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Abstract
The growing use of neuromonitoring in general anesthesia provides detailed insights into the effects of anesthetics on the 
brain. Our study focuses on the processed EEG indices State Entropy (SE), Response Entropy (RE), and Burst Suppres-
sion Ratio (BSR) of the GE  EntropyTM Module, which serve as surrogate measures for estimating the level of anesthesia. 
While retrospectively analyzing SE and RE index values from patient records, we encountered a technical anomaly with a 
conspicuous distribution of index values. In this single-center, retrospective study, we analyzed processed intraoperative 
electroencephalographic (EEG) data from 15,608 patients who underwent general anesthesia. We employed various data 
visualization techniques, including histograms and heat maps, and fitted custom non-Gaussian curves. Individual patients’ 
anesthetic periods were evaluated in detail. To compare distributions, we utilized the Kolmogorov–Smirnov test and Kull-
back–Leibler divergence. The analysis also included the influence of the BSR on the distribution of SE and RE values. We 
identified distinct pillar indices for both SE and RE, i.e., index values with a higher probability of occurrence than others. 
These pillar index values were not age-dependent and followed a non-equidistant distribution pattern. This phenomenon 
occurs independently of the BSR distribution. SE and RE index values do not adhere to a continuous distribution, instead 
displaying prominent pillar  indices with a consistent pattern of occurrence across all age groups. The specific features of 
the underlying algorithm responsible for this pattern remain elusive.
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1 Introduction

1.1  Background

To monitor the hypnotic component of anesthesia, the 
electroencephalograph (EEG) is a non-invasive measure-
ment that directly monitors anesthetic-induced changes in 
the target organ, the brain [1, 2]. Commercial monitoring 
systems use a reduced EEG montage to record from the 
patient’s forehead. The systems translate the raw EEG into 
an index, which provides information regarding the patient’s 
anesthetic level, i.e., the hypnotic component of anesthesia 
[3–6]. Most of these monitoring systems use algorithms to 
detect changes in the EEG spectrum by tracking the transi-
tion from a low-amplitude, high-frequency EEG present in 
the awake state to a high-amplitude, low-frequency EEG 
during anesthetic-induced unconsciousness [1]. The moni-
toring systems translate these changes into dimensionless 
indices that inversely correlate with the hypnotic compo-
nent of anesthesia. These indices are mostly proprietary, 
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and we only have partial insight into how these indices are 
derived [3–7]. Results from reverse-engineering one of 
the most commonly used systems, the Bispectral  IndexTM 
(BIS), indicate that even the partially provided information 
may be misleading [8]. Other monitoring systems, like the 
GE  EntropyTM Module with the State Entropy (SE) and the 
Response Entropy (RE), appear more transparent, as parts of 
the algorithms were explained [4, 9]. The SE and RE seem to 
be calculated from the spectral entropy [4, 10], which is the 
Shannon Entropy [11] applied to the power spectrum of the 
EEG. Another article explains the steps for calculating the 
Burst Suppression Ratio (BSR) [9]. The BSR information 
is straightforward to interpret, it indicates the percentage 
of suppressed EEG duration within a defined period. The 
depth-of-anesthesia indices are more complex because the 
output of the respective mathematical algorithm is matched 
on a scale ranging from 0 to 100 for RE or – as in the case 
of SE – to 91 [4]. Nonetheless, the exact mechanism by 
which the algorithm executes this matching process remains 
obscure.

1.2  Objectives

In our retrospective data analysis, our primary aim was to 
investigate the presence of age-dependent distribution pat-
terns in SE and RE index values. While examining the large 
dataset comprising SE, RE, and BSR data, we discovered 
an unanticipated clustering of particular pillar index val-
ues, a finding which we elaborate on further in this article. 
These findings challenge the prevailing claim that SE and 
RE index values originate from a continuous matching of 
spectral entropy values onto a depth-of-anesthesia scale [4].

