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Abstract
An active-matrix electrowetting-on-dielectric (AM-EWOD) system integrates hundreds of thousands of active
electrodes for sample droplet manipulation, which can enable simultaneous, automatic, and parallel on-chip
biochemical reactions. A smart detection system is essential for ensuring a fully automatic workflow and online
programming for the subsequent experimental steps. In this work, we demonstrated an artificial intelligence (AI)-
enabled multipurpose smart detection method in an AM-EWOD system for different tasks. We employed the U-Net
model to quantitatively evaluate the uniformity of the applied droplet-splitting methods. We used the YOLOv8 model
to monitor the droplet-splitting process online. A 97.76% splitting success rate was observed with 18 different AM-
EWOD chips. A 99.982% model precision rate and a 99.980% model recall rate were manually verified. We employed
an improved YOLOv8 model to detect single-cell samples in nanolitre droplets. Compared with manual verification,
the model achieved 99.260% and 99.193% precision and recall rates, respectively. In addition, single-cell droplet
sorting and routing experiments were demonstrated. With an AI-based smart detection system, AM-EWOD has shown
great potential for use as a ubiquitous platform for implementing true lab-on-a-chip applications.

Introduction
To generate and manipulate submicron-litre bio-

samples, powerful tools that are easy to operate, accurate,
and multifunctional are needed1,2. To date, different
technology platforms have been developed, including flow
cytometry3,4, microwell microfluidics5,6, microdroplet
microfluidics7, optical tweezers8, and digital microfluidics
(DMF)9–11. The advantages of DMF systems over other
platforms are that they can realize sample separation, real-
time manipulation, and parallel in situ analyses, all while
enabling the simultaneous manipulation of biosamples on
a two-dimensional surface12. The high-throughput sample
generation process demands a large number of electrodes
driving droplets on a DMF chip. However, passive-matrix

(PM) EWOD systems typically accommodate fewer than
200 electrodes, as each PM electrode is physically con-
nected to a peripheral connector (Fig. 1a)9. The large
number of associated connection lines limits the scal-
ability of electrodes, posing a challenge in DMF research
and development work. To address this issue, researchers
have adopted active-matrix (AM) addressing, in which
each pixel contains active transistors that act as switches
and can be independently addressed by row and column
driver lines (Fig. 1b)13–15. Several studies have been con-
ducted using AM-DMF technology for molecular diag-
nosis16, proteomics analysis17, high-resolution
concentration gradient preparation18, and parallel single-
cell manipulation1 tasks.
AM-EWOD technology can generate and analyze

thousands of discrete droplets surrounded by filler oil in
parallel. However, determining and screening samples
pose significant challenges for researchers, where manu-
ally selecting samples is an inefficient and inconsistent
strategy. Traditional image processing techniques are
mostly tailored for specific scenarios. They greatly rely on
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predefined distributions or manually designed features,
which results in limited generalizability19. In recent dec-
ades, deep learning (DL) has made significant technolo-
gical progress and has shown great potential for use as a
powerful tool in an AM-EWOD system for multipurpose
smart detection20–24. The applications of DL in droplet-
based microfluidics are becoming increasingly wide-
spread25–31. However, a limited number of studies have
reported applications of DL technology in the AM-DMF
field. Therefore, in this work, we addressed the automated
biosample selection and determination problems on an

AM-EWOD platform by using a range of DL models for
different tasks (Fig. 1c).
The phenomenon of “necking” occurs during droplet

