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Abstract: We present a deep learning framework for volumetric speckle reduction in optical
coherence tomography (OCT) based on a conditional generative adversarial network (cGAN)
that leverages the volumetric nature of OCT data. In order to utilize the volumetric nature
of OCT data, our network takes partial OCT volumes as input, resulting in artifact-free
despeckled volumes that exhibit excellent speckle reduction and resolution preservation in all
three dimensions. Furthermore, we address the ongoing challenge of generating ground truth
data for supervised speckle suppression deep learning frameworks by using volumetric non-local
means despeckling–TNode– to generate training data. We show that, while TNode processing
is computationally demanding, it serves as a convenient, accessible gold-standard source for
training data; our cGAN replicates efficient suppression of speckle while preserving tissue
structures with dimensions approaching the system resolution of non-local means despeckling
while being two orders of magnitude faster than TNode. We demonstrate fast, effective, and
high-quality despeckling of the proposed network in different tissue types that are not part of
the training. This was achieved with training data composed of just three OCT volumes and
demonstrated in three different OCT systems. The open-source nature of our work facilitates
re-training and deployment in any OCT system with an all-software implementation, working
around the challenge of generating high-quality, speckle-free training data.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Optical coherence tomography (OCT) is a cross-sectional optical imaging technique that provides
high-resolution images of biological tissue [1] and has become a well-established clinical
diagnostic imaging tool in ophthalmology. Due to the coherent nature of OCT, tomograms
contain speckle, which degrades the image quality and hinders visual interpretation [2–5]. Speckle
reduction has been an active topic of interest in OCT community and a plethora of techniques
have been developed in the literature, which can be broadly classified as hardware-based [6–10]
and signal-processing methods [11–24]. Hardware-based methods have the potential to produce
higher-quality images. However, hardware modifications and different data acquisition strategies
make them too complex for broad adoption and incompatible with imaging in vivo. For instance,
angular compounding requires long acquisition times and the sample must be static during
the entire acquisition; modulation of the point spread function (PSF) of the illumination beam
carries a signal-to-noise ratio (SNR) penalty as well as increased acquisition times [6–10].
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Cuartas-Vélez, et al, have discussed in more detail the merits and limitations of the hardware-
based and signal-processing methods for speckle reduction in our previous work [24]. Among
signal-processing methods, the non-local probabilistic despeckling method TNode [24] exploits
volumetric information in OCT tomograms to estimate the incoherent intensity value at each
voxel. TNode efficiently suppresses speckle contrast while preserving tissue structures with
dimensions approaching the system resolution. It is, however, computationally very expensive,
a common problem with exhaustive search methods: processing a typical retinal OCT volume
takes a few hours.

Deep learning methods have been explored for speckle mitigation by posing the task as an
image-to-image translation problem [25–45]. The main goal of an image-to-image translation
network is to learn the mapping between an input image and an output image [46,47] either
through a supervised modality using training pairs of input and target images, or through an
unsupervised modality using independent sets of input images and target images when paired
examples are scarce or not easy to generate. Supervised methods are known to yield better results
as the model has access to the ground truth information during training. Previous despeckling
efforts using deep learning include the use of variants of generative adversarial networks (GANs)
[25–31], variants of convolutional neural networks (CNN) based methods [32–34,36–41] and
fusion networks [42–45]. However, with few exceptions [48], these methods have been based
on the compounding of multiple B-scans, acquired at the same sample location, to generate
ground truth despeckled tomograms. This presents significant limitations: B-scan compounding
only reduces speckle contrast if the component images contain multiple speckle realizations by
capturing a variation of microstructural organization within the whole sample. This condition is
typically only satisfied inside blood vessels. We note that inaccuracies in scanning or motion
artifacts may also be leveraged to provide data for B-scan compounding, but these approaches
induce a direct penalty to spatial resolution [10]. In addition, all these methods have focused on
two-dimensional speckle suppression on a B-scan per B-scan basis; their performance on slices
or projections that include the out-of-plane dimension of volumetric tomograms has not been
evaluated. We expect that any three-dimensional manipulation of processed tomograms (i.e.,
en face projections) will contain artifacts due to the aforementioned B-scan-wise processing,
disrupting the continuity of tissue structures along the slow-scan axis. In addition, we argue
that speckle suppression based on two-dimensional data cannot provide the neural network with
complete information on volumetric structures in the training data, and thus it is expected to
perform poorly on structures that have a small cross section in a given B-scan.

To overcome the limitations in the state of the art, we present a workflow to utilize volumetric
information present in OCT data for near-real-time speckle suppression and enable high-quality
deep-learning based volumetric speckle suppression in OCT. We exploit ground-truth training
data generated using the tomographic non-local-means despeckling (TNode) [24] and our
neural network uses a new cGAN that receives OCT partial volumes as inputs, exploiting three-
dimensional structural information for speckle mitigation. Our hybrid deep-learning–TNode-3D
(DL-TNode-3D) enables easy training and implementation in a multitude of OCT systems without
relying on specialty-acquired training data.