2  Methods

2.1  Electronic patient records

For this retrospective, single-center study, we performed 
an analysis of processed intraoperative EEG data from a 
cohort of 15,608 patients who underwent general anesthe-
sia. Our hospital’s electronic records contained index val-
ues of SE, RE, and BSR from the GE  EntropyTM module. 
Additionally, these records included demographic informa-
tion such as patient age, sex (male or female), Body Mass 
Index, ASA Physical Status Classification and whether 
inhalation anesthesia with volatile anesthetic gases or total 
intravenous anesthesia (TIVA) was used for anesthesia 
maintenance. Furthermore, the records featured multiple 
perioperative procedural timestamps and time periods, 
outlining the total perioperative time. This includes: start 
of anesthesia, anesthesiological case clearance, surgical 
incision, and end of anesthesia, in accordance with the 

German Perioperative Procedural Time Glossary [12]. We 
included all patients aged 18 and older in our analysis. The 
trend data (RE, SE, and BSR) were recorded at 10-sec-
ond intervals. All analyses and plots were computed using 
MATLAB R2023a [13].

2.2  Definition of time intervals for analysis

For certain aspects of our analysis, we selected specific 
time intervals to isolate periods during which patients can 
be expected to reach a stable state of general anesthesia. 
To define this interval, we adjusted two of the procedural 
timestamps to better align with our research objectives. Spe-
cifically, we used the timestamp surgical incision as a refer-
ence point and subtracted 5 min to delineate the beginning 
of our target period from anesthesia induction with more 
dynamic pharmacological interventions and concomitant 
EEG changes. To exclude patients who were awakening 
from anesthesia, we subtracted 10 min from the end of anes-
thesia timestamp. This approximated differentiation allowed 
us to evaluate the indices for (i) the entire procedural period 
(including states of patient wakefulness and awakening in 
the operating room) and (ii) the surgical core period with 
likely stable anesthesia-induced unconsciousness.

2.3  Analysis of SE and RE index values

As previously mentioned, both SE and RE index values are 
derived from spectral entropy analysis. The frequency ranges 
used for calculating these indices are 0.8–32 Hz for SE and 
0.8–47 Hz for RE, as specified in Viertio-Oja et al.’s work 
[4]. Notably, RE encompasses information from higher-fre-
quency components, capturing a greater extent of recorded 
muscle activity. In this study, we present the results for both 
SE and RE separately, as well as their respective difference 
for each index value pair, Δ (RE–SE). This difference con-
tains valuable information, as a Δ (RE–SE) > 10 might be 
associated with impending arousal [4, 14]. Both RE and SE 
are initially computed as spectral entropy values. However, 
in order to ease interpretation by clinicians, these values 
are converted into whole integer indices, ranging from 0 
to 91 (SE) or 100 (RE). This transformation is purportedly 
accomplished via application of a monotonic spline func-
tion, which is chosen to ensure that the resulting curve is 
perfectly smooth, devoid of any abrupt changes or irregu-
larities, while still preserving the essential information. It’s 
important to note that this transformation does not evenly 
space the values from the original scale. This deliberate 
choice is made to optimize data resolution within the SE 
original range of 0.5 to 1.0 [4].
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2.4  Statistical analysis

For parts of our analyses, we focused on the surgical core 
period only, because including the values from awake or 
awakening patients during the entire procedural period with 
high SE and RE index values would have constituted a bias-
ing factor for our distribution fits. Throughout this study, we 
explicitly indicate whether the data presented are derived 
from the entire procedural or the surgical period. We visual-
ize our findings with histograms, heat maps, and trends. In 
order to calculate probabilities of index value distributions, 
the data is initially portioned into discrete intervals known as 
bins. Subsequently, the data points within each of these bins 
are enumerated. This is followed by a normalization step, 
where the counts within each bin are divided by the total 
count of data points. This ensures that the sum of probabili-
ties equals 1. For the indices’ distribution during the surgi-
cal period, we created an expected, continuous probability 
distribution by fitting a custom, interpolated, non-Gaussian 
curve to the histogram of observed probabilities and then 
subtracted the pillar index values above the fit. For this pur-
pose, we applied the MATLAB linear interpolation function 
interp to estimate values for the vacant positions of excluded 
pillar index values. After the fitting, the custom curve was 
transferred back to the original histogram. This adjustment 
was made for SE values (2 to 76; manually chosen for visual 
fit optimization) to provide a more accurate representation 
of the pillar index values. The expected probability dis-
tribution was then renormalized. Observed and expected 
distributions of probabilities were compared using Kull-
back–Leibler divergence as an information-based measure 
of disparity (MATLAB function klDiv), [15] and the Kolo-
mogorov–Smirnov test as a nonparametric goodness-of-fit 
test for distributions, using a significance threshold of p < 
0.05; (MATLAB function kstest2), [16]. We further fitted 
mono-exponential functions [17]. Due to the non-parametric 
nature of distributions, all values are presented as medians 
with 25th (Q1) and 75th (Q3) percentiles or as percentages 
(%) in case of categorical variables.