splitting, and the length of the droplet neck affects the
homogeneity of the volumes of the split droplets32. To
achieve uniformity during droplet splitting, it is essential
to ensure uniform control of the electrodes on both sides.
However, it is challenging for an AM-DMF system to
achieve highly uniform control of large-scale pixel elec-
trodes because of the utilization of thin-film transistors
(TFTs) as driving switches33. Therefore, we employed an
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image recognition method to assess droplet uniformity,
allowing us to select droplets according to our needs
under appropriate conditions, thereby compensating for
the limitations imposed by the inherent challenges of the
utilized system. High-throughput droplet generation
provides extensive parallel data for biological analyses34.
However, a trade-off exists between the success rate of
droplet splitting and the number of droplets that can be
generated and controlled per unit area in parallel15,32.
Therefore, we propose a DL-based high-throughput dro-
plet recognition method to iteratively design droplet-
splitting paths and swiftly find an optimal solution. Fur-
thermore, the method presented in this paper that uses
DL-based high-throughput droplet recognition con-
tributes to several advancements: optimizing chip packa-
ging conditions, such as gap control and the thickness of
the hydrophobic layer; conducting a statistical analysis of
the single-cell sample generation rate, which is calculated
as the ratio of the number of single-cell samples to the
number of single droplets; and recording the positions of
single droplets, thereby expediting the process of identi-
fying single-cell samples. The generation of single-cell
samples is essential for genomic35,36, transcriptomic37,38,
proteomic39,40, and metabolomic41,42 studies. The tech-
nology that encapsulates cells in microfluidic droplets has
been widely adopted43–46. However, separating single-cell
samples from droplets becomes challenging after high-
throughput droplets are generated with an AM-EWOD
system. To address this issue, we introduce an improved
YOLOv8 model for automatically recognizing single-cell
samples (Fig. 1d), thus replacing manual sorting.
Our work can be summarized by the following research

highlights.
1. Uniformity analysis: We used the U-Net model to

evaluate the uniformity of the droplet volumes of the
three tested strategies, replacing the manual evaluation
process47. Our results revealed that droplets generated via
the “one-to-two” method exhibited optimal uniformity.
2. Success rate calculation: We used the YOLOv8

model to calculate the success rate of the high-throughput
droplet array generation procedure, thus replacing man-
ual counting and addressing the inefficiency and incon-
sistency associated with this method.
3. Single-cell recognition: We used an improved

YOLOv8 model to recognize single-cell samples, repla-
cing manual sorting and automatically generating high-
throughput single-cell samples.

Results and discussion
Uniformity analysis
We evaluated the overall performance of three droplet

generation strategies on an AM-EWOD chip, namely, the
traditional squeezing strategy, the “one-to-three” strategy,
and the “one-to-two” strategy. Schematic diagrams of the

droplet-splitting paths of each strategy are presented in
Fig. 2a on the left and detailed in Movies S1–S3. The
targeted droplets, each of which possessed a volume of
approximately 25 nanolitres, were controlled by an elec-
trode. The microscope system is shown in Fig. S1. The
traditional squeezing strategy is a classic droplet genera-
tion method for DMF systems. The “one-to-three” strat-
egy involves a novel idea of splitting small droplets within
a higher device aspect ratio. The “one-to-two” strategy
efficiently generates many droplets within a short period.
The right side of Fig. 2a illustrates the relationship
between the number of generated subdroplets and the
number of required steps. The traditional squeezing
strategy required 4 steps to generate a droplet, with an
additional wait time of 1 step to avoid merging with the
previous droplet. To generate 16 subdroplets, each with a
size of a 1 × 1 electrode and spaced by four electrodes, a
total of 81 steps were needed. As each tearing step lasted
1 s, the entire process took 81 s. The “one-to-three”
strategy required 2 steps to generate a droplet, with an
additional wait time of 4 steps to avoid merging with the
previous droplet. Under the same conditions, generating
16 droplets required 97 steps in total, resulting in a pro-
cess duration of 97 s, with each step lasting 1 s. The “one-
to-two” strategy generated droplets exponentially with the
number of steps. To generate 16 droplets with sizes of
1 × 1 electrodes spaced by four electrodes, only 13 steps
were needed. Each tearing step took 1 s, leading to a total
processing time of 13 s. The fundamental relationships
between the number of steps and the number of gener-
ated subdroplets are as follows:

Y1 ¼ 4þ 1ð Þxþ 1 0<x< ¼ 16 ð1Þ

Y2 ¼ 2þ 4ð Þxþ 1 0<x< ¼ 16 ð2Þ

Y3 ¼ 1; 2; 6; 10; 13 x ¼ 1; 2; 4; 8; 16 ð3Þ
where Y1, Y2, and Y3 are the number of steps required for
conducting droplet generation with the traditional
squeezing strategy, “one-to-three” strategy, and “one-to-
two” strategy, respectively. x is the number of subdroplets.