2. Methods

2.1. Data

In this study, we demonstrated our network performance in three different custom-built frequency
domain OCT systems; one system used a wavelength-swept light source (Axsun Technologies,
Inc., MA, USA) having a spectral bandwidth of 91 nm centered at 1040 nm and a sweep repetition
rate of 100 kHz. This system was integrated with the ophthalmic interface of a Spectralis OCT
device (Heidelberg Engineering, Germany), which provided eye tracking and fixation capabilities
and a transverse resolution (defined hereafter as e−2 focal spot diameter after considering the
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confocal effect) of 18 µm [49]. The second system operated with a vertical-cavity surface-emitting
laser (VCSEL) that provided a spectral bandwidth of 90 nm centered at 1300 nm wavelength
and 100 kHz sweep repetition rate [50]. This system had a transverse resolution of 12 µm. The
third system was based on a custom-made wavelength-swept laser that utilized a semiconductor
optical amplifier (Covega Corp., BOA-4379) as the gain medium and a polygon mirror scanner
(Lincoln Laser Co.) as the tunable filter to rapidly sweep the wavelength at a rate of 54 kHz.
This laser had a center wavelength of 1300 nm and bandwidth of 110 nm [51] and the system
provided a transverse resolution of 16.5 µm. Herein, we refer to these systems as ophthalmic,
VCSEL, and polygon systems, respectively. All the datasets used in this study were acquired
using Nyquist sampling in the fast and slow scan axes. In the present case, we define Nyquist
sampling as the A-line spacing equal to half e−2 diameter of the resolution volume. All systems
were provided with polarization-diverse balanced detection; thus, all A-lines were recorded for
two detection polarization channels.

We selected a volume of interest (VOI) in each dataset consisting of a varying number of
B-scans, A-lines per B-scan, and depth samples per A-line. We trained our network for each
system separately. For the ophthalmic system, the network was trained and tested using different
regions of the retina from two healthy subjects. The smallest features we can see in the retina
are capillaries at our ophthalmic system resolution. Generally, OCT angiography would be
used for visualizing blood vessels. However, in order to evaluate the resolution-preserving and
volumetric nature of our network, we focus now on small blood vessels in the ganglion cell layer
after despeckling the tomograms. We trained the network with different tissue types ex vivo and
in vivo, and tested using an additional tissue type not used in training for VCSEL and polygon
systems in order to test the generalizability of our network for the tissue types that are not part of
the training dataset.

The tissue types used for training and testing for ophthalmic, VCSEL and polygon systems are
tabulated in Table 1. In this study, we have used 5 OCT volumes for training and testing for each
system (3 × 5 = 15 volumes in total).

Table 1. Overview of datasets used for training and testing for different OCT systems in this
study.

System Training Testing

Ophthalmic [49] Retina (×3) Retina (×2)

VCSEL [50] Chicken heart (×1) and leg (×1), nail bed (×1) Ventral(×1) and dorsal (×1) finger skins

Polygon [51] Chicken leg (×2), dorsal finger skin (×1) Nail bed (×2)

2.2. Tomogram pre-processing

Using MATLAB (MathWorks, USA), the acquired OCT fringes were mapped to a linear
wavenumber space, numerically compensated for dispersion, apodized with a Hanning window,
zero-padded to the next power of two, and Fourier transformed to reconstruct raw complex-valued
tomograms with a final pixel size in the axial direction of 4.8 µm, 5.3 µm and 5.8 µm for the
ophthalmic, VCSEL, and polygon systems, respectively, assuming unity index of refraction. Data
from the VCSEL system was acquired using the k-clock from the light source, therefore, it did
not require linearization in wavenumber space.

Data acquired in vivo further required inter-B-scan bulk-motion correction to preserve the
continuity of tissue along the slow axis direction and enable volumetric despeckling. The
reconstructed complex-valued tomograms were phase-stabilized along the fast scan axis and then
low-pass filtered with the optimum filter [52]. Phase-stabilization and filtering, applied to each
polarization detection channel, enabled the use of efficient sub-pixel image registration [53],
which we used to determine and correct for axial and lateral sub-pixel shifts between adjacent
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B-scans. After these steps, we calculated the tomogram intensity as the sum of the intensity
(squared absolute value) of each polarization detection channel. We then saved the tomogram
intensity in logarithmic scale in single precision format for further processing with TensorFlow
library in Python.

2.3. Non-local-means despeckling (TNode)

Tomographic non-local-means despeckling (TNode) [24] exploits volumetric information in
OCT by making use of 3D similarity windows to retrieve the weights from the volumetric
patch-similarity. This method uses a 3D search window, which consists of depth, z, and both
fast-axis, x, and slow-axis, y, information. For tomograms acquired in vivo, motion correction
was applied to guarantee continuity of tissue structures along the slow axis (see Sec. 2.2). TNode
efficiently suppresses speckle while preserving tissue structures with dimensions approaching
the system resolution. Despite the merits of this method, it is very computationally demanding;
even after making it more computationally efficient by an order of magnitude compared to our
original implementation (see Supplement 1 and Code 1, Ref. [54]).

In this study, a search window of size 2× 8+ 1 was chosen along the slow-scan axis for TNode
speckle reduction, and thus the network was defined to accept partial volumes with n = 8; the
network is easily modified to accept the partial volumes with any desired n. We set the base
filtering parameter, h0 = 80 × 10−3 and the SNR-dependent parameter, h1 = 40 × 10−3 to process
the OCT volumes.

