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surface nonidealities for an optimized quality factor
at room temperature in 2D MoS2 nanomechanical
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Abstract
A high quality (Q) factor is essential for enhancing the performance of resonant nanoelectromechanical systems
(NEMS). NEMS resonators based on two-dimensional (2D) materials such as molybdenum disulfide (MoS2) have high
frequency tunability, large dynamic range, and high sensitivity, yet room-temperature Q factors are typically less than
1000. Here, we systematically investigate the effects of device size and surface nonidealities on Q factor by measuring
52 dry-transferred fully clamped circular MoS2 NEMS resonators with diameters ranging from 1 μm to 8 μm, and
optimize the Q factor by combining these effects with the strain-modulated dissipation model. We find that Q factor
first increases and then decreases with diameter, with an optimized room-temperature Q factor up to 3315 ± 115 for a
2-μm-diameter device. Through extensive characterization and analysis using Raman spectroscopy, atomic force
microscopy, and scanning electron microscopy, we demonstrate that surface nonidealities such as wrinkles, residues,
and bubbles are especially significant for decreasing Q factor, especially for larger suspended membranes, while
resonators with flat and smooth surfaces typically have larger Q factors. To further optimize Q factors, we measure and
model Q factor dependence on the gate voltage, showing that smaller DC and radio-frequency (RF) driving voltages
always lead to a higher Q factor, consistent with the strain-modulated dissipation model. This optimization of the Q
factor delineates a straightforward and promising pathway for designing high-Q 2D NEMS resonators for ultrasensitive
transducers, efficient RF communications, and low-power memory and computing.

Introduction
The quality (Q) factor is critical in resonant micro/

nanoelectromechanical systems (MEMS/NEMS) because
a higher Q factor represents lower energy dissipation,
better frequency selectivity, and higher sensitivity, all of
which are highly desirable for ultrasensitive resonant
transducers, low-phase-noise voltage-controlled oscilla-
tors, highly selective filters, and ultralow-power memory
and computing1,2. As resonators scale down to nanoscales
and even atomic scales, dissipation mechanisms can

become more complex, and it has been reported that the
Q factor generally decreases with device volume and cri-
tical dimension3. Specifically, for doubly clamped beam
resonators the Q factor increases with length but
decreases with width4. In NEMS resonators, surface loss,
anchor loss, frequency-independent material friction, and
thermoelastic dissipation have all been considered
potential dominant damping mechanisms5,6. Therefore, a
deep understanding of the size effect on the Q factor and
effective control of damping are increasingly important.
As resonator size continues to scale down, NEMS reso-

nators based on two-dimensional (2D) materials, such as
molybdenum disulfide (MoS2), have attracted tremendous
interest because they represent the ultimate scaling in the
thickness direction and have shown a number of intriguing
properties7, such as a resonance frequency of up to
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1.17GHz8, an ultrawide frequency tuning range of up to
366%9, and a large dynamic range of up to 102 dB10,11. These
2D NEMS resonators have shown high potential for mass
sensing with resolutions reaching ~26 yg12,13, force sensing
with a sensitivity of 390 zN/Hz1/214, highly tunable voltage-
controlled oscillators15,16, ultralow-power memory and
computing17,18, coupling with other physical domains19–21,
and quantum engineering22–24. Toward these applications
and scientific explorations, a high Q factor is desirable for
enhancing device performance. While the Q factor up to 1
million has been demonstrated for a graphene NEMS reso-
nator at 15mK25, the room-temperature Q factors for 2D
NEMS resonators remain relatively lower compared with
mainstreamMEMS resonators, withQ factors typically in the
range of a few hundred26–28 and no more than 2400
demonstrated for 2D NEMS resonators10,29,30. Strain, vibra-
tion amplitude, mode coupling, and interlayer friction have
been reported to be important for their dissipation char-
acteristics31–35. The geometric shape and critical dimension
can also have important effects on the Q factor for 2D NEMS
resonators. Theoretical and experimental studies have shown
that 2D NEMS resonators with free edges, such as doubly
clamped resonators, have larger energy dissipation and
smaller Q factors than those without free edges such as fully
clamped circular drumhead resonators29,36,37. Therefore,
performing a comprehensive analysis of the damping
mechanisms and thoroughly studying the effects of size on
damping are critical for optimizing Q factors at room tem-
perature for 2D NEMS resonators.
In this work, we systematically investigate the effect of

device size on Q factors by measuring 52 MoS2 NEMS
resonators with diameters varying from 1 μm to 8 μm.
The results demonstrate that the Q factor first increases
with diameter from 1 μm to 2 μm then decreases with
diameter when larger than 2 μm. This Q vs. diameter
relationship shows a different trend from previous reports
on graphene NEMS resonators in which the Q factor
monotonically increases with increasing diameter29.
Through detailed characterization using atomic force
microscopy (AFM), scanning electron microscopy (SEM),
and Raman spectroscopy, we demonstrate that devices
with larger diameters are more likely to include undesir-
able surface wrinkles, residues, and bubbles on the sus-
pended membrane, which can lead to lower Q factors. We
further find that as the diameter increases the resonance
peaks do not have regular peak shapes and spurious
modes emerge. By properly designing device structures as
fully clamped circular membranes with 2 μm diameters
and optimizing driving conditions based on the strain-
modulated dissipation model, we achieve a Q factor up to
3315 ± 115 at room temperature for a bilayer MoS2 cir-
cular drumhead NEMS resonator. These results provide
clear guidelines for enhancing the Q factor of 2D NEMS
resonators at room temperature and pave the way for a

number of applications that require high-Q NEMS
resonators.

