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Abstract: Diffuse optical tomography (DOT) enhances the localization accuracy of neural
activity measured with electroencephalography (EEG) while preserving EEG’s high temporal
resolution. However, the spatial resolution of reconstructed activity diminishes for deeper
neural sources. In this study, we analyzed DOT-enhanced EEG localization of neural sources
modeled at depths ranging from 11-25 mm in simulations. Our findings reveal systematic biases in
reconstructed depth related to DOT channel length. To address this, we developed a data-informed
method for selecting DOT channels to improve the spatial accuracy of DOT-enhanced EEG
reconstruction. Using our method, the average absolute reconstruction depth errors of DOT
reconstruction across all depths are 0.9± 0.6 mm, 1.2± 0.9 mm, and 1.2± 1.1 mm under noiseless,
low-level noise, and high-level noise conditions, respectively. In comparison, using fixed channel
lengths resulted in errors of 2.6± 1.5 mm, 5.0± 2.6 mm, and 7.3± 4.5 mm under the same
conditions. Consequently, our method improved the depth accuracy of DOT reconstructions and
facilitated the use of more accurate spatial priors for EEG reconstructions, enhancing the overall
precision of the technique.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Electroencephalography (EEG) is a non-invasive neural imaging technique that measures voltage
changes due to neural activities on the scalp. While it offers high temporal resolution on the order
of milliseconds, its spatial resolution is limited to centimeters [1]. This limitation arises because
brain tissues act as a low-pass filter spatially, causing voltage changes from the cortex to spread
rapidly to detectors on the scalp [2]. In contrast, diffuse optical tomography (DOT), another
non-invasive neural imaging technique, has high spatial resolution on the order of millimeters
but limited temporal resolution on the order of seconds [3,4]. By shining near-infrared light
into the brain via sensors placed on the scalp, DOT can perform 3D reconstruction of neural
activity-induced localized hemoglobin concentration changes using optical data from multiple
channels. Thus, combining EEG and DOT could provide simultaneous high spatial and temporal
resolution in functional neuroimaging [5,6].

EEG source localization identifies the origin of neural activity within the brain, providing
significant clinical benefits such as epilepsy diagnosis and surgical planning, brain-computer
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interfaces, and cognitive and behavioral research [7]. However, the process remains challenging
because localizing neural activity from billions of neurons based on small-amplitude voltage
changes at dozens of detectors is an ill-posed problem, often resulting in significant localization
errors [2].

Previous research has shown that EEG source localization can be improved by incorporating
spatial priors from modalities such as functional magnetic resonance imaging (fMRI) [8], and
positron emission tomography (PET) [9]. However, both fMRI and PET suffer from high
cost, limited accessibility, and relatively poor temporal resolution [10–12]. Additionally, the
noisy nature of PET data [13] and the exposure to ionizing radiation [14] adds limitations to
the application of PET. The indirect relationship between fMRI signals and neural activity
[15], and low temporal resolution, pose challenges for accurate EEG source localization [16].
Hemodynamic signals as measured by DOT are also indirectly linked to neural activity. The
signals are related to EEG signals via neurovascular coupling [17]. Eggebrecht et al. demonstrated
that high-density DOT can map cortical brain function across a wide field of view, achieving
image quality comparable to fMRI with higher temporal resolution [3,18], indicating that DOT
could serve as an effective spatial prior for EEG, which can be measured simultaneously.

In our previous simulation studies [5] and human experiments [6], we demonstrated enhanced
EEG source localization using DOT reconstruction as a spatial prior in the somatosensory and
the visual cortex. However, neural activations in the visual cortex are closer to the scalp surface
(∼10 -15 mm) as compared to those in other regions, such as the auditory cortex (∼15 -30
mm) [19]. DOT is known to have limited depth sensitivity (∼30 mm) [20] because photon
density decays exponentially from the scalp surface. Additionally, it has been shown that DOT
reconstruction worsens with increased neuronal activation depth [20–23]. Thus, it is crucial to
ensure that DOT functions effectively at varying depths and to evaluate how the performance of
the DOT-enhanced EEG algorithm changes as neural sources move deeper into the brain. To
increase the depth accuracy of DOT reconstruction and preserve the function of DOT priors, a
data-informed selective channel method is proposed here for higher spatial accuracy.

In this work, we propose a data-informed method to select the optimal channel (source/detector)
length for a more accurate DOT reconstruction in terms of recovered depth accuracy. For this
purpose, we conducted a simulation study. Applying this algorithm to EEG and DOT simulations,
we then present the performance of this DOT-enhanced EEG algorithm as a function of neural
source depth in the auditory cortex. We found that by optimizing the channel length used in
DOT reconstruction, the accuracy of neural activity depth reconstruction is improved without
sacrificing spatial resolution. The combination of optimized DOT and EEG thus improves both
the spatial resolution and localization accuracy of EEG reconstruction even in deeper regions,
such as the auditory cortex.