2.4. cGANs for volumetric speckle suppression

To suppress the speckle in a cross-section xi, several conventional signal-processing methods
in the literature use information from its 2n neighborhood cross-sections from xi−n to xi+n in
an OCT volume V . We denote the cross sections from xi−n to xi+n as partial volume vi, and yi
as the speckle-suppressed cross-section corresponding to xi. Mapping xi to yi can be treated
as an image-to-image translation problem. cGANs are known to perform extremely well in
these problems compared to other CNN-based methods [46]. cGANs can be adapted to learn a
speckle suppression mechanism from partial volume vi and a random noise vector zi to a target
speckle-suppressed cross-section yi; G : {vi, zi} → yi. G is the generator, that is trained to
produce speckle-suppressed cross-sections that cannot be differentiated from yi by an adversarial
discriminator D.

The objective function of our network is defined as

LcGAN(G, D) = Evi,yi [log D(vi, yi)] + Evi,zi [log {1 − D(vi, G(vi, zi))}] , (1)

where E is an ensemble average and G tries to minimize this objective function against an
adversarial D that tries to maximize it, i.e.,

G∗ = arg min
G

{︃
max

D
[LcGAN(G, D) + λLL1(G)]

}︃
, (2)

where
LL1(G) = Evi,yi,zi [∥yi − G(vi, zi)∥1]. (3)

Our cGAN network is a modified Pix2Pix network [46], which consists of a generator and a
discriminator, as illustrated in Fig. 1. The generator we have used in this study is a U-Net with
skip connections [55]. The discriminator is a convolutional patchGAN classifier that penalizes at
the scale of patches, as illustrated in Fig. 2.

https://doi.org/10.6084/m9.figshare.26062651
https://github.com/bhaskarachintada/DLTNode
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Fig. 1. In DL-TNode-3D, a partial OCT volume is given as input to the generator to
learn to despeckle tomograms with the help of a discriminator, making use of the given
ground-truth speckle suppressed tomogram produced by TNode.

2.4.1. Generator169

Our U-Net takes a partial OCT volume (𝑣𝑖) as an input and consists of a series of convolutions170

and pooling layers, as an encoder, followed by a series of deconvolution and upsampling layers, as171

a decoder. In the encoder path, the input arrays are gradually downsampled in 𝑧𝑥 by half (number172

of pixels in each dimension) in each layer, while at the same time doubling the number of filter173

banks. In contrast, in the decoder path, the input feature maps are upsampled in 𝑧𝑥 by a factor of174

two in each layer, while decreasing the number of filters in half. The U-Net architecture also175

consists of ‘skip’ connections, which allows the network to access the information from earlier176

layers, which otherwise might be lost due to the vanishing gradient problem [55]. The generator177

loss penalizes the network if the generated speckle-suppressed cross-section is different from178

the targeted speckle-suppressed cross-section. The generator loss was defined by a combination179

of entropy loss and the 𝐿1 loss as in the work by Isola et al. [46]. 𝐿1 loss allows the generated180

speckle-suppressed image, 𝑦𝑖 , to be structurally similar to the targeted speckle-suppressed image181

𝑦𝑖 . As in the work by Isola et al. [46], we provide the noise vector 𝑧𝑖 as an input in the form of182

dropout, applied on several layers of our U-Net generator at both training and testing time.183

2.4.2. Discriminator184

Our discriminator, patchGAN, enables penalization at a patch level to quantify granular details185

in the generated images. It consists of a series of blocks tapering down to a desired patch186

level classification layer, each block consists of a convolution layer, batch normalization, and187

leaky ReLU as in [46]. We compute discriminator loss in each training step; discriminator188

loss is a combination of real and fake loss. The real loss was a binary cross-entropy loss of189

patchGAN output for a provided ground-truth speckle-suppressed tomogram 𝑦𝑖 and a matrix of190

ones, while the fake loss was a binary cross-entropy loss of patchGAN output for a generated191

speckle-suppressed tomogram 𝑦𝑖 and a matrix of zeros. Hence, if the generator produced192

a speckle-suppressed tomogram that matches the provided ground-truth speckle-suppressed193

tomogram, the real loss will be equal to the fake loss.194

Fig. 1. In DL-TNode-3D, a partial OCT volume is given as input to the generator to learn to
despeckle tomograms with the help of a discriminator, making use of the given ground-truth
speckle suppressed tomogram produced by TNode.
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Fig. 2. cGAN architecture of our volumetric speckle suppression network; U-Net as a
Generator, convolutional patchGAN classifier as a Discriminator.

To compare and contrast with the current two-dimensional approach in deep learning de-244

speckling, where a speckle-suppressed B-scan is learned from its corresponding raw B-scan,245

we also trained our network using solely the central raw B-scan of each subvolume as the246

input, in combination with the same ground truth target image obtained using the TNode of247

the full subvolume. We herein refer to this approach as cGAN-2D, while DL-TNode-3D refers248

to our volumetric despeckling approach using partial volumes. We used the same generator249

and discriminator architecture and data augmentation strategies for cGAN-2D and the same250

datasets and tissue types for the training. Detailed comparison of DL-TNode-3D and cGAN-2D251

is discussed in Sec. 3.252

2.7. Evaluation metrics253

In this study, the following metrics were used for a quantitative analysis of our network254

performance:255
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speckle-suppressed OCT volume compared to ground-truth speckle-suppressed volume
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PSNR = 10 log10

(
𝐼2
max

MSE

)
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where MSE =
∑𝐷
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Fig. 2. cGAN architecture of our volumetric speckle suppression network; U-Net as a
Generator, convolutional patchGAN classifier as a Discriminator.
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2.4.1. Generator