Results and discussion
We fabricate 2D NEMS resonators by first litho-

graphically patterning substrates with surface micro-
trenches and contact electrodes and then transferring 2D
MoS2 onto surface microtrenches using a dry-transfer
process based on a polydimethylsiloxane (PDMS) stamp,
which is widely used in 2D device transfer, especially for
fabricating suspended devices9,20,21,31,32,34,38. All 2D MoS2
membranes are exfoliated from the same piece of bulk
material; thus, we assume that minimal variations in
material properties exist. The DC gate voltage VGS and
radio-frequency (RF) driving voltage vRF are applied to the
gate electrode through a bias tee to capacitively drive the
membrane, with the contact electrode grounded.
The suspended MoS2 membrane is pulled down toward
the gate electrode by the electrostatic force induced by
VGS, which leads to tension and resonance frequency
tuning. The resonances are measured using a custom-
built optical interferometry setup (Supporting Informa-
tion Section S1)31,39,40. To minimize the effects of air
damping and evacuate most of the air within the cav-
ity41,42, all measurements are carried out after the 2D
NEMS resonators are placed in a vacuum chamber (Fig.
S1) for a minimum of 1 day. All resonance measurements
are performed at a vacuum pressure of 1.2 × 10−2Torr at
a room temperature of 300 K.
To measure the Q factors at different diameters while

minimizing the effects of the variation in the MoS2
material, we fabricate an array of 2D MoS2 NEMS reso-
nators on a substrate with 8 × 8 circular microtrenches of
various diameters (Fig. 1a). The fully clamped resonator
structure avoids the undesirable effects of free edges on
energy dissipation and can enhance the Q factor29,36. We
measure resonances from 34 resonators in the array and
name each device as Device “m–n”, where m is the row
number and n is the column number. The membrane
surface is first characterized using AFM, showing the
surface quality of the suspended membranes (Fig. 1a).
Comparisons show that resonators with larger diameters
(>3 μm) typically contain more wrinkles (Fig. 1b–e) on
the suspended membranes than those with smaller dia-
meters (2–3 μm) (Fig. 1f, g). We perform Raman mapping
to measure the uniformity of the MoS2 material (Fig. 1n–q),
where, for MoS2 with the same thickness, uniformly
suspended MoS2 membranes generally show slightly
higher Raman peak intensities than wrinkled membranes.
The resonance spectrum for each resonator is recorded
and fitted to the solution for the equation of motion to
extract the Q factor (Fig. S4), with the Q factors sum-
marized in Fig. 1r. We find that the Q factors can vary by
several times for different devices with the same diameter
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and thickness, i.e., from 49 (Device 1–1) to 179 (Device
5–1). Furthermore, the Q factors of thicker resonators in
the plate regime are typically slightly higher than those of
thin resonators in the membrane regime. We then per-
form in-depth resonance measurements for two repre-
sentative resonators (Devices 1–1 and 5–1). Mode
mapping measurements are performed by fixing the laser
and scanning the stage that holds the vacuum chamber
with the resonator inside, demonstrating that Device 1–1,

with more wrinkles on the surface (Fig. 1b), also show
spurious modes (Fig. 1i–j) and a nonuniform mode shape
(Fig. 1h). In contrast, Device 5–1, with a more uniform
surface and fewer wrinkles (Fig. 1d), clearly shows a
fundamental flexural mode shape (Fig. 1k) and regular
frequency tuning characteristics (Fig. 1l). By gradually
increasing the vRF, Device 5–1 exhibits linear to Duffing
nonlinear resonances with hardening (Fig. 1m). The gate-
tunable resonance frequency model can fit the frequency
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tuning characteristics of Device 5–1 well but not those of
Device 1–1 because of the spurious modes (Supporting
Information Section S4.1–S4.2), as follows31:

f res ¼
1
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2:4054EY εr
2ρR2 � ε0