We used the U-Net segmentation algorithm to evaluate
the uniformity of the three droplet generation strategies.
We thoroughly discuss and compare the effectiveness of
employing DL methods instead of traditional image pro-
cessing techniques for the droplet segmentation task in
the “Methods and materials” section. The workflow for
conducting droplet segmentation with the U-Net seg-
mentation algorithm is shown in Fig. S2. The experi-
mental parameter settings are shown in Table S1. The loss
functions used for the droplet segmentation model on the
training and validation sets are shown in Fig. S3a, b,
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respectively. The mean intersection-over-union (mIoU)
function used for the validation set is shown in Fig. S3c.
Figure 2b shows the uniformity analysis process con-
ducted for the 16 droplets generated by the traditional
squeezing strategy, yielding a volume coefficient of var-
iation of 2.61%. We used a CMOS camera to capture the
original images. We subsequently obtained a mask image
via the U-Net segmentation algorithm and obtained a
contour-fitting image after applying further processing
steps. The contour-fitting image demonstrates that our
droplet contour segmentation algorithm was highly
effective, accurately segmenting the contours of the dro-
plets from the original image. Figure 2c shows the droplet
uniformity analysis process implemented using the “one-
to-three” strategy, yielding a volume coefficient of varia-
tion of 2.62%. Figure 2d shows the droplet uniformity
analysis process performed using the “one-to-two” strat-
egy, yielding a volume coefficient of variation of 0.94% for
the 16 generated droplets. The results revealed that when
16 subdroplets were generated via the “one-to-two”
strategy, time savings of 68 s and a 1.67% reduction in the
coefficient of variation were achieved relative to the tra-
ditional squeezing strategy. Compared with the results of
the “one-to-three” strategy, the time savings were 84 s,
and the coefficient of variation was reduced by 1.68%. As
shown in Fig. 2e, the model could segment a wide range of
droplets with varying sizes, colors, morphologies, and
brightness levels, which is challenging for conventional
algorithms to achieve. Although the model was trained on
a transparent droplet dataset, it exhibited good general-
izability to colored droplets.

Success rate calculation
Here, we designed a high-throughput AM-EWOD chip

containing 640 × 280 electrodes in an active area of
17.92 cm2, and these electrodes could be individually or
simultaneously addressed (Fig. 3a). We employed the
“one-to-two” droplet generation strategy discussed in the
previous section to efficiently generate high-throughput
droplet arrays. Following a predefined path, the droplets
underwent a division process, splitting 5376 subdroplets
across the entire pixelated area of the AM-EWOD chip
within 369 s (Movie S4), and the process of generating the
droplet arrays involved four distinct steps (Fig. 3a). In step
1, we initially injected 18 droplets into the AM-EWOD

chip. In step 2, these 18 droplets were subsequently
moved to predetermined positions. In step 3, each droplet
underwent multiple splits via the “one-to-two” strategy,
resulting in multiple subdroplets. Finally, in step 4,
5376 subdroplets with a volume of 2 nanolitres were
generated in 369 s.
We used the YOLOv8 model algorithm to automatically

calculate the success rate of the high-throughput droplet
array generation process. In the “Methods and materials”
section, we analyzed the necessity and efficacy of using
artificial intelligence algorithms instead of conventional
image processing methods for the droplet detection task.
The experimental parameter settings are shown in Table S1.
During the model training process for droplet detection,
the loss functions were calculated in each epoch in the
training and validation sets (Fig. S4a–c, d–f). The research
community commonly uses the mean average precision
(mAP), which combines precision and recall, as the pri-
mary metric for conducting performance comparisons
among object detection models48. The mAP was calcu-
lated via the precision‒recall curves produced at various
intersection-over-union (IoU) thresholds for the droplets.
Precision represents the proportion of true positives
relative to the total number of positives, which could be
calculated as the number of true positives divided by the
sum of the numbers of true positives and false positives.
The precision metrics produced by the droplet detection
model are shown in Fig. S4g. Recall represents the pro-
portion of true-positive predictions relative to the total
number of actual positives, which could be calculated as
the number of true positives divided by the sum of the
numbers of true positives and false negatives. The recall
metrics yielded by the droplet detection model are shown
in Fig. S4h. During model training, the mAPs produced at
an IoU of 0.5 and within the IoU range of 0.5–0.95 were
evaluated for the validation set in every epoch, as detailed
in Fig. S4i, j.
ONNX Runtime, an inference framework introduced by

Microsoft, was used to deploy the model as software.
Through a postprocessing and filtering method based on
droplet area thresholds, we intelligently detected the
success rate of the high-throughput droplet array gen-
eration process (see the software shown in Fig. S5). The
model identified the droplets within the red boxes as
unsuccessfully split due to their larger areas. Conversely,