2.5  Bias

The process of visually recognizing pillar index values could 
potentially introduce unintended biases. Nevertheless, we 
have taken deliberate steps to mitigate this by explicitly 
specifying and illustrating the SE and RE index values that 
we have categorized as pillar values and we list them here 
for the surgical period (3, 5, 6, 7, 9, 11, 12, 14, 15, 16, 18, 
20, 22, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 37, 41, 45, 
51, 59, 66, 72, 77). This transparency extends to our use 
of expected distribution fits, which includes non-Gaussian 
modified fits. These measures are aimed at providing a 

clearer demarcation between the observed distribution and 
the expected distribution.

2.6  Missing data

We aimed to clean our large dataset by removing any fully or 
partially incomplete or invalid index values pertaining to SE, 
RE, and BSR. This was achieved by implementing exclusion 
criteria, as demonstrated and detailed in Fig. S1. Addition-
ally, all NaN values, which in MATLAB represent non-real 
or complex numbers, were automatically disregarded in all 
arithmetic functions as well as in all statistical analyses.

3  Results

3.1  Patient characteristics

The median age of the included patients was 59 [43–72] 
years. 54% were male and 46% were female. The median 
surgery duration was 120 [79–179] minutes. Due to the high 
percentage of incomplete data sets, we excluded any surgery 
exceeding a duration of 8 hours (273 out of 15,550 patients). 
A flowchart showing all exclusion criteria is presented in 
Fig. S1. The corresponding histograms with surgery dura-
tions and age distributions are presented as supplemental 
Fig. S2.

3.2  Distribution of SE and RE index values

3.2.1  Overall distribution of SE and RE

The first step comprised the visualization of the available 
index data. Figure 1 contains the histograms that show a 
bimodal probability distribution for the SE and RE data over 
the entire procedural period and all age groups combined 
with index accumulation in the range to be expected under 
general anesthesia (<60) and in the awake range (>90) (a, 
b). When only considering the surgical period, the num-
ber of high index values (>80) strongly decreases (c, d), 
as expected. Within these distributions, distinct values for 
both SE and RE with a sharply increased probability in com-
parison to directly adjacent values can be visually identified. 
These peak values, which we term pillar indices, were not 
distributed isometrically. This observation suggests that the 
algorithm outputs are not equally matched onto the 0–91 
(SE) or 0–100 (RE) scale.

3.2.2  Distribution of SE and RE index values stratified 
by age

The heat maps in Fig. 2 show the index densities as a func-
tion of age for the entire procedural period (a, b) and only 
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the surgical period (c, d). We observed perfectly horizontal, 
high-density lines in the heat maps, denoting a significant 
concentration of particular index values. These values are 
identical to the pillar indices observed in the histograms. 
The distinct lines show a consistently higher occurrence 
probability for SE and RE values across all age groups. Their 
occurrence therefore appears to be independent of patient 
age, i.e. to be of technical nature. The marked change in dis-
tribution patterns beyond the age of 90 years can be attrib-
uted to the very limited number of patients included in these 
age groups, which leads to stronger data dispersion or miss-
ing values altogether. As in the histograms, the horizontal 
lines follow the same, non-isometrical distribution pattern 
over the index range. Especially in older patients (c, d), we 
found higher probabilities for very low index values (<30) 
and high, awake values (>80). We also present the heat maps 
of the differences between RE and SE in supplemental Fig. 

S3. Notably, the Δ (RE–SE) does not display distinct pillar 
index values. Instead, the variation appears to be spread in 
a more continuous manner. This observation suggests that 
there is a perfect overlap in the pillar values between SE 
and RE.