Our U-Net takes a partial OCT volume (vi) as an input and consists of a series of convolutions
and pooling layers, as an encoder, followed by a series of deconvolution and upsampling layers, as
a decoder. In the encoder path, the input arrays are gradually downsampled in zx by half (number
of pixels in each dimension) in each layer, while at the same time doubling the number of filter
banks. In contrast, in the decoder path, the input feature maps are upsampled in zx by a factor of
two in each layer, while decreasing the number of filters in half. The U-Net architecture also
consists of ‘skip’ connections, which allows the network to access the information from earlier
layers, which otherwise might be lost due to the vanishing gradient problem [55]. The generator
loss penalizes the network if the generated speckle-suppressed cross-section is different from
the targeted speckle-suppressed cross-section. The generator loss was defined by a combination
of entropy loss and the L1 loss as in the work by Isola et al. [46]. L1 loss allows the generated
speckle-suppressed image, ŷi, to be structurally similar to the targeted speckle-suppressed image
yi. As in the work by Isola et al. [46], we provide the noise vector zi as an input in the form of
dropout, applied on several layers of our U-Net generator at both training and testing time.

2.4.2. Discriminator

Our discriminator, patchGAN, enables penalization at a patch level to quantify granular details
in the generated images. It consists of a series of blocks tapering down to a desired patch level
classification layer, each block consists of a convolution layer, batch normalization, and leaky
ReLU as in [46]. We compute discriminator loss in each training step; discriminator loss is a
combination of real and fake loss. The real loss was a binary cross-entropy loss of patchGAN
output for a provided ground-truth speckle-suppressed tomogram yi and a matrix of ones, while the
fake loss was a binary cross-entropy loss of patchGAN output for a generated speckle-suppressed
tomogram ŷi and a matrix of zeros. Hence, if the generator produced a speckle-suppressed
tomogram that matches the provided ground-truth speckle-suppressed tomogram, the real loss
will be equal to the fake loss.

2.5. Training data preparation

To create a training pair, a random B-scan was first selected from the TNode-processed volume
as a ground truth target image, yi, together with 16 adjacent B-scans (xi−8 to xi+8), and the same
B-scan from the raw OCT volume as an input partial volume vi (17 B-scans in total). We trained
our network using 300 partial volumes that were randomly selected from 3 datasets (100 partial
volumes from each dataset). The logarithmic intensity values in single precision were loaded
into Python and normalized to the uint16 range with defined limits described below. Before
being fed into the neural network, the data was converted into TensorFloat-32 values (19-bit
precision) to leverage the improved performance of modern GPUs compared to traditional 32-bit
single-precision data. We used conventional data augmentation strategies to increase the diversity
in our training dataset. In each training step, we changed the contrast dynamically by varying
the lower and upper limits of the uint16 representation. The lower limit of the contrast range
was set to the noise floor of the dataset, and a random value drawn from a uniform distribution
([0, 10] dB) was added to the lower limit of the contrast range. Similarly, the upper limit of the
contrast range was set to an average value computed from the volume of interest (11 × 11 × 3
px3) centered around the maximum value in the input partial volume, and a random value drawn
from a uniform distribution ([-15, 1] dB) was added to the upper limit of the contrast range. In
the next step, intensity values lesser than or equal to the lower limit of the contrast range were set
to 0, and the intensity values equal to or greater than the upper limit of the contrast range were
set to 65535; then, all the remaining intensity values were linearly scaled to the interval of [0
65535]. In addition to this data augmentation step, we randomly flipped, rotated, and performed



Research Article Vol. 15, No. 8 / 1 Aug 2024 / Biomedical Optics Express 4459

random crop and resize on the training pairs to simulate different geometric orientations. We
normalized the training pairs from -1 to 1 before we gave them as inputs to our network.

For a given input partial volume, vi, our generator, G, generated an estimate of the speckle-
suppressed cross-section, ŷi. The discriminator received two inputs: first, the partial volume
vi and the generated speckle-suppressed cross-section ŷi; second, the partial volume vi and the
ground-truth speckle-suppressed cross-section yi. In the next step, we computed the generator loss
and the discriminator loss and optimized them using an Adam optimizer [56] with parameters;
learning rate of 2 × 10−4, β1 = 0.5, β2 = 0.99 and ϵ = 1 × 10−7. The network was trained on an
NVIDIA RTX 5000 with 24 GB of memory. We trained both networks for 200 epochs or until
the discriminator loss approached ≈ 2 ln 2.

2.6. Experiments

We used the random search approach to determine the best architecture for our network, we
conducted experiments by changing the number of convolutional blocks in the generator and
changing the number of convolutional blocks and the output size of the discriminator with
different training and testing datasets. We converged to the network shown in Fig. 2, which gave
us the best results in terms of time efficiency and accuracy. The number of A-lines and depth
samples of OCT volumes used in this study were less than 1024. Because the search window
size used for TNode processing in the out-of-plane direction was 17 px in size, we chose an input
partial volume size in our network of 1024 × 1024 × 17 px3. We used a U-Net with the encoder
composed of 5 convolutional blocks with 256, 512, 1024, 2048, and 2048 filter banks, which
downsample the input partial volume of size 1024 × 1024 × 17 px3 to 32 × 32 × 2048 px3. We
used 256, 512, 1024, and 2048 filter banks in respective convolutional blocks in the encoder
part. We padded with zeros the input partial volumes of size less than the specified input partial
volume size in the fast and slow axes. Our discriminator consisted of 3 convolutional blocks with
512, 1024, and 1024 filter banks followed by a zero-padding layer and another convolution layer
with 2048 filter banks followed by batch normalization, and zero-padding layers, and the last
layer was a fully connected layer that outputs a patch-wise classification matrix with size 126 ×
126 corresponding to the classification of patches of size ≈ 8 × 8.