2. Methods

We simulated functional activation at nine different depths. We assumed that neural and vascular
changes are co-localized. We reconstructed the location of vascular changes using DOT, and
used these derived DOT spatial prior for EEG neural activity reconstruction. In this work, we
simulated EEG signals by modeling current from neuron activation and DOT signals by modeling
changes in absorption of near-infrared light caused by neurovascular coupling in the activation
region.

2.1. Forward modeling

2.1.1. Mesh generation

The head model used in this work was segmented from ICBM152 2009c Nonlinear Asymmetric
brain atlas [24]. Four layers of brain tissue were included: brain, cerebrospinal fluid (CSF),
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skull and scalp with clear sulci and gyri in the segmentation. A mesh for computational models
using Finite Elements was generated based on the segmented head model using iso2mesh toolbox
[25]. There were 2,171,485 linear tetrahedra in the four-layer head model layer with an average
element volume of 1.76 cubic millimeter, consisting of 364,280 nodes, among which 101,154 are
inside the brain. The thickness of the skull and the scalp covering the auditory cortex were 6 mm
and 5 mm, respectively which is consistent with literature values [26,27]. Figure 1(a) shows the
coronal plane of one slice of the mesh.

The EEG simulation was implemented on a boundary element model (BEM), which was
interpolated from the finite element model (FEM) of the head mesh, accounting for the fact
that EEG electrodes detect electric signals emanating from the brain cortex surface. Given the
pronounced gyri and sulci in the brain region of the head model, the depth of reconstruction from
neural activities to the scalp varies significantly across different neural sources in the BEM. For
DOT simulation, the neural sources and reconstructions were first implemented on FEM and
then interpolated to BEM when using as spatial priors considering that hemodynamic response
changes occur throughout the brain’s vascular system.

2.1.2. EEG forward modeling

The EEG forward model was generated on the BEM from Section 2.1.1. SimBio in FieldTrip
toolbox [28,29] was used for the generation of the forward model. The placement of the electrodes
followed the placement of the 10-05 system containing 64 channels [30] as shown with black
dots in Fig. 1(b). The electric resistance of the four layers [Rbrain: RCSF: Rskull: Rscalp= 1
:1/5 :80 :1] [W] corresponded to literature values [5,31]. The forward model can be defined in
the linear form,

Y = Hx + ϵEEG (1)

where Y represents the measured signals on the scalp, H represents the forward matrix, x
represents the neural activities and ϵEEG represents EEG measurement noise.
 

 

Fig. 1. (a) One coronal slice of the head mesh containing four layers: brain, CSF, skull,
scalp. Neural activities were modeled in superior temporal sulcus inside the yellow circle.
(b) Placements of electrodes and DOT probes. Black dots represent the locations of EEG
electrodes, red and blue dots represent the locations of DOT sources and detectors. Yellow
region shows the area where neural activities were modeled. (c) Histogram of DOT channel
lengths up to 70 mm.

2.1.3. DOT forward modeling

The DOT forward model was generated from NIRFASTer [31] toolbox using FEM of the head
model defined above. High-density DOT optodes, consisting of 29 sources and 29 detectors
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(shown in Fig. 1(b) - red and blue dots), were placed on the scalp of the left hemisphere, ensuring
complete coverage of the temporal lobe. A total of 451 source-detector (channel) distances,
ranging from 7 mm to 70 mm were used for the simulation, the distribution of which is shown in
Fig. 1(c). For this work, one wavelength of 850 nm was used for the baseline optical properties
of each tissue (Table 1, [5]) and simulation of absorption only changes due to the functional
activations were considered. Optical detectors collect intensity which can be converted to changes
in optical densities.

Table 1. Optical Properties of DOT Forward Model

Tissue Type Brain CSF Skull Scalp

µa(mm−1) 0.0192 0.0040 0.0139 0.0190

850 nm µ’s(mm−1) 0.6726 0.0100 0.8400 0.6400

The continuous wave (CW) DOT forward model can also be written in a linear form:

∂Φ = J∂µa + ϵDOT (2)

where J is the forward matrix, or Jacobian, which describes the relationship between the detected
optical signals and hemodynamic responses inside the brain. ∂µa[mm−1] is changes in absorption
coefficients which are caused by neural activities inside the brain. Changes in optical densities,
∂Φ, are defined as

∂Φ = log I
I0

(3)

in which I is optical intensity measured from DOT detectors and I0 is baseline intensity. In the
simulation, I was modeled with changes in absorption coefficient µa in neural sources while I0
was modeled under baseline.