3.2.3  Analyzing individual trends of SE and RE index values

The histograms and heat maps revealed that pillar indi-
ces occur much more frequently compared to adjacent index 
values. To elucidate this phenomenon and to discern the 
underlying mechanisms, we further analyzed the SE and 
RE frequency distributions. How SE and RE occurrence 
behaves on an individual level is exemplified in Fig. 3. It 
shows the SE and RE trend data of different patients during 
their respective surgical interventions with two different time 
scales. The trends covering the entire surgical period show a 

Fig. 1  Histograms of state 
entropy (SE) and response 
entropy (RE) probability dis-
tributions for all age groups. 
Multiple index values show a 
distinctively higher probability 
compared to adjacent values and 
contrast the expected continu-
ous index value distribution. 
Below the histogram, respective 
timelines indicate the relevant 
time points and periods. a 
Histogram of probabilities for 
SE index values during the 
procedural period. b Histogram 
of probabilities for RE index 
values during the procedural 
period. c Histogram of prob-
abilities for SE index values 
during the surgical period. d 
Histogram of probabilities for 
RE index values during the 
surgical period
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continuous course of the indices, which seemingly fluctuate 
freely in the range recommended for anesthesia (40–60) and 
there is no indication of the described pillar index values, 
see Fig. 3a. However, upon examination of the trends with 
increased temporal resolution, we noticed that the indices 
appear to linger at certain values for a prolonged duration. 
Furthermore, the indices exhibit peak points with subsequent 
trend reversion, which appear to coincide with pillar index 
values and may account for their more frequent occurrence 
(see Fig. 3b).

3.3  Time distribution across specific SE 
and RE index values

3.3.1  Maximum durations and consecutive runs for SE 
and RE index values

We further evaluated the cumulative time spent in individual 
index values and the maximum duration, during which an 
index value did not change. The histograms in supplemen-
tal Fig. S4 show that the cumulative time spent in the pre-
viously identified pillar indices was, as one might expect, 

much higher. The maximum duration during which the index 
remained unchanged was also higher in the case of pillar 
index values. In Fig. 4, we display the maximum consecutive 
runs (10-second epochs per run) of individual SE and RE 
index values, both for the entire procedural and the surgi-
cal period, respectively. Because it may be argued that the 
maximum run duration was influenced by artifacts, we also 
included the 99th and 95th percentiles.

3.3.2  Consecutive occurrence of pillar indices and 
adjacent index values

Having established that pillar SE and RE index values occur 
with greater frequency and longer duration than other index 
values, we extended our analysis. We compared these pil-
lar indices to directly adjacent index values and plotted the 
number of observations against consecutive occurrences. 
Both pillar index values and the respective adjacent index 
values are well described by negative exponential functions 
and show excellent fits  (R2 > 0.99). However, pillar index 
values demonstrate differences in both the rate of decay as 
well as the vertical shift. Across different segment lengths, 

Fig. 2  Heat maps of state 
entropy (SE) and response 
entropy (RE) probability 
distributions as a function of 
age. The horizontal, darkened 
lines indicate a distinctively 
higher probability occurrence 
for the respective SE and RE 
index values as well as a high 
consistency over the entire age 
range. Greater data disper-
sion in the age groups over 90 
years is attributed to the limited 
sample size of patients above 
90 years of age. a Heat map 
of SE index values during the 
procedural period. b Heat map 
of RE index values during the 
procedural period. c Heat map 
of SE index values during the 
surgical period. d Heat map 
of RE index values during the 
surgical period
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Fig. 3  Trend data of state 
entropy (SE) and response 
entropy (RE) values recorded 
during the surgical period 
from four exemplary patients 
of different age groups. SE 
and RE data are presented in 
dark and light blue. Proce-
dural timestamps are marked 
out vertically and pillar index 
values are indicated as grey 
horizontal lines. a Trend data 
for four patients throughout the 
entire surgical duration showed 
no discernible pillar indices and 
fell within the anticipated value 
range. b Sections with increased 
temporal resolution from the 
same four patients. Visible 
are plateauing values as well 
as peak values, which appear 
to constitute turning points 
and coincide with pillar index 
values
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pillar indices were over-represented compared to adjacent 
indices. Further details can be found in the supplemental 
Fig. S5 and Table S1, which contains the parameters of the 
exponential fits.