To compare and contrast with the current two-dimensional approach in deep learning de-
speckling, where a speckle-suppressed B-scan is learned from its corresponding raw B-scan,
we also trained our network using solely the central raw B-scan of each subvolume as the
input, in combination with the same ground truth target image obtained using the TNode of
the full subvolume. We herein refer to this approach as cGAN-2D, while DL-TNode-3D refers
to our volumetric despeckling approach using partial volumes. We used the same generator
and discriminator architecture and data augmentation strategies for cGAN-2D and the same
datasets and tissue types for the training. Detailed comparison of DL-TNode-3D and cGAN-2D
is discussed in Sec. 3.

2.7. Evaluation metrics

In this study, the following metrics were used for a quantitative analysis of our network
performance:

• Peak-signal-to-noise ratio (PSNR): measures the quality of our framework generated
speckle-suppressed OCT volume compared to ground-truth speckle-suppressed volume
obtained using TNode.

PSNR = 10 log10

(︃
I2
max

MSE

)︃
,

where MSE =
∑︁D

p=1(vp − v̂p)2 is the mean square error between the ground truth voxels vp
and the estimated voxels v̂p, D is the total number of voxels in the volume, and Imax is the
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maximum value possible. MSE computes the cumulative error between the ground truth
and the estimated speckle-suppressed OCT volume obtained using our framework. We
compute PSNR using 16-bit OCT intensity volumes, hence Imax would be 216 − 1. PSNR
quantifies the quality of the generated speckle-suppressed OCT volume, a higher PSNR
indicates a better quality, as it means that the generated speckle-suppressed OCT volume
is closer to the original TNode processed volume in terms of voxel values, therefore less
distorted or noisy.

• Contrast-to-noise ratio (CNR): measures the contrast between two tissue types.

CNR =
|µt2 | − |µt1 |√︂
σ2

t2 + σ
2
t1

,

where µt1 and µt2 are the mean of tissue type #1 and tissue type #2 respectively. Similarly,
σt1 and σt2 are the standard deviations of tissue type #1 and tissue type #2 respectively.
We have computed the CNR between two tissue samples of interest on the speckle-
suppressed OCT volume obtained using our framework and compared it with the CNR of
the corresponding ground-truth speckle-suppressed OCT volume. The closer the CNR
computed on the speckle-suppressed OCT volume obtained using our network to the
CNR computed on the ground-truth speckle-suppressed OCT volumes indicates that our
framework preserved the contrast between different tissue types as in the ground-truth
speckle-suppressed OCT volume. In our CNR computations, we utilized subvolumes of
interest with dimensions of 20 × 40 × 10 px3 pixels. These subvolumes of interests were
selected from two tissue types and were all centered along the y (slow)-axis.

• Structural similarity index (SSIM) and multi-scale-SSIM (MS-SSIM): are image
quality assessment methods that assess the similarity between corresponding patches of
two images [57,58]. The SSIM is computed using three components, namely the luminance
(I), the contrast (C) and the structural (S), and they are defined as

I(y, ŷ) = 2, µyµŷ + C1

µ2
y + µ

2
ŷ + C1

, C(y, ŷ) = 2σyσŷ + C2

σ2
y + σ

2
ŷ + C2

and S(y, ŷ) = σyŷ + C3

σyσŷ + C3
,

where µŷi and σŷi are the mean and the standard deviation of the generated speckle-
suppressed cross-section ŷi, respectively; µyi and σyi are the mean and the standard
deviation of the label image yi, respectively; σyi ŷi denotes the cross-covariance between
ŷi and yi; C1, C2 and C3 are small positive values used to avoid numerical instability.
SSIM(yi, ŷi) is the product of these three components,

SSIM(y, ŷ) = I(y, ŷ)αC(y, ŷ)βS(y, ŷ)γ,

whereα, γ and β are exponent weights for the luminance, contrast and structural components.
SSIM is measured using a fixed patch size, which does not capture complex variations
between the input two images to assess the similarity. MS-SSIM considers the input
patches that are iteratively downsampled by a factor of two with low-pass filtering, with
scale j denoting the original images downsampled by a factor of 2j − 1 and given as

MS-SSIM(y, ŷ) = IM(y, ŷ)αM
M∏︂

j=1
Cj(y, ŷ)βj Sj(y, ŷ)γj .

Note that these equations are valid regardless of the dimensionality of the images being
compared: for use in volumes, we compute I(y, ŷ), C(y, ŷ), and S(y, ŷ) over 3D-patches
instead of 2D-patches.
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We used MATLAB functions ssim and multissim with default values for patch size, exponent
weights α, γ and β and constants C1, C2 and C3 to compute both volume SSIM and MS-SSIM
respectively in this study. MATLAB ssim function also returns the local SSIM value for each voxel.
Using these local SSIM maps, we evaluated the statistical significance between DL-TNode-3D
and cGAN-2D using the Student’s t-test.