2.1.4. Data simulation

We simulated 9 sources (neural and vascular) at different depths along the middle part of the
superior temporal sulcus with depths from 11 mm to 25 mm (yellow circle in Fig. 1(a) and
yellow region in Fig. 1(b)). For DOT simulation, the sources were hemispheres with a radius of
5 mm each. While for EEG simulation, the voxels on the surface of the same hemispheres were
defined as activated voxels. We assumed that electrical signals from neuronal activation and
hemodynamic responses are co-localized. For every depth, functional activities are represented
with changes in absorption coefficient, ∂µa. Voxels inside the defined activation area were
assigned an increase of 10% in the absorption coefficient (which led to optical density changes,
∂Φ, smaller than 2.5% [3,32–34]), and other voxels stayed at baseline values shown in Table 1.
Simulations were run on baseline and activation. Hence, only two time points were considered
and no temporal variations in absorption coefficient were considered. For EEG, neural activities
were modeled with an increase in current density (1 A/m2, leading to 10 µV voltage changes).
The neural sources were selected within the yellow circle in Fig. 1(a) and the yellow region in
Fig. 1(b), which is the middle of the superior temporal sulcus.

2.1.5. Realistic noise model

The simulations of EEG and DOT reconstructions were done under both noise-free and noise-
added conditions. EEG noise ϵEEG is generated with a zero-mean Gaussian distribution with the
standard deviation of 1/20 maximum amplitude of the EEG signals [5]. A total of 30 blocks of
EEG signals were averaged and reconstructed for localization for the reducing of randomness.

DOT noise is modeled following literature [22,23]. In the realistic noise model, percentage of
changes in noise is randomly generated from a Gaussian distribution with a zero mean and the
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standard deviation follows
n(r) = aebr + cedr (4)

in which n is the standard deviation, r is the DOT source-detector distance and a, b, c, and d
are coefficients following literature [22,23] (a= 0.6019, b= 0.01052, c= 9.685e-05, d= 0.1382).
With the calculated standard deviation n(r), the noise ϵDOT [% of optical intensity I] follows the
Gaussian distribution:

ϵDOT ∼ N(0, n(r)2) (5)

Adding the noise to optical intensity, I, the noise-added changes in optical density, ∂ΦN , can
be represented as:

∂ΦN = log I+I ·ϵDOT
I0+I0 ·ϵDOT

(6)

which substitutes ∂Φ when modeling DOT signals and reconstructions in noise-added conditions.
Two different noise levels were added to DOT signals by changing the magnitude of n(r)

considering the different thickness of skull at different brain regions [27]. Considering the
thickness of the skull at the temporal lobe is 1/3 of the thickness of the skull at the occipital lobe,
and the thickness of skull highly influences the scattering of photons [35], the standard deviation
of low-level noise was defined as 1/3 of the standard deviation of high-level noise with other
setting keeping the same. With low-level noise and high-level noise, we tested the influence of
the noise level on the performance of the DOT-enhanced EEG algorithm. Under both low-level
DOT noise and high-level DOT noise conditions, noise-added signals were generated 30 times
and averaged, corresponding to block averaging in experimental data. The same level EEG noise
was generated and added to EEG signals under two DOT noise levels.

2.2. Inverse modeling

Inverse modeling is divided into three parts: EEG inverse model, DOT inverse model and the
combination of DOT priors and EEG reconstruction. The algorithm was developed previously
and is described in Cao et al. [5].

The EEG inverse model is implemented using Tikhonov regularization [36]:

(HTH + λI)−1HTY = x (7)

in which λ = 5 × 10−8 is the Tikhonov regularization parameter for EEG reconstruction [5,6].
The DOT inverse problem follows the Moore-Penrose generalized inverse [18].

L−1(ĴT Ĵ + λ1I)−1ĴT ∂Φ = ∂µa (8)

in which Ĵ is the Jacobian matrix after spatially regularization:

Ĵ = JL−1, diag(L) = 2
√︁

diag(JTJ) + λ2 (9)

λ1 and λ2 are parameters in Tikhonov regularization parameter and spatially variant regularization
with λ1 = 0.01 and λ2 = 0.1 [18,22].

The combination of DOT priors and EEG reconstruction is fulfilled using restricted maximum
like hood (ReML) [37,38]:

argmaxX, CN , CP − ∥Y − Hx∥2
C−1

N
− ∥x∥2

C−1
P
− log |CN | − log |CP | (10)

in which CN denotes the covariance matrix of measurement noise from EEG, and CP denotes the
covariance matrix of the distribution of DOT priors. Covariance matrices CN and CP can be
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calculated by linear decomposition:

CN =
∑︁
i

ΛN,iQN,i, CP =
∑︁
i

ΛP,iQP,i (11)

in which QN,i and QP,i are symmetric matrices denoting covariance matrices components, and
ΛN,i and ΛP,i denote coefficients to be estimated. DOT priors are used to construct the symmetric
matrix QP,i in ReML.