(see figure on previous page)
Fig. 2 Performance analysis of different droplet generation strategies. a Schematic diagrams of the droplet generation processes implemented
via the traditional squeezing, “one-to-three” strategy, and “one-to-two” strategy, as well as a graph showing the number of steps versus the number
of subdroplets. b The original image, segmentation image, and contour-fitting image produced when performing droplet generation with the
traditional squeezing and an area of 16 droplets. c The original image, segmentation image, and contour-fitting image produced when performing
droplet generation with the “one-to-three” strategy and an area of 16 droplets. d. The original image, segmentation image, and contour-fitting image
produced when performing droplet generation with the “one-to-two” strategy and an area of 16 droplets. e Model generalizability testing results
obtained for different types of droplets with different sizes, colors, morphologies, and brightness levels
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the droplets within the green boxes were considered
successfully generated (Fig. 3b). The software displayed
the numbers of red and green boxes in real time, which
were used to calculate the success rate of the high-
throughput droplet array generation procedure. In prac-
tice, we can adjust the area thresholds on the basis of the
imposed requirements to filter droplets within different
area ranges. For a model to be effectively implemented in
the task of intelligently detecting the success rates of high-
throughput droplet arrays, its predictions must be stable.
Therefore, we manually calculated the success rate of the
droplet generation process and compared it with the
model-predicted results. Specifically, we selected 18 sets
of AM-EWOD chips for testing. For each chip, we
manually counted and recorded the numbers of success-
fully split and unsuccessfully split droplets and then
compared these data with the model-predicted results.
After completing the manual counting procedure, we
input the images of these 18 sets of chips into the model.
From the model predictions, we obtained the total num-
bers of successfully and unsuccessfully split droplets for
each set of chips. The mean success rate of droplet
splitting was 97.767% as according to hand counting and
97.764% when employing model prediction. The com-
parative analysis in Fig. 3c shows that the model predic-
tions were highly consistent with the manually counted
data, confirming that intelligently detecting the success
rate of high-throughput droplet array splitting is highly
feasible. The confusion matrix offers an intuitive means of
assessing the performance achieved by a model in object
detection tasks, especially regarding classification accu-
racy. It compares the model predictions with the ground-
truth labels. The confusion matrices in Fig. 3d show the
precision and recall metrics achieved by the model pre-
diction method. Only a few successful labels were incor-
rectly predicted as unsuccessful, with most predictions
being accurate. The model precision was 99.982%, and the
model recall was 99.980%. Figure 3e–h display the model
predictions obtained for various types of droplets with
different colors, backgrounds, sizes, and brightness levels.

Single-cell recognition
We introduced an improved YOLOv8 detection model

for single-cell recognition, addressing the slow speed and
low accuracy of the manual single-cell sample detection
strategy. Figure S6 illustrates the detailed structure of the
cell detection model, and the workflow for the single-cell
detection model is shown in Fig. 4. The input dataset was
processed by the model, which employed a feature
extractor C2pc_block (a cross-stage partial bottleneck
with two PCs) and subsequently outputted the results
(Movie S5). The C2pc_block, consisting of convolution
and partial convolution (PC) components, is a feature
extraction module that extracts high-dimensional

information from images. The model output consisted of
numerous bounding boxes, each containing four spatial
coordinates: x and y, representing the center of the box,
and w and h, representing the width and height of the box,
respectively. Additionally, each box had two class prob-
abilities (p1, p2) and a confidence value indicating the
likelihood that the proposed box corresponded to a dro-
plet or cell. Multiple bounding boxes might exist for a
single droplet after performing thresholding, so the non-
maximum suppression technique was used to select the
bounding box with the highest confidence value. The final
bounding box coordinates were saved, and model pre-
dictions were then compared with the actual labels, after
which the loss function was computed. During model
training, the loss functions were calculated in each epoch
for the training and validation sets (Fig. S7a–c, d–f). The
mAP was calculated via the precision‒recall curves pro-
duced under various IoU thresholds for the droplet and
cell classes, after which the results were averaged across
the droplet and cell classes. During model training, the
mAPs achieved at an IoU of 0.5 and IoUs within the range
of 0.5–0.95 were evaluated on the validation set in every
epoch, as detailed in Fig. S7g, h. Additionally, the preci-
sion and recall metrics are provided in Fig. S7i, j.
We evaluated our method on the cell dataset and