3.4  Interpolation for SE index values 
during the surgical period

To evaluate the percentage of pillar index values above an 
expected distribution (presupposing a pattern of continu-
ously increasing probabilities towards a peak value before 
continuously decreasing), we manually modeled a fit based 
on the (visually identified) non-peak values, as shown in 
Fig. 5a. The fit reveals a nearly symmetrical distribution 
around a maximum point of SE equal to 36. The fraction of 

excess probability above the fit as depicted in Fig. 5b was 
25.46% for SE index values during the surgical period.

3.5  Analyzing distributional discrepancies: 
Kullback–Leibler divergence and Kolmogorov–
Smirnov tests

In order to evaluate the differences between observed and 
expected distributions, we first calculated the Kullback–Lei-
bler divergence (KL), which was 0.048. To contextualize this 
metric more meaningfully, we also tested the interpolated 
values against a linear, ideal value distribution, resulting in 
a KL divergence of 0.465. Additionally, we compared the 
observed probability distribution against the same linear, 
ideal probability distribution, obtaining a KL divergence of 
0.553. These results indicate that the interpolated probability 

Fig. 4  Maximum consecutive 
runtime spent in state entropy 
(SE) and response entropy 
(RE) values for the entire pro-
cedural period and the surgi-
cal period. The time spent in 
specific SE and RE index values 
indicated as consecutive runs 
with 10-second epochs per run. 
Maximum time spent, 99th, and 
95th percentile are displayed 
separately. The previously 
identified pillar index values are 
highlighted with vertical grey 
dotted lines. a Consecutive runs 
of SE indices in the procedural 
period. b Consecutive runs of 
RE indices in the procedural 
period. c Consecutive runs 
of SE indices in the surgical 
period. d Consecutive runs 
of RE indices in the surgical 
period

Fig. 5  Fit modeling and peak 
index identification of State 
Entropy (SE) index values. 
a Histogram of the SE index 
values that were included to 
create a custom, non-gaussian 
fit, superimposed as a red line. 
b Histogram of SE index values 
including pillar index values 
and the modeled fit superim-
posed in red, which was used to 
quantify the excess probability 
of pillar index values
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distribution only deviates by approximately one-tenth from 
the observed distribution in comparison to linear values. 
Furthermore, we performed the Kolmogorov–Smirnov 
test twice. First, we used the Ksstat function to compare 
the measured probability distribution against a normal 
distribution (CDF), which produced a KS statistic (D) of 
0.176 (p = 0.018). This significant difference between the 
two distributions suggests that the measured probabilities 
differ significantly from a normal distribution. Secondly, 
we used the Kstest2 to compare the measured probabilities 
against our interpolated probabilities. In this analysis, the 
KS statistic (D) was found to be 0.095 (p = 0.879), indicat-
ing that the probability distribution of the observed data is 
consistent with the one of interpolated, expected probability 
distribution.

3.6  Evaluation of burst suppression ratio (BSR)

When evaluating the BSR index with the same histogram 
and heat map approach as SE and RE for the entire pro-
cedural period, we found that the BSR did not show pillar 
index values, but a rather continuous decline in occurrence 
probability, which could be well described with an expo-
nential decay function  (R2 =  0.948), as depicted in Fig. 6a. 
The heat map visualizing the probability distribution of BSR 
values across the age range showed a continuous behavior 
without horizontal lines, in contrast to RE and SE. The BSR 
heat map is presented in Fig. 6b. To prevent scaling distor-
tions in the plots, only BSR values>0 are included. This is 
because the most frequently observed BSR value was zero, 
representing absence of any burst suppression as detected 
by the algorithm, and accounted for 74.24% of the whole 
BSR dataset. When plotting the BSR indices as a function 
of SE indices, the pillar indices are readily discernible as 
horizontal lines, while there are no vertical lines for BSR, 

further suggesting a continuous distribution of BSR values, 
see Fig. S6.

3.7  Exploration of potential confounders

To identify potential confounders, we further investigated 
the distribution of SE/RE index values depending on Body 
Mass Index, ASA Physical Status Classification, surgery 
department, and the choice between the use of volatile anes-
thetic gases or total intravenous anesthesia (TIVA) for the 
surgical period. In our analysis, the pillar index values per-
sisted for all conditions, and no confounding factors could 
be identified. The histograms showcasing the distribution of 
SE/RE values grouped according to volatile anesthetic gases 
versus the use of TIVA are presented in Fig. S7.