2.3. Novel data-informed selective channels method

Here we propose a novel method to enhance spatial accuracy. The depth sensitivity of DOT
reconstruction is proportional to the source-detector distances [39]. There is a trade-off between
the depth sensitivity and the accuracy of reconstructed depths. A higher depth sensitivity goes
hand in hand with a decrease in resolution at deeper sources. By analyzing the reconstruction
depths using different DOT source-detector distances, it can be observed that for a certain DOT
source-detector distance threshold, the reconstruction depth is biased. Neural activities below
the biased reconstruction depth will be overestimated, while neural activities deeper than the
biased depth will be underestimated. If for each experiment, an optimal DOT channel length
threshold (maximum source detector distance to be included) can be found, the reconstruction
depth can be closer to the ground truth.

However, in real experiments, it is impossible for us to know the location of neural activities
only using DOT. What we are proposing here is to analyze changes in optical densities, ∂Φ,
specifically the distribution of the magnitude of ∂Φ, to determine which channels to include in
the DOT reconstruction. Figure 2 shows the flowchart of the proposed data-informed method for
DOT channel selection. Details on fitting results are described in section 3.1. Reconstruction
depths were first calculated using different DOT channel length thresholds (equal or shorter than
the thresholds were used). For each neural sources, channel length threshold that leads to the
minimum reconstruction error is used as optimal channel length for calibration curve fitting.
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Fig. 2. Flowchart of the data-informed selective channel method on DOT reconstruction.

In this work, we are using the standard deviation as the determining matrix for DOT channel
selection. The standard deviation of ∂Φ for the entire dataset (451 DOT channels in this case) is
computed as

σ(∂Φ) =

√︂∑︁
(∂Φi−mean(∂Φ))2

N
(12)

where N is the number of DOT channels. Using the standard deviation, denoted as σ(∂Φ), and
observed optimal channel length, denoted as l, we can fit an equation to describe the relationship
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between the standard deviation σ(∂Φ) and the optimal DOT channel threshold l:

σ(∂Φ) = e(−αl+β) + γ (13)

in which α, β and γ are fitted coefficients from a fitting set of simulated data.
After deriving from the previous equation, we can get the equation to determine a DOT channel

length threshold l based on the standard distribution of changes in optical densities ∂Φ:

l = −
log (σ(∂Φ)−γ) −β

α
(14)

With the fitted calibration curve, we can get the optimal DOT channel length threshold for any
given DOT signal ∂Φ. Using Eq. (13), fitting for optimal channel length, l, and the standard
deviation σ(∂Φ), neural sources are reconstructed using optimal DOT channel lengths inferred
from the curve. DOT reconstruction up to the calculated channel length, l, can optimize DOT
reconstruction, thus decrease the localization error and increase depth sensitivity.

2.4. Metrics

To evaluate the performance of the DOT-enhanced EEG reconstruction, two aspects have been
considered: the accuracy of the reconstruction location and the spatial spread of the DOT-
enhanced EEG reconstruction. We used reconstruction depth and full width half maximum
(FWHM) as evaluation.

Reconstruction depth is defined as the distance between the scalp and the center of the mass of
the reconstruction, which shows the accuracy of reconstruction locations and reflects the depth
sensitivity of the DOT-only and DOT-enhanced EEG reconstruction. And FWHM is defined as
the longest distance within the reconstruction that has a value larger than half of the maximum
value. It can show changes in the spatial resolution of the EEG reconstructions with and without
spatial priors.

3. Results

3.1. Fitted model for data-informed selective method

For evaluating the effects of the data-informed method for DOT channel selection, analysis and
reconstruction were first done on DOT-only data under noise-free and noise-added conditions
and then expanded to DOT-prior EEG data.

Figure 3 shows four examples of the distribution of optical density changes under both
noise-free and noise-added conditions. From left to right, the four subfigures in Fig. 3(a) show
the absolute magnitude of changes in optical densities as a function of DOT channel length for
neural source depths of 13 mm, 17 mm, 20 mm, and 23 mm under the noise-free condition.
As the depths increase, the magnitudes of all channels decrease, and fewer short channels can
capture hemodynamic changes from the activated location. The overall magnitude distribution of
changes in optical density is less dispersed when the neural source is deeper. Similarly, under the
noise-added condition, changes in optical densities are getting less dispersed when the neural
sources are deeper. Figure 3(b) and Fig. 3(c) are showing the absolute values of changes in
optical densities of the same four neutral sources under low-level noise (maximum 1% noise) and
high-level noise (maximum 3% noise) conditions, respectively. A higher noise level leads to
larger magnitudes of optical density changes and less concentrated distributions.