compared our results with those of four other models:
YOLOv5, YOLOv7, Object Box, and YOLOv8. The
experimental parameter settings of all five models are
shown in Table S1. Table S2 and Table 1 compare the
results of this work and those of the representative
models. Our method consistently outperformed YOLOv5,
YOLOv7, and Object Box, featuring higher mAPs across
the training, validation, and test datasets. Table S3 shows
the results of a comparison between the proposed method
and YOLOv8 combined with different modules on the cell
dataset. Compared with the high-performing YOLOv8
model, our method reduced the number of model para-
meters by 2.5 million and the number of FLOPs by 5.8
billion (Table S2). The model inference time required on
the CPU decreased by 15.2 ms, whereas the mAP achieved
at an IoU of 0.75 increased by 0.4%, and the cell AP
achieved at an IoU of 0.75 increased by 0.7% on the test
dataset (Table 1).
Previously, we successfully generated a high-throughput

droplet array on an AM-EWOD chip, totaling 5376 dro-
plets. These droplets on the chip were divided into three
sections, top, middle, and bottom sections, with 1920,
1536, and 1920 droplets, respectively. Utilizing the
improved YOLOv8 model, we individually detected and
counted the cells in these 5376 droplets. The output of the
model is shown in Fig. 4. Boxes predicted as droplets by
the model are marked in red, whereas those predicted as
cells are marked in pink. The top-left corner of each box
displays the class and confidence score obtained for the

Jia et al. Microsystems & Nanoengineering          (2024) 10:139 Page 7 of 14



corresponding model prediction, whether it is a cell or a
droplet. Most droplets contained zero, one, two, or three
cells, with only a few containing more than 3 cells. To
ensure the accuracy of the algorithm, a manual verifica-
tion was also conducted. We manually counted and
recorded the number of cells in each droplet on the AM-
EWOD chip, enabling a comparison with the model
prediction results to validate the cell detection capabilities
of the developed model.
The results of the model prediction and hand-counting

processes are shown in Fig. 5a–c. The x-axis represents the
droplets containing zero, one, two, or more than two cells,
whereas the y-axis represents the total percentages of these
droplets. The cell detection results yielded by the model for
the top, middle, and bottom regions of the chip closely
aligned with those of manual counting, indicating that our
model can replace experimenters in cell recognition tasks.
The confusion matrices in Fig. 5d–f show the precision and

recall metrics attained for the model prediction results.
Most predictions were correct, with only a few labels being
incorrectly predicted. In the final analysis, among the 5376
droplets, we successfully identified 1502 single-cell samples,
yielding a single-cell generation rate of 27.9%. After con-
ducting a manual verification, the model achieved a preci-
sion rate of 99.260% and a recall rate of 99.193% for single-
cell detection. To assess the generalizability of the cell
detection model, various types of cells with different sizes
and morphologies were tested. Figure S8 shows the feasi-
bility of the proposed recognition approach for reflective
electrodes and transparent electrodes. For humans, reflec-
tive electrodes can provide better optical performance and
further assist in the quantification of data for colorimetric
analyses. For machine recognition algorithms, it is feasible
to identify droplets and cells on different TFT substrates.
Figure 5g–i show the model predictions obtained for
hybridoma cells, mouse spleen cells, and peripheral blood
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mononuclear cells. Although the model was trained on a
hybridoma cell dataset, it demonstrated good performance
on mouse spleen cells and peripheral blood mononuclear
cells. As shown in Fig. 6 and Movie S6, we implemented a
path-planning system for assigning single-cell droplets to
designated locations following their identification. Initially,
we split a group of 4 × 4 droplet arrays on the AM-DMF
chip. We subsequently employed the improved YOLOv8
model to detect single-cell samples within nanolitre dro-
plets. Finally, we planned a path to assign single-cell dro-
plets to designated locations after they were identified.