4  Discussion

Every manufacturer of EEG-based monitoring systems 
emphasizes the primacy of processed index values for navi-
gating the level of anesthesia. The utilization of these indi-
ces, like BIS and other systems, was discussed as a means to 
prevent intraoperative awareness [18], although some pub-
lications show contradicting results [19, 20]. Other publica-
tions have demonstrated that these indices show a (mostly 
unknown) temporal lag [21, 22], which may depend on arti-
fact content and in part on the electromyographic component 
[23, 24], or that they overlook or misinterpret burst suppres-
sion [25–27]. While the algorithms generating these indi-
ces are proprietary, other freely accessible parameters have 
demonstrated effective – and in some cases even superior 
– performance in monitoring the anesthetic level [28, 29]. 
Therefore, relying on an index whose precise design is not 
fully disclosed may not be the most advisable approach to 
establish trust both in clinical practice and research settings, 

Fig. 6  Distribution of Burst Suppression Ratio (BSR) indices > 0 
for the entire procedural period. For clarity, BSR of 0 was omit-
ted as it accounted for approximately three-fourths of all BSR values. 
a Histogram showing the count distribution of BSR values > 0. The 
decay appears continuous without discrete pillar indices and can be 

well described by an exponential decay function, which is superim-
posed in the figure. b Heat map of BSR > 0-probability distribution, 
stratified by age, that shows a continuous fading of probability with 
increasing BSR index values
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particularly in light of these limitations. There are publica-
tions that have uncovered substantial components of the BIS 
algorithm via reverse engineering, showing its reliance on 
the low-gamma waveband and contradicting earlier beliefs 
about its dependence on a bispectral index [8, 30]. Addition-
ally, there have been instances highlighting contradictory 
information provided by simultaneous BSR and SE outputs 
[31].

Our results point towards discrepancies between the 
prevailing explanation of how the SE/RE indices are cal-
culated and what we can observe clinically. As stated in 
the manuscript describing the algorithm [4], the spectral 
entropy is matched onto the 0–91 (SE) or 0–100 (RE) scale 
per spline interpolation. Subsequently, the spline function is 
characterized as smooth without “kinks”. This leads to the 
assumption that the index distribution was also intended to 
be smooth and not contain pillar index values with overly 
high occurrence probability, which we found in our dataset 
and describe in this study. We could also observe that in the 
RE and SE range of approximately 30 to 90, the pillar index 
values were further apart from each other than in the lower 
index range. For the higher range with values between 50 
and 90, the presented spline function in the description paper 
was also steepest [4].

While the clinical implications of our findings have yet to 
be explored in further detail, they could indeed impact the 
use of the indices for research purposes. Different monitor-
ing systems were shown to provide discordant recommen-
dations based on identical EEG recordings with patterns of 
emergence from anesthesia [32]. Much like other clinical 
parameters that require monitoring during general anes-
thesia — such as electrocardiography — the interpretation 
and classification guiding clinical decisions should not be 
contingent upon the specific monitoring device employed. 
Further studies have described discrepancies between pro-
cessed EEG monitoring devices, for example, simultane-
ously recorded BIS and SE index values during general anes-
thesia with sevoflurane [33]. The underlying uncertainties 
and deviations from the expected behavior of processed EEG 
indices might be particularly problematic when studies com-
pare or aim for the identical target value range with different 
monitoring systems [34]. Comparability is further impeded 
by the observation that processed EEG indices, specifically 
SE/RE and BIS demonstrate an extensive inter-individual 
variability with regard to defined clinical endpoints as 
well as anesthetic-specific differences [35]. Another study 
describes that SE and RE values are not well matched by two 
different BIS target corridors [36], which might be partially 
explained by discontinuous pillar indices. When comparing 
anesthesiologists’ assessments of BIS or SE, the SE “errors” 
were clustered while BIS “errors” were more continuously 
distributed, maybe reflecting the non-continuous SE index 
value distribution. In another study, anesthesiologists tried to 