Figure 4(a), (b) and (c) are showing the reconstruction depth curves using multiple channel
length thresholds for DOT under noise-free and noise-added conditions. As shown in Fig. 4(a),
for each DOT channel length threshold, there exists a biased reconstructed depth. Neural
sources shallower than the biased reconstructed depth are spatially overestimated, leading to the
reconstructed center of mass being deeper than the ground truth. And neural sources deeper
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Fig. 3. (a) Distribution of simulated DOT signals of four neural sources at different depths
under the noise-free condition. X axis denotes DOT channel lengths and y axis denotes the
absolute value of optical densities. (b) Distribution of simulated DOT signals of four neural
sources at different depths under low-level noise. (c) Distribution of simulated DOT signals
of four neural sources at different depths under high-level noise.

than the biased reconstructed depth are spatially underestimated, leading to the reconstructed
center of mass being shallower than the ground truth. If we can determine the optimal DOT for
each neural source depth, we are able to get a more accurate reconstructed depth compared to
using all DOT channel lengths. Doing the same analysis on low-level noise added optical density
data, the biased deconstruction depths can still be observed from the reconstruction depth figure
using fourteen different DOT channel length thresholds (Fig. 4(b)) though the reconstruction
depth curves are not smooth with noise added. However, when the noise level became higher, the
DOT channels can hardly reconstruct the depth of the neural sources at all the channel length
thresholds (Fig. 4(c)).

All nine neural sources were used for fitting the curve modeling under noise-free and noise-
added conditions. By plotting the selected DOT channel length by the absolute value of the
standard deviation of changes in optical densities, we found that the relationship between optimal
channel length and the standard deviation follows an exponential decay, as discussed in section
2.3. Figure 4(d) shows the fitted curve for the noise-free condition, Fig. 4(e) for low-level noise
condition and Fig. 4(f) for high-level noise condition. Table 2 shows the fitted values from the
four points marked with stars in Fig. 4(a-c) corresponding to noise-free, low-level noise and
high-level noise conditions. The difference between noise-free and noise-added conditions is that
under the noise-free condition, the standard deviation of changes in optical densities tend to zero
when the selected channel length tends to infinity. Under the noise-added condition, the standard
deviation of changes in optical densities tends to a certain value which is the standard deviation
value of noise from activities in the brain.

By implementing the data-informed selective channel method to DOT reconstructions, we
show four examples for DOT reconstruction without noise in Fig. 5. All the reconstructions are
normalized between -1 and 1 for comparison. Figure 5(a) shows the DOT reconstructions of four
neural sources with the depths of 13 mm, 17 mm, 20 mm, and 23 mm from left to right using all
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Fig. 4. (a)Reconstruction depths of 9 sources using 14 different DOT channel length
thresholds under noise-free condition. Black stars represent selected sources and corre-
sponding optimal DOT channel lengths for curve fitting. (b) Reconstruction depths under
low-level noise condition. (c) Reconstruction depths under high-level noise condition.
(d) Fitted exponential decay curve using 4 selected DOT channel length thresholds and
corresponding standard deviations under noise-free condition. (e) Fitted exponential decay
curve under low-level noise condition. (f) Fitted exponential decay curve under high-level
noise condition.

Table 2. Values of Coefficients in for DOT Channel Selection Model

Coefficients α β γ

Noise-free 0.6391 -4.204 3.051e-04

Low level noise 0.9486 -3.758 5.137-04

High level noise 0.346 -5.72 2.53e-03

DOT channels with the length smaller than 70 mm. Figure 5(b) shows the DOT reconstructions
of the four neural sources using the proposed data-informed selective channel method. Green
dots in all subfigures show the location of the ground truths of the neural sources. As shown in
the figure, when using all channels shorter than 70 mm, the centers of mass of red areas (DOT
reconstruction) do not overlap with the green dots. Instead, the depths of the centers of mass of
red areas are deeper than the depths of green dots, which means that the reconstructions tend
to be deeper than the ground truth. While using selected DOT channels for reconstruction, the
centers of mass of the reconstructed areas are closer to the center of the neural activities, which
means the reconstructed neural activities are more accurate.