3. Results and discussion

Figure 3 shows representative results for a retinal volume using the ophthalmic OCT system, when
trained with three different OCT volumes consisting of distinct fields of view of the retina of two
individual subjects. Our network produced OCT volumes that closely resembled TNode volumes:
however, the cGAN processed the entire volume of size (448 × 818 × 808 px3) in just 2 minutes
(40 ms per B-scan), as opposed to the 4 hours required for TNode on an NVIDIA RTX 5000 with
24 GB of GPU memory, which is an improvement of two orders of magnitude in processing time.
We quantified the similarity between the ground truth and our network-produced tomograms
using the volume SSIM and MS-SSIM; for this example, the respective values were 0.988 and
0.996. To the best of our knowledge, our network produced speckle-suppressed tomograms more
similar to the ground truth—as measured by SSIM and MS-SSIM metrics, and regardless of the
method used for ground-truth generation—than any other method in the literature. Our network
enhanced the contrast between the layers, similar to ground-truth TNode speckle-suppressed
cross-sections while preserving small structures. For instance, the small capillaries, marked with
yellow arrows in Fig. 3, became much clearer and easier to identify. Similarly, our network led to
improved visualization and differentiation the nerve fiber bundles as shown in Fig. S2 in the
Supplement 1.

Figure 4 shows a comparison of speckle reduction with cGAN-2D, the case in which we
trained our network using the single raw B-scan of interest as the input—instead of a partial
volume—and its corresponding TNode processed B-scan as the target image. Limiting the
learning and inference process to 2D processing with cGAN-2D produced a decrease in the
quality of the results (similarity metrics were 0.947 and 0.976 for volume SSIM and MS-SSIM,
respectively). It is clear from the results in Fig. 4 that 2D processing produces high-frequency
artifacts along the slow-scan axis direction, and the quality of despeckling is qualitatively and
quantitatively inferior to 3D processing. This demonstrates that the excellent performance of
DL-TNode-3D is due to the use of partial volumes for network training and inference, which
contain more structural information than individual B-scans. We observed similar DL-TNode-3D
performance in tomograms acquired using the two other OCT systems, for which the network
had been trained independently.

Figure 5 shows representative results for a ventral finger skin volume (tissue type not part
of training data) using the VCSEL-based OCT system when trained with three OCT volumes
consisting of the nail bed, chicken heart, and chicken leg tissues. The similarity between the
ground truth and our network-produced tomograms using the volume SSIM and MS-SSIM for
this example were 0.968 and 0.993, respectively. In contrast, testing with cGAN-2D resulted
in a decrease in the quality of the results with volume SSIM and MS-SSIM 0.960 and 0.986,
respectively. Furthermore, cGAN-2D processing produced high-frequency artifacts along the
slow-axis scan direction, and the quality of speckle suppression is qualitatively inferior to
DL-TNode-3D. This network gave similar results when we tested on dorsal finger skin volume
with volume SSIM and MS-SSIM 0.988 and 0.996, respectively. This experiment shows that our
network is generalizable for tissue types that are not part of the training data. Speckle reduction
using our network enhanced the contrast between different ventral and dorsal finger skin layers.
Sweat ducts can be identified easily on our network speckle-suppressed cross-sections.

Similarly, Fig. 6 shows representative results for a nail bed volume using the polygon-based
OCT system when trained with three OCT volumes consisting of chicken leg (2×) and dorsal

https://doi.org/10.6084/m9.figshare.26062651
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Fig. 3. Orthogonal views of tomograms before and after despeckling using TNode (i.e.
Ground Truth) and DL-TNode-3D. DL-TNode-3D produces OCT volumes close to
the ground truth without any visible artifacts along the out-of-plane axis, 𝑦. 𝑧 is the
depth and 𝑥(𝑦) is the fast- (slow-) scan axis direction. Yellow arrows indicate small
capillaries that are preserved after despeckling with both TNode and DL-TNode-3D.
Scale bars = 0.5 mm.
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Figure 3 shows representative results for a retinal volume using the ophthalmic OCT system, when285

trained with three different OCT volumes consisting of distinct fields of view of the retina of two286

individual subjects. Our network produced OCT volumes that closely resembled TNode volumes:287
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24 GB of GPU memory, which is an improvement of two orders of magnitude in processing time.290
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cross-sections while preserving small structures. For instance, the small capillaries, marked with297

Fig. 3. Orthogonal views of tomograms before and after despeckling using TNode (i.e.
Ground Truth) and DL-TNode-3D. DL-TNode-3D produces OCT volumes close to the
ground truth without any visible artifacts along the out-of-plane axis, y. z is the depth and
x(y) is the fast- (slow-) scan axis direction. Yellow arrows indicate small capillaries that are
preserved after despeckling with both TNode and DL-TNode-3D. Scale bars = 0.5 mm.

finger skin (1×), respectively. The similarity between the ground truth and our network-produced
tomograms using the volume SSIM and MS-SSIM for this example were 0.989 and 0.996,
respectively. In contrast, testing with cGAN-2D resulted in a decrease in the quality of the results
with volume SSIM and MS-SSIM 0.943 and 0.983, respectively. It is clear from the results in
Fig. 6 that 2D processing produces high-frequency artifacts along the slow-axis scan direction,
and the quality of despeckling is qualitatively inferior to 3D processing. The quality metrics
for the ophthalmic, VCSEL, and polygon systems are summarized in Table 2. It is evident
that considering the out-of-plane information for speckle suppression using our DL-TNode-3D
framework produced volumes most similar in terms of volume PSNR, SSIM and MS-SSIM to
the ground truth volumes compared to using only B-scans in cGAN-2D. The p-value is <10−6

between the SSIM of DL-TNode-3D and cGAN-2D in all the cases. cGAN-2D produced volumes
with CNR close to the ground truth CNR for models trained on data from the ophthalmic and
VCSEL systems but not from the polygon-based system. However, they are corrupted with
high-frequency artifacts in the out-of-plane direction in all cases.