titrate anesthesia to an SE index corridor between 40 and 60, 
but had difficulties to not go below these limits or to get back 
into the limits from lower SE index values [37]. Ultimately, 
only 45% of the recorded values fell within the predeter-
mined range. The skewed distribution leaning towards low 
index values is particularly evident in Supplemental Fig. 2 
of the study, suggesting that achieving the desired depth 
of anesthesia as indicated by the Entropy module poses a 
challenge even when it is the primary target intervention 
of a prospective study. In a separate study, 76 patients in 
the intervention group received anesthesia based on the Sur-
gical Pleth  IndexTM (GE Healthcare) and SE, targeting an 
SE range of 40 to 60. Interestingly, the mean SE values for 
both the control and intervention groups leaned towards the 
lower end of the range. Specifically, during the period from 
after intubation to during surgery, the intervention group 
exhibited mean SE values ranging between 40–45, while the 
control group showed values between 39–43. No significant 
differences were observed between the groups [38]. While 
this evidence may be relatively modest, it is noteworthy that 
when aiming explicitly for a SE range of 40 to 60 on what 
is presumed to be a continuous scale, one might anticipate 
mean values closer to 50. Another group also noticed a 
strong tendency towards SE index values below 40 during 
anesthesia maintenance. The mean values reported for their 
measurement points correlate in parts with the pillar indices 
found in this study, i.e., a SE of 30, 37, or 41 [39]. These 
findings could suggest that the Entropy algorithm itself may 
generate skewed distributions, displaying a tendency toward 
lower index values. Schmidt and colleagues presented fig-
ures, where, similarly to our findings, index values with a 
higher probability of occurrence can be identified [40] and 
Vanluchene and colleagues described a smoother behavior 
for the BIS index values rather than SE [41]. However, even 
the BIS algorithm seems to generate peak values as well as 
sudden changes of index value occurrence at distinct bound-
ary values [42].

4.1  Key results

Researchers and clinical anesthesiologists should be aware 
that the reduction of the available EEG signal into an index 
leads to a strong loss of information. If, as is the case with 
the discussed commercial indices, the algorithms are not 
fully disclosed, the optimal assessment of a patient’s anes-
thetic level is hampered. Overall, these findings advocate 
for a broader perspective in monitoring practices, moving 
beyond an index-centered approach. The information pro-
vided by EEG-based monitoring devices can offer valuable 
insights for navigating anesthesia, yet the overall manage-
ment should integrate all information available. Barnard and 
colleagues stated that the combination of using the index and 
being capable of interpreting the raw EEG may be the best 
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strategy to safely navigate a patient under general anesthesia 
[43]. When relying on a single number, parameters that are 
better understandable – like the spectral edge frequency or 
the individually calculated spectral entropy – may be the 
preferential choice. EEG, in its own right, serves as a potent 
tool for evaluating the anesthesia state of patients, and in 
the future, shifting the focus away from proprietary indices 
in favor of assessing the raw EEG as well as more refined 
EEG-based monitoring tools, could be a more promising 
direction.

4.2  Limitations

Due to its retrospective nature, this study has several limita-
tions. We did not have access to raw EEG data or EEG band-
power, which would have been valuable for a more in-depth 
investigation of pillar index values. Anesthesia regimes were 
not explicitly administered according to a predefined tar-
get range for SE and RE values (however, the manufacturer 
recommended range of 40 to 60 is included in the monitor 
output). This may introduce a potential confounding factor 
and could partially contribute to a higher probability of low 
index values. We further did not include an in-depth anaylsis 
of the relationship between SE/RE/BSR-index values and 
demographic parameters, drug concentrations, or intraop-
erative hemodynamic parameters. This decision was based 
on the fact that we are addressing a technical phenomenon 
within a universally applicable (one-size-fits-all) system, 
which, by default, does not consider these factors [4].

5  Conclusion

Given the discontinuous behavior of SE and RE, it appears 
that there is not a consistent alignment of the anesthetic level 
on the index scale. To enhance comprehension of the pro-
cessed indices, it is imperative that the algorithms employed 
are accessible to all. EEG is an essential information source 
for effective patient monitoring. Anesthesiologists should 
also possess the skills to interpret raw EEG data and its 
spectral representation to address any deficiencies in the 
processed indices.
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