Same DOT reconstructions were done with realistic noise added to the signals. Figure 6. And
Fig. 7 show the DOT reconstructions for neural sources at depths of 13 mm, 17 mm, 20 mm, and
23 mm using all DOT channel lengths shorter than 70 mm and selected DOT channel lengths
with low-level noise and high-level noise. As shown in Fig. 6, under low-level noise condition,
selected DOT channels avoided the effects of overestimation compared with the reconstruction
using all DOT channel length, which made the localization errors smaller. When the neural
source was moved to a deep location (23 mm), the magnitude of noise was large which made
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Fig. 5. (a) DOT reconstructions at four different depths: 13 mm, 17 mm, 20 mm, and 23
mm using fixed DOT channels ≤ 70 mm under noise-free conditions. Green dots represent
the center of ground truths. (b) DOT reconstructions at four different depths: 13 mm, 17
mm, 20 mm, and 23 mm using selective DOT channel lengths under noise-free conditions.

the reconstructed location inaccurate. And even longer channels cannot reconstruct the correct
neural activity, which leads to reconstruction away from the center of the neural source for both
DOT reconstruction when the neural source had the depth of 23 mm.

 

Fig. 6. (a) DOT reconstructions at four different depths: 13 mm, 17 mm, 20 mm, and
23 mm using fixed DOT channels ≤ 70 mm under low-level noise condition. Green dots
represent the center of ground truths. (b) DOT reconstructions at four different depths: 13
mm, 17 mm, 20 mm, and 23 mm using selective DOT channel lengths under low-level noise
condition.
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Fig. 7. (a) DOT reconstructions at four different depths: 13 mm, 17 mm, 20 mm, and
23 mm using fixed DOT channels ≤ 70 mm under high-level noise condition. (b) DOT
reconstructions at four different depths: 13 mm, 17 mm, 20 mm, and 23 mm using selective
DOT channel lengths under high-level noise condition.

However, when the noise level is high as shown in Fig. 7., the reconstructions show slight move
towards deeper location when the neural sources are deeper. However, the overall reconstructed
depths are highly underestimated and the magnitude of the reconstructed ∂µa are relatively small
compared with the reconstructions in the other two conditions. The selected channel method
removed some noise compared with the reconstruction from all DOT channel lengths even though
both all DOT channels and selected DOT channels cannot reconstruct the neural activities at
correct locations.

3.2. EEG reconstruction examples

Figure 8 shows the EEG reconstructions for two example neural activities at different depths
(13 mm and 20 mm). The neural sources and normalized reconstruction using EEG only, and
DOT-enhanced EEG without and with selective channels DOT priors are shown both from a whole
view and from a slice view under DOT noise-free, low-level DOT noise and high-level DOT noise
conditions. When the neural source is at 13 mm (Fig. 8(a)), added noise in DOT doesn’t impact
the DOT-enhanced EEG reconstruction very much. DOT-enhanced EEG reconstruction with
high-level DOT noise has larger area compared with the reconstruction with low-level noise, but
the EEG reconstruction is still more concentrated with the DOT prior and the spatial resolution can
still be improved. Under both noise-free and noise-added conditions, the areas of DOT-enhanced
EEG reconstruction shrunk significantly compared with the EEG only reconstruction. Using the
ground truth of the neural source as a reference, the DOT priors have helped increase the spatial
resolution and keep the location accurate for the EEG reconstruction. When the neural source is
at a depth of 20 mm (Fig. 8(b)), EEG reconstruction shows positive and negative areas due to the
directions of dipoles changed in this case. Under the noise-free condition for DOT signals, the
area of EEG reconstruction was significantly decreased by the DOT priors, allowing for accurate
localization for both shallow and deep neural sources. When there was noise added to the DOT,
the overall area was still decreased by the DOT prior compared with EEG-only reconstruction.
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Fig. 8. (a) The side views and slice views of neural source, EEG-only reconstruction,
EEG-DOT using selective channels under noise-free conditions, EEG-DOT using selective
channels under low-level DOT noise and high-level DOT noise conditions for a shallow
neural source (13 mm). (b) The side views and slice views of neural source, EEG-only
reconstruction, EEG-DOT using selective channels under noise-free conditions, EEG-DOT
using selective channels under low-level DOT noise and high-level DOT noise conditions
for a shallow neural source (20 mm).