Typical loss curves obtained during DL-TNode-3D training are provided in Fig. S3 of
Supplement 1. Notably, all three models trained on data from different OCT systems exhibited

https://doi.org/10.6084/m9.figshare.26062651
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Fig. 4. Comparison of speckle reduction using DL-TNode-3D and cGAN-2D for the
retinal volume in Fig. 3. Orthogonal views where 𝑧 is depth and 𝑥(𝑦) is the fast- (slow-)
scan axis direction. DL-TNode-3D produces OCT volumes close to the ground truth
without any visible artifacts along the out-of-plane axis, 𝑦. Contrast-enhanced boxes
show superior speckle suppression ability of DL-TNode-3D compared to cGAN-2D,
which exhibits high-frequency artifacts along the slow-scan axis. Magenta and violet
rectangles represent the two tissue types used for calculating CNR. Scale bars = 0.5 mm.

Fig. 4. Comparison of speckle reduction using DL-TNode-3D and cGAN-2D for the retinal
volume in Fig. 3. Orthogonal views where z is depth and x(y) is the fast- (slow-) scan axis
direction. DL-TNode-3D produces OCT volumes close to the ground truth without any
visible artifacts along the out-of-plane axis, y. Contrast-enhanced boxes show superior
speckle suppression ability of DL-TNode-3D compared to cGAN-2D, which exhibits high-
frequency artifacts along the slow-scan axis. Magenta and violet rectangles represent the
two tissue types used for calculating CNR. Scale bars = 0.5 mm.
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Fig. 5. Comparison of speckle reduction using DL-TNode-3D and cGAN-2D for the
ventral finger skin volume acquired using VCSEL system. Orthogonal views where 𝑧 is
depth and 𝑥(𝑦) is the fast (slow) axis direction. DL-TNode-3D produces OCT volumes
that match the ground truth without any visible artifacts along the out-of-plane axis, 𝑦.
Purple arrow in the en face view indicates a motion artifact. Contrast-enhanced boxes
show superior speckle suppression ability of DL-TNode-3D compared to cGAN-2D,
which exhibits high-frequency artifacts along the slow-scan axis. Magenta and violet
rectangles represent the two tissue types used for calculating CNR. Scale bars = 0.5 mm.
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trimmed the same number of B-scans from the original OCT and ground truth TNode volumes.349

However, to retain these excluded B-scans, one potential solution is to utilize repeat padding,350

which is the padding used in TNode for the generation of the ground-truth data. This padding351

technique would allow the model to process the entire volume without discarding any B-scans.352

Given the excellent performance of our model on the disparate data that were not seen during353

the training, we anticipate that DL-TNode-3D, trained on retinal volumes obtained with our354

Ophthalmic system, will demonstrate generalizability to retinal data from patients with various355

ocular diseases acquired using the same system. Figure 4 illustrates the potential use of our356

network for glaucoma monitoring as it increases the contrast between retinal layers (nerve357

fiber layer, ganglion cell layer and inner plexiform layer) for which longitudinal monitoring358

of thickness is important [59, 60]. The value of despeckled OCT data goes beyond potential359

improvement in layer segmentation: we believe its impact to be higher in improving image360

interpretation in untrained readers in clinical applications in which small tissue features are of361

diagnostic importance, such as anterior segment, dermatology, intravascular and endoscopic362

Fig. 5. Comparison of speckle reduction using DL-TNode-3D and cGAN-2D for the ventral
finger skin volume acquired using VCSEL system. Orthogonal views where z is depth and
x(y) is the fast (slow) axis direction. DL-TNode-3D produces OCT volumes that match the
ground truth without any visible artifacts along the out-of-plane axis, y. Purple arrow in the
en face view indicates a motion artifact. Contrast-enhanced boxes show superior speckle
suppression ability of DL-TNode-3D compared to cGAN-2D, which exhibits high-frequency
artifacts along the slow-scan axis. Magenta and violet rectangles represent the two tissue
types used for calculating CNR. Scale bars = 0.5 mm.

Table 2. Quantitative evaluation of DL-TNode-3D and cGAN-2D for 3 OCT systems. DL-TNode-3D is
our method, which uses the volumetric information for speckle suppression whereas cGAN-2D uses

only 2D (depth-fast axes) information for speckle suppression. CNR values that are nearest to
ground truth volume CNR are highlighted in bold. The highest values of PSNR, SSIM, and MS-SSIM

are highlighted in bold. CNR: contrast-to-noise ratio, PSNR: peak-signal-to-noise ratio; SSIM:
structural similarity index; MS-SSIM: multi-scale structural similarity index.