Conclusion
In this work, we addressed the challenges associated

with conducting automated biosample determination on
an AM-EWOD system for completing various tasks by
employing a range of DL models. These models demon-
strated optimal performance and generalizability across
different types of data, confirming the potential for uti-
lizing AI in other tasks related to AM-EWOD systems.
First, we tested the performance of three droplet gen-
eration strategies: the traditional squeezing, “one-to-
three”, and “one-to-two” strategies. We designed droplet
generation paths for these strategies, and the U-Net
model was used to automatically evaluate the uniformity
of the drops. The results indicated that the “one-to-two”
strategy excelled in terms of uniformity, efficiency, and
chip utilization during droplet generation. We subse-
quently used the “one-to-two” strategy to generate a high-
throughput droplet array. The YOLOv8 model calculated
the success rate of the high-throughput droplet array

generation process, achieving an average splitting success
rate of 97.76% across 18 tested AM-EWOD chips. A
manual verification revealed that the model had a preci-
sion rate of 99.982% and a recall rate of 99.980%, effec-
tively overcoming the inefficiency and inconsistency
issues associated with manual counting. Additionally, we
introduced an improved YOLOv8 model for recognizing
single-cell samples in a high-throughput droplet array. A
comparison between our results and those of four other
models revealed that the improved YOLOv8 model out-
performed the competing approaches. We identified 1502
single-cell samples in 5376 droplets, with a single-cell
sample generation rate of 27.9%. A manual verification
revealed that the model precision was 99.926%, and the
model recall was 99.193%, demonstrating its ability to
implement high-throughput single-cell sample genera-
tion. Finally, we developed a path-planning system that
assigns single-cell droplets to designated locations after
they are identified. By integrating AM-EWOD technology
with DL, we can automatically determine high-
throughput biosamples, advancing DMF research into a
new era of full automation.

Methods and materials
Data collection and composition
In this work, the original datasets were obtained from

experimental images and videos. We divided each dataset
into three distinct subsets: a training set, a validation set,
and a test set. This approach ensured that the model had
good generalizability, prevented overfitting, and provided
a basis for model selection and parameter optimization.
The samples of each dataset were randomly split, with
60% allocated to the training set, 20% assigned to the
validation set, and 20% allocated to the test set. The
training set primarily served for model weight adjustment
and training processes. The validation set was used for
model selection and hyperparameter tuning to monitor
the performance achieved by the model during training.
The test set was designed to evaluate the final perfor-
mance of the model on unseen data. A summary of the
utilized datasets is provided in Table 2, which includes the
total numbers of labels and images for the droplet seg-
mentation, droplet detection, and cell detection datasets.
The droplet segmentation dataset included 3234 images
and 17,178 labels. The droplet detection dataset com-
prised 5083 images and 6,854,377 labels. The cell detec-
tion dataset included 4046 images, 4046 droplet labels,
and 5658 cell labels. The ground-truth annotations for the
droplet segmentation, droplet detection, and cell detec-
tion data used as training examples are shown in Fig. S9.

Conventional and DL method selection and analysis
In practical applications, it is challenging to maintain

complete consistency and stability in experimental

Table 1 Results of a comparison with other object
detectors on the cell dataset

Class Model APtest50 APtest75 APtest

All (droplets and cells) YOLOv5-s 98.2% 95.1% 88.6%

YOLOv7-tiny 97.9% 93.6% 87.2%

YOLOv8-s 98.3% 95.4% 89.2%

Object Box 98.4% 94.6% 88.5%

This work 98.4% 95.8% 89.3%

Improvement - +0.4% +0.1%

Cell YOLOv5-s 97.0% 90.8% 77.9%

YOLOv7-tiny 96.3% 87.7% 75.0%

YOLOv8-s 97.4% 91.5% 79.4%

Object Box 97.4% 89.8% 77.5%

This work 97.5% 92.2% 79.4%

Improvement +0.1% +0.7% -

The bold values in Table 1 indicate the highest AP scores for each class
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environments, making it difficult for conventional image
processing algorithms to obtain a fully automated solu-
tion. Conventional algorithms have limited general-
izability, as they rely heavily on manually designed
features or predefined distributions. For example, varia-
tions in lighting conditions (Fig. 7a, b (original images),
Fig. 7c, d (original images)) often require algorithmic
parameters, such as threshold ranges, to be adjusted. In
addition, droplet outlines vary in terms of clarity at dif-
ferent positions within the same field of view (Fig. 7a–d:
clear and blurry images), requiring adjustments to the

algorithm parameters, such as the number of erosion and
dilation iterations. Consequently, traditional image pro-
cessing algorithms face challenges when attempting to
achieve stable on-chip automation for droplet segmenta-
tion and recognition tasks. In contrast, artificial intelli-
gence algorithms demonstrate greater stability and
generalizability. As shown in Figs. 2e, 3e–h, and 7a–d, the
DL model can segment and detect various types of dro-
plets with different sizes, colors, morphologies, back-
grounds, and brightness levels, which is difficult for
conventional image processing algorithms to accomplish.
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Model architecture
U-Net is a DL-based segmentation algorithm with a

significant influence on the field of image segmentation.