3.3. Quantitative analysis for depth sensitivity of reconstructions

The quantification of DOT-enhanced EEG localization is seen in Fig. 10 for reconstruction
depth and Fig. 11 for the full width half maximum (FWHM) of EEG reconstructions. Figure 10
shows the reconstruction depths of DOT priors only and DOT-enhanced EEG reconstructions.
For the comparison with the proposed method, DOT channel lengths up to 70 mm were used.
Figure 10(a) shows the reconstruction depth of DOT reconstruction using all channels shorter
than 70 mm and using the selected channels based on the methods introduced here. The red
curve, which represents the reconstruction depth using the proposed method, significantly lowers
the localization errors compared to the blue curve, which represents the DOT reconstruction
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depth using all channel lengths. Using these DOT priors from two methods to improve the EEG
reconstruction, Fig. 10(d) shows the reconstruction depth of EEG-only reconstruction, all channel
DOT reconstruction enhanced EEG and selected channels DOT reconstruction enhanced EEG
reconstructions. While both DOT priors can highly improve the accuracy of the reconstruction
depth for EEG reconstructions, the DOT priors from the data-informed selective channel methods
can furthermore lower the difference between the reconstructed depth and the ground truth, which
means it has better performance on optimizing the algorithm. The errors of reconstruction depth
using the DOT channel selection method have a decrease ranging from 0 mm to 3.8 mm under
noiseless condition compared with the reconstruction depth of DOT-enhanced EEG using all
DOT channels shorter than 70 mm. Adding low-level noise to the DOT signals, the reconstruction
depth of both DOT-only reconstruction (Fig. 10(b)) and DOT-enhanced EEG reconstruction
(Fig. 10(e)) can be promoted using the data-informed selective channel method compared with
using all DOT channel lengths. In all the four figures, the reconstruction depth curves using the
proposed method show a high correlation with the ground truth. There is a decrease of errors
ranging from 0 mm to 3.3 mm under low-level noise condition after using the DOT channel
selection. When the DOT noise level is higher, the reconstruction depths of DOT (Fig. 10(c))
and the reconstruction depth of DOT-enhanced EEG reconstructions are not accurate, leading to
limited improvement in the reconstruction depth of DOT-enhanced EEG reconstructions. There
is a decrease ranging from 1.0 mm to 8.7 mm under high-level noise condition after using DOT
channel selection compared with DOT-enhanced EEG reconstruction using all channel lengths
up to 70 mm.

The DOT channel length thresholds for channel selection in DOT reconstructions are shown
in Fig. 9 for noise-free, low-level noise and high-level noise conditions. When the depth of
neural source increases, DOT channels equal or smaller than the thresholds were used for the
DOT reconstruction. As reflected in Fig. 9, the DOT channel length threshold increases with the
increasing of neural source depth under each noise condition.

Fig. 9. Neural source depth versus selected DOT channel threshold using the data-informed
selective method.

The spatial resolution analyses are shown in Fig. 11 with FWHM. Under noise-free (Fig. 11(a)),
low-level noise (Fig. 11(b)) and high-level noise (Fig. 11(c)) conditions, the FWHM significantly
decreased after using the DOT reconstructions as spatial priors for EEG reconstruction. But
there’s no significant difference between the spatial resolution of using all channels or using
selective channels for DOT reconstruction, which means that the spatial resolution can be kept
when the depth-sensitivity is increased for the DOT-enhanced EEG reconstruction. FWHM
increases as the level of noise increases. In all three subfigures in Fig. 11, there are significant
increases between the third and the fourth neural sources. This phenomenon can be attributed to
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Fig. 10. Figure 10. DOT reconstruction depth using channels shorter than 70 mm and
DOT reconstruction using selective channels for 9 neural source depths under noise-free
condition (a), for low-level noise (b), and high-level noise (c). EEG reconstruction depth
without priors, with DOT priors using channels shorter than 70 mm and DOT priors using
selective channels for 9 neural source depths under noise-free condition (d), for low-level
noise (e), and high-level noise (f).

 

Fig. 11. (a) Full width half maximum (FWHM) of EEG reconstruction without priors, with
DOT priors using channels shorter than 70 mm and DOT priors using selective channels
for 9 neural source depths under noise-free condition. (b) FWHM of EEG reconstruction
without priors, with DOT priors using channels shorter than 70 mm and DOT priors using
selective channels for 9 neural source depths under low-level noise condition. (c) FWHM of
EEG reconstruction without priors, with DOT priors using channels shorter than 70 mm
and DOT priors using selective channels for 9 neural source depths under high-level noise
condition.
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the direction changes of the dipole. The direction of first three neural sources is more vertical to
the cortex, which leads to concentrated positive reconstruction using EEG-only (one example
can be Fig. 8. (a)). However, when the neural sources are deeper, the direction of the dipoles are
more parallel to the cortex because of the geometry of the sulcus. Thus, the current spreads to
the cortex in two directions, positive and negative, and has less concentrated reconstruction with
smaller maximum values, leading to a larger FWHM.

4. Discussion

This study introduced a data-informed method to determine DOT source-detector distances
to improve depth reconstruction accuracy of DOT and DOT-enhanced EEG for neural source
reconstruction. Our results demonstrate that this approach can significantly increase the spatial
resolution of EEG by reconstructing more accurate locations and reducing the reconstruction
area, even in the presence of realistic noise. These findings could lead to improved accuracy and
applicability of neuroimaging techniques in both research and clinical settings.