OCT System Trained Model CNR PSNR (dB) ↑ SSIM ↑ MS-SSIM ↑
Ophthalmic Ground truth 1.193 - - -

cGAN-2D 1.188 34.726 0.943 0.976

DL-TNode-3D 1.302 38.076 0.988 0.996

VCSEL Ground truth 1.623 - - -

cGAN-2D 1.612 37.175 0.954 0.982

DL-TNode-3D 1.675 41.095 0.978 0.994

Polygon Ground truth 1.394 - - -

cGAN-2D 1.525 36.876 0.949 0.985

DL-TNode-3D 1.505 40.654 0.988 0.996
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Fig. 6. Comparison of speckle reduction using DL-TNode-3D and cGAN-2D for the
ventral nail bed volume acquired using the polygon-based system. Orthogonal views
where 𝑧 is depth and 𝑥(𝑦) is the fast (slow) axis direction. DL-TNode-3D produces
OCT volumes close to the ground truth without any visible artifacts along the out-of-
plane axis, 𝑦. Contrast-enhanced boxes show superior speckle suppression ability of
DL-TNode-3D compared to cGAN-2D, which exhibits high-frequency artifacts along
the slow-scan axis. Magenta and violet rectangles represent the two tissue types used
for calculating CNR. Scale bars = 0.5 mm.
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Fig. 6. Comparison of speckle reduction using DL-TNode-3D and cGAN-2D for the ventral
nail bed volume acquired using the polygon-based system. Orthogonal views where z is depth
and x(y) is the fast (slow) axis direction. DL-TNode-3D produces OCT volumes close to the
ground truth without any visible artifacts along the out-of-plane axis, y. Contrast-enhanced
boxes show superior speckle suppression ability of DL-TNode-3D compared to cGAN-2D,
which exhibits high-frequency artifacts along the slow-scan axis. Magenta and violet
rectangles represent the two tissue types used for calculating CNR. Scale bars = 0.5 mm.

similar stable learning curves. This suggests DL-TNode-3D’s capability for good generalizability.
With our publicly available source code, training DL-TNode-3D for any specific OCT system
should be straightforward. DL-TNode-3D process utilizes overlapping subvolumes of 17 B-scans
for volume processing. This inevitably leads to the exclusion of the first 7 and last 7 B-scans from
the final despeckled output. To ensure a fair comparison in the figures above, we correspondingly
trimmed the same number of B-scans from the original OCT and ground truth TNode volumes.
However, to retain these excluded B-scans, one potential solution is to utilize repeat padding,
which is the padding used in TNode for the generation of the ground-truth data. This padding
technique would allow the model to process the entire volume without discarding any B-scans.

Given the excellent performance of our model on the disparate data that were not seen during
the training, we anticipate that DL-TNode-3D, trained on retinal volumes obtained with our
Ophthalmic system, will demonstrate generalizability to retinal data from patients with various
ocular diseases acquired using the same system. Figure 4 illustrates the potential use of our
network for glaucoma monitoring as it increases the contrast between retinal layers (nerve fiber
layer, ganglion cell layer and inner plexiform layer) for which longitudinal monitoring of thickness
is important [59,60]. The value of despeckled OCT data goes beyond potential improvement
in layer segmentation: we believe its impact to be higher in improving image interpretation
in untrained readers in clinical applications in which small tissue features are of diagnostic
importance, such as anterior segment, dermatology, intravascular and endoscopic imaging. We
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demonstrated improved visibility of small tissue features with TNode in anterior segment imaging
with moderate resolution [52] (see Figs. 4(c) vs 4(e) and their insets in [52]). In cellular-resolution
anterior segment imaging there is an even stronger need for despeckling [61]. In the case of
retinal imaging, the spatial resolution in commercial ophthalmic OCT systems does not enable the
visualization of individual cells in the retina. However, there is increased interest in this capability,
as demonstrated by the many recent advances in adaptive-optics OCT [62,63], including the
development of a specialized deep learning algorithm for retinal pigment epithelium cell counting
in presence of speckle [64]. We believe that DL-TNode-3D will find ever increasing applicability
in this kind of high-resolution ophthalmic imaging as well. Even for deep-learning segmentation
routines, we expect that the use of despeckled data to generate more accurate training data will
be beneficial [65,66]. TNode assumes speckle follows an exponential distribution, which is a
reasonable approximation for single-look tomograms. Functional extensions of OCT, such as
OCTA or polarization-sensitive OCT, produce noisy parametric images (for parameters such
as decorrelation or birefringence) with very different statistics. For this reason, TNode is not
intended to be used on the outputs of these modalities.

Our results show that our network trained with only three OCT volumes of readily available
tissue can produce despeckled volumes that replicate the efficient suppression of speckle and
preservation of tissue structures with dimensions approaching the system resolution known
from TNode, while being two orders of magnitude faster. Because DL-TNode-3D relies on
an all-software approach for training, it can be easily re-trained and deployed in virtually any
OCT system. The updated TNode code for generating the training data and the source code
for our neural network are available in Code 1, Ref. [54]. This Dataset 1, Ref. [67] contains
a retinal OCT intensity volume as a demo dataset to generate volumetric speckle-suppressed
training data using our TNode script and four OCT intensity volumes and their corresponding
TNode-processed intensity volumes of different tissue samples acquired using VCSEL OCT
system to train and test our deep learning framework.

4. Conclusion

In this work, we presented a despeckling cGAN framework to utilize volumetric information for
speckle suppression in OCT. Our framework was trained using partial OCT volumes as input
and TNode speckle-suppressed tomogram as targeted output using U-Net as a generator and
patchGAN as the discriminator. We trained and tested our framework using 300 partial volumes
randomly drawn from three OCT volumes (100 partial volumes from each OCT volume) from
three OCT systems separately. Our network produced volumes that approximate the ground-truth
despeckled volumes with unprecedented fidelity, for models trained on all three OCT systems.
Additionally, our framework is two orders of magnitude faster than TNode and reaches near
real-time performance at ∼ 20 fps.
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