized structured data. Among the 27 articles utilizing 
unstructured data, three included saliency maps: one was based 
on Gradient-weighted Class Activation Mapping (Grad-CAM), 
another on attention-based mechanism, and the third on CNN 
layer feature maps. One article suggested filtered images of spe-
cific filters, which we considered as an equivalent of saliency 
maps. According to the MI-CLAIM document, to fully meet the 
Examination Technique criteria, at least two different methods, 
such as saliency techniques or sensitivity analysis, must be used. 
In our research, only three articles satisfied this. Of the two ar-
ticles featuring models using structured data, one reported us-
ing SHapley Additive exPlanations (SHAP), while the other re-
ported beta coefficients from logistic regression for explanation 
purposes. However, only one article reported using at least two 
explanation techniques as specified in the MI-CLAIM criteria.

DISCUSSION

AI/ML studies have demonstrated promising results for vari-
ous tasks related to stroke. Assessing the quality of AI/ML re-
search is crucial for its clinical implementation. In this study, 
we conducted the first systematic analysis of AI/ML papers in 
the field of hemorrhagic stroke using the MINIMAR and MI-
CLAIM checklists. Our analysis revealed significantly lower 
scores in certain assessment items.

In the present study, the adherence rates to MINIMAR and 
MI-CLAIM in various stroke-related studies were found to be 
47.6% and 46.0%, respectively. These rates were consistent with 
the 47.4% adherence rate reported by Sohn and Won23 for isch-
emic stroke-related studies assessed using MINIMAR. To be 
clinically applicable, AI/ML research in the field of hemorrhag-
ic stroke requires significant improvements. In the field of AI in 
neuro-oncology, Kouli, et al.24 reviewed 84 articles on automat-
ed brain tumor detection and segmentation, assessing them 
with the CLAIM criteria. Similar to our findings, a vast majority 
(95.3%) of these studies disclosed the source of their data. How-
ever, only a small number provided details on handling missing 
data sizes (2.6%) or the demographics of their cases (6%). There 
were also notable discrepancies in the reporting of model archi-
tecture (83.8%) and source code availability (24.4%), which 
were more comprehensive compared to our study. In the realm 
of AI in neurodegenerative diseases, some study groups as-
sessed the article quality using guidelines such as QUADAS-2 
and PROBAST.25,26 Due to the challenges in applying all the 
criteria of QUADAS-2, they mainly reported risks of bias stem-
ming from only some criteria of QUADAS-2.25 

Unlike research on neuro-oncology/ neurodegenerative dis-
ease, hemorrhagic stroke studies predominantly utilized CT 
(89.7%). This is likely because CT is the primary modality used 
for early stroke assessment in clinical practice, whereas MRI is 
not typically performed for hemorrhagic stroke unless there 
are suspected underlying conditions such as vascular malfor-
mations or brain tumors.
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When assessing the relationship between the adherence rates 
to MINIMAR/MI-CLAIM and the impact factors of the journals 
in which the articles were published, no significant correlation 
was found (Pearson’s R=0.296 for MINIMAR and 0.286 for MI-
CLAIM, with p>0.05 for both).

The MINIMAR assessment revealed a low reporting rate of 
patient cohort characteristics, such as race, ethnicity, and so-
cioeconomic status. MINIMAR emphasizes the importance of 
standardizing the study population and patient demographics 
to enable fair comparisons between study outcomes. Only a 
few studies reported on the race and ethnicity of the cohort, 
and these were typically multicenter trials. Single-center AI/ML 
studies rarely provided this information. In terms of the model 
architecture component, studies rarely suggested potential us-
ers or beneficiaries of the developed model. Identifying the in-
tended users is crucial, as it helps prevent misinterpretation of 
model outcomes. Only eight studies demonstrated a list of vari-
ables (27.6%).22,27-33 In 27 studies, unstructured data were han-
dled without explicitly presenting variables. Regarding the 
model evaluation component, the adherence rate was the low-
est (37.9%). This was mainly due to a lack of model transpar-
ency, as most studies, except for three,17-19 did not make their 
codes publicly available.

In the MI-CLAIM assessment, only two studies provided de-
tails on the evaluated models and the code developed to select 
the best model.20,21 This finding was consistent with the overall 
observation that code transparency was low across the studies. 
Additionally, limited number of studies employed sufficient 
model examination techniques to enhance model interpret-
ability.22,29 Along with case-based analysis of the model per-
formed, one study using structured data applied SHAP, while 
the other study dealing with unstructured data used Grad-
CAM as a saliency map, discussing its feasibility and interpret-
ability.34,35 It is worth noting that more recent and advanced 
methods have been proposed, demonstrating improved per-
formances. Considering these trends, researchers should be 
encouraged to actively employ such examination tools to en-
hance the interpretability of their models. In the present study, 
only 17.2% of the included studies presented a state-of-the-art 
model as a baseline for comparison. However, a recent sys-
tematic review of radiology AI in major subspecialties report-
ed that performance comparison with state-of-the-art models 
was conducted in 37% of cases.36 This discrepancy suggests 
that comparisons with state-of-the-art models may be less prev-
alent in the neuroradiology or stroke domains than in other 
subspecialties. During the analysis, we encountered some am-
biguous descriptions within the checklists, leading to discus-
sions among the reviewers. Specifically, in MI-CLAIM, the dis-
cussion of the relevance of the examination results with 
respect to the model/algorithm performance (component #4) 
was somewhat unclear. This highlights the need for enhanced 
precision and clarity in defining certain checklist criteria. 

It is noteworthy that these two assessment tools exhibit dis-

tinct characteristics in model evaluation. MINIMAR includes 
a specific sub-category for external validation, which MI-
CLAIM lacks. In MI-CLAIM, model performance and model 
examination are addressed separately, with an emphasis in 
the model examination category especially for explainable AI. 
However, these criteria are seldom met in the reviewed arti-
cles, resulting in varied adherence rates between the frame-
works. Furthermore, MI-CLAIM does not include a transpar-
ency criterion in the model evaluation category, contributing 
to the discrepancy in adherence rates between MINIMAR and 
MI-CLAIM and highlighting their divergent approaches to 
model transparency.

 The study had several limitations. The evaluation criteria 
we employed are not absolute benchmarks but represented 
just a selection of a few available evaluation tools. For exam-
ple, TRIPOD, which is traditionally used for predictive model 
development studies and may not ideally suit AI/ML studies, 
has recently been updated in the form of TRIPOD-AI.37 It would 
be beneficial to apply this newly published version in future 
research. In some instances, applying criteria designed for 
both AI and ML does not perfectly fit the specific model types. 
In MINIMAR, the substantial allocation of points to patient 
cohort information seems to be a disadvantage. Comparing 
MINIMAR’s results with other AI research evaluation metrics 
could prove insightful. Additionally, both MINIMAR and MI-
CLAIM have not yet been updated to fully encompass the fea-
tures of generative models, such as large language models, vi-
sion language models, or other diffusion-based models. These 
frameworks need refinement to better reflect the capabilities 
and diverse outputs of these advanced technologies. Finally, 
the limited number of studies included in our analysis pre-
vented further subdivision into meaningful subgroups. In con-
clusion, the present study highlights the need for enhanced 
interpretability and transparency in AI/ML studies on hemor-
rhagic stroke, as evidenced by the adherence rates to MINI-
MAR and MI-CLAIM. Addressing these challenges is crucial 
to ensure the reliability and clinical applicability of AI and ML 
tools in this field.
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