Our method builds upon previous research aimed at improving the accuracy of EEG and
DOT reconstruction separately. Techniques such as low resolution electromagnetic tomography
(LORETA) [20,40,41], focal under determined system solution (FOCUSS) [42] and recursive
multiple signal classification (MUSIC) [43] have been proposed for EEG source localization
and reconstruction. LORETA [20,40,41] smooths the reconstructed neural activities but leads
to lower resolution. FOCUSS [42] and MUSIC [43] improve EEG localization using different
iteration methods. Meanwhile, various normalization methods have been used to address the
depth sensitivity bias in DOT. Depth sensitivity of DOT decreases as the location of brain
activity moves deeper [39] because the density of photons decays exponentially with the depth
of imaging increasing. Eggebrecht et al. proposed a high-density DOT system and added a
spatial penalty in DOT reconstruction considering the reconstruction bias towards the surface
of the head [3,18]. Eames and Dehghani improved the sensitivity of DOT reconstruction by
normalizing the Jacobian [44]. Chiarelli et al. combined the energy constraint with Laplacian
constraint, which increased the accuracy of reconstruction depth, but the spatial resolution is
negatively influenced [20]. The distribution of optical signals has also been used in previous near
infrared spectroscopy (NIRS) research [45,46]. Our approach is unique in its combination of
these modalities using a data-informed channel selection method. By leveraging the strengths of
both EEG and DOT, we have developed a technique that can offer better spatial and temporal
resolution compared to either modality alone.

The improved reconstruction depth accuracy achieved by our method is particularly relevant
for auditory neuroscience research. fMRI studies have shown that neural activities in the
temporal lobe can be as deep as 50 millimeters [19,47], highlighting the need for techniques
that can accurately reconstruct activity at these depths. By enhancing the spatial reconstruction
accuracy of DOT-enhanced EEG, our approach offers a more cost-effective and convenient
alternative to fMRI for studying auditory processing in the brain. This could have significant
implications for understanding the neural basis of auditory perception, language processing, and
related cognitive functions [48,49]. Moreover, improved localization of neural activity could
aid in the diagnosis and treatment of neurological disorders such as epilepsy, development of
brain-computer interfaces, and other neuromodulation techniques that rely on precise targeting of
specific location inside the brain [40,50–52].

However, our study has some limitations that should be addressed in future research. The source-
detector distances used in this study are unrealistically large (∼70 mm), and the performance of our
method under more realistic distance thresholds (35-50 mm) needs to be evaluated. Additionally,
the influence of noise levels on the reconstruction accuracy requires further investigation to
determine the limitations of our approach. Current EEG and DOT noise models consider
device noise. Other types of noise such as noise from heart beats, respiration, and other
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physiological factors will need to be considered in real experiments. It is also crucial to validate
our method using different source-detector setups and neural activation patterns to establish its
wider applicability. To simplify the simulation, we assumed EEG and DOT at only two time
points – baseline and activation. In order to consider temporal variations, evoked neural activities
could be modeled as a delta function and optical density changes follows hemodynamic response
function [5]. Moreover, 9 neural sources were used in this work limited by the resolution of
the mesh. Theoretically, 3 pairs of data are enough for fitting an equation with three unknown
coefficients. More data pairs being used means more reliable fitting results. In clinical application,
the necessary number of data pairs for fitting a reliable calibration curve needs further research.

To translate our method from simulation to experimental conditions and clinical applications,
as shown in Fig. 12, we propose a pipeline that involves fitting a calibration curve using
resting-state data and applying the data-informed channel selection method to experimental
data. This approach will need to be rigorously tested and refined to ensure its robustness and
reliability across different experimental conditions and subject populations. Questions including
the duration of the resting state and the processing of the measured EEG and DOT data need to
be solved in future work.

 
Fig. 12. Block diagram of clinical applications of the data-informed selective channel DOT
reconstruction.

Future research should also focus on integrating our method with other advanced signal
processing techniques, such as channel subtraction [46], to further improve the signal-to-noise
ratio and reconstruction accuracy. The development of standardized scalp and skull masks based
on averaged MRI data could also help to mitigate the effects of hemodynamic responses in
superficial layers, enhancing the specificity of the reconstructed neural activity.

In conclusion, our data-informed method for selecting DOT source-detector distances offers
an improved depth reconstruction accuracy and spatial resolution for DOT-enhanced EEG
reconstruction. With further refinement and validation, this approach could have wide-ranging
applications in both basic neuroscience research and clinical practice, ultimately leading to a
deeper understanding of brain function and more effective diagnosis and treatment of neurological
disorders.
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