Skip to main content
. 2024 Jul 3;15(8):4453–4469. doi: 10.1364/BOE.523716

Table 2. Quantitative evaluation of DL-TNode-3D and cGAN-2D for 3 OCT systems. DL-TNode-3D is our method, which uses the volumetric information for speckle suppression whereas cGAN-2D uses only 2D (depth-fast axes) information for speckle suppression. CNR values that are nearest to ground truth volume CNR are highlighted in bold. The highest values of PSNR, SSIM, and MS-SSIM are highlighted in bold. CNR: contrast-to-noise ratio, PSNR: peak-signal-to-noise ratio; SSIM: structural similarity index; MS-SSIM: multi-scale structural similarity index.

OCT System Trained Model CNR PSNR (dB) SSIM MS-SSIM
Ophthalmic Ground truth 1.193 - - -
cGAN-2D 1.188 34.726 0.943 0.976
DL-TNode-3D 1.302 38.076 0.988 0.996

VCSEL Ground truth 1.623 - - -
cGAN-2D 1.612 37.175 0.954 0.982
DL-TNode-3D 1.675 41.095 0.978 0.994

Polygon Ground truth 1.394 - - -
cGAN-2D 1.525 36.876 0.949 0.985
DL-TNode-3D 1.505 40.654 0.988 0.996