The model features a four-layer encoder network and a
four-layer decoder network, which converts predictions
back to the image pixel domain.
YOLOv7 introduced several advanced techniques,

including extended efficient layer aggregation networks,
model scaling for concatenation-based models, and
planned reparameterized convolution48. Object Box was
presented as a novel single-stage anchor-free object
detection approach49. YOLOv8, released in January 2023
by Ultralytics, is a single-stage object detection algo-
rithm. All these model frameworks consist of three pri-
mary components: a backbone, a neck, and a head. The
backbone, which uses the cross-stage partial (CSP)
module, integrates a convolutional neural network to
collect and construct image features at various detail
levels50. The neck uses a path aggregation network
(PAN) module and extracts features from the backbone
for the head51. The head then uses the feature maps
acquired from the neck to predict the bounding boxes of
objects.
As shown in Fig. S6, we integrated a PC into the C2f

module (a cross-stage partial bottleneck with two con-
volutions) of YOLOv8, creating a new module called a
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Fig. 6 Single-cell droplet sorting and routing experiments. Path-planning results obtained for assigning single-cell droplets to designated
locations after they were identified

Table 2 Model annotation summary for the utilized
datasets

Data/Label Total count Training Validation Testing

Droplet segmentation dataset

Droplets 17,178 10,151 3,428 3,599

Images 3234 1940 647 647

Droplet detection dataset

Droplets 6,854,377 4,111,796 1,380,298 1,362,283

Images 5083 3049 1017 1017

Single-cell detection dataset

Droplets 4046 2429 810 807

Cells 5658 3402 1100 1156

Images 4046 2428 809 809

Training: validation: testing ratio= 0.6:0.2:0.2
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C2pc_block (see the C2pc_block architecture in Fig. 4)52.
Additionally, we added the coordinate attention (CA)
module above the spatial pyramid pooling-fast (SPPF)
module in the YOLOv8 model53. The C2pc_block helped
reduce the complexity of the model and efficiently extract
features. While AM-DMF chip electrodes exhibit high
background complexity, their positions remain relatively
fixed. The CA module enhanced the ability of the model
to distinguish between electrode and cell features. An
analysis of the effectiveness of the CA module is shown in
Table S4.

AM-EWOD system setup
The utilized AM-EWOD system (DM sys), developed

by Guangdong ACXEL Micro & Nano Tech (Foshan,
China) and ACX Instruments Ltd (Cambridge, UK),
consisted of four main components: an AM-EWOD
chip, a core electronic control board, custom-designed
control software, and an optical detection system. The
optical detection system comprised both high- and low-

magnification lenses modeling MV-CS200-10GC and
MV-CS050-10GC from Hikvision, primarily for image
acquisition purposes. The low-magnification lens was
utilized for intelligently analyzing the uniformity of
different droplet generation strategies and for intelli-
gently detecting the success rate of the high-throughput
droplet array generation process, whereas the high-
magnification lens was employed mainly for intelli-
gently detecting cells.

Reagents and materials
The design of the AM-EWOD chip is illustrated in

Fig. 1b. The oil medium used in this study was silicone oil
(2cSt) from Dow Corporate. PC 61 5.3 cells were cultured
in a cell culture incubator (5% CO2, atmosphere, 37 °C).
The growth medium for the PC 61 5.3 cells was DMEM
containing 10% FBS and 1% Pen Strep. The concentration
of the PC 61 5.3 cells was 5 × 105 cells/ml. The PC 61 5.3
cells [PC 61; PC 61.5.3] (CL-0663) were obtained from
Procell Life Science & Technology Co., Ltd.
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Fig. 7 Data analysis results produced for the different tasks involved. The images obtained during the droplet segmentation task (a, b) and the
detection task (c, d) were captured under various lighting conditions
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