0:75ρtg3
VGS

2

s

ð1Þ

where R is the radius, t is the thickness, EY is the Young’s
modulus, ν is the Poisson’s ratio, εr is the gate-tunable
total strain, g is the initial vacuum gap, ϵ0 is the vacuum
permittivity, and ρ is the mass density.
The lower Q factors for devices with more wrinkles and

residues on the surface suggest the importance of surface-
induced damping mechanisms in these 2D NEMS reso-
nators. From the summarized Q vs. diameter relationship
in Fig. 1r, we find that the Q factor generally decreases
with increasing diameter in the range of 2 μm to 5 μm. If
anchor loss or thermoelastic damping dominates, then
according to previous models32,43, the Q factor should
increase with increasing resonator diameter. Therefore,
the results in Fig. 1r suggest that as the resonator size
increases there is a higher chance that surface residues
and wrinkles induce more energy loss.
To further validate the size dependence of Q factor for

thinner resonators and to achieve a high Q factor in MoS2
NEMS resonators, we fabricate another singly-isolated
MoS2 NEMS resonator (Device S1) with a diameter of
2 μm and a bilayer thickness. The clean, flat, and smooth
surface in the suspended region is confirmed by the SEM
images (Fig. 2a, b). In addition, the bilayer thickness and
high quality of the MoS2 material are confirmed by the
high PL intensity and Raman peak separation of
22.1 cm−1 (Fig. 2c, d)39,44. VGS tuning of the resonance
frequency shows a trend that can be well fitted by the
frequency tuning model (Fig. 2e), and resonance mea-
surements obtained by increasing the vRF clearly reveal a
transition from undriven thermomechanical resonance to
nonlinear driven resonances (Fig. 2f). Furthermore, the Q
factor decreases with increasing VGS and vRF (Fig. 2g–j),
which can be well fitted to the strain-modulated ther-
moelastic dissipation model (Supporting Information
Section S4.3):

Q�1
TED ¼ 5:576x02

εrðVGSÞR2ð1� v2Þ δ; ð2Þ

where δ is a fitting parameter representing the loss angle
in the complex form of Young's modulus, and x0 is the
vibration amplitude that is proportional to |VGS× vRF|.
From fitting to the gate tuning of the Q factor we can
extract δ for each resonator. By optimizing the diameter,
minimizing surface nonidealities, and decreasing the
driving strength, we achieve a high Q factor up to
3315 ± 115 at vRF= 1 mV and VGS= 1 V (Fig. 2g). This Q

factor is comparable to that of several piezoelectric
MEMS resonators measured under similar conditions45.
To study the Q vs. diameter relationship more compre-

hensively, we further scale down the resonators and measure
a singly-isolated resonator, Device S2, with a 1 μm diameter
(Fig. 3a) and monolayer thickness (Fig. 3d, e). The flat and
smooth surface is confirmed by the SEM images (Fig. 3b, c)
which show no observable residue or wrinkle. From the
measured resonances (Fig. 3f, g), we extract Q factor at each
VGS and vRF and obtain a Q factor up to 1051 ± 77
(Fig. 3h–k). By comparing the results from Figs. 2 to 3 we
find that when the resonator surfaces are clean, the resona-
tors with larger diameters have larger Q factors.
To further investigate the relationship between the Q

factor and diameter, we measure 2D MoS2 NEMS reso-
nators with larger diameters. For resonator Device S3 with
a diameter of 6 μm (Fig. 4a) and bilayer thickness (Fig. 4d,
e), the zoomed-in SEM images clearly show wrinkles
(Fig. 4b) and residues (Fig. 4c) close to the clamping ends.
From resonance measurements we find that the frequency
tuning characteristics before and after VGS= 10 V show
different increasing trends (Fig. 4f). The mode shapes,
frequency tuning characteristics, and resonance curves of
MoS2 NEMS resonators with surface residues or wrinkles
under different damping conditions are simulated using
the finite element method (FEM) (Figs. S18–S20), with
abnormal mode shapes for the fundamental flexural mode
observed. For the resonator with residue, we further
demonstrate that the mode shape and the position of the
maximum vibration amplitude change when the gate
voltage increases (Fig. S18). The irregular mode shape at
each VGS determines the dynamic energy in the device,
which could result in nonideal frequency tuning char-
acteristics and larger dissipation. The extracted Q factors
at each VGS and vRF indicate that the Q factors are low and
that Q decreases with increasing VGS and vRF (Fig. 4h–k).
Fitting to the Q vs. VGS relationship also shows a turning
point before and after VGS= 10 V, similar to the fre-
quency tuning characteristics. The low Q factor and
nonideal characteristics for gate tuning of Q factor suggest
correlations with the dynamic-energy-dependent loss
angle δ (Supporting Information Section S4 and Table
S1), with resonators with larger diameters and lower Q
factors generally having higher δ values. To confirm this
effect, we further measure the frequency tuning char-
acteristics of another device (Device S8) with the same 6-
μm diameter (Fig. S7), which also has relatively low Q
factors and nonideal resonance peak shapes.
For another MoS2 NEMS resonator (Device S4) with an

even larger diameter of 8 μm and with a monolayer
thickness (Fig. 4o, p), the SEM images also show that the
suspended membrane contains several wrinkles (Fig. 4l–n).
The frequency tuning characteristics (Fig. 4q) and Duffing
nonlinearity (Fig. 4r) are also measured, but owing to the
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multiple spurious modes, the frequency tuning trend is
not clear and cannot be fitted consistently using the
model. Multiple resonance peaks show resonance fre-
quencies similar to those of well-separated resonances, as
predicted by the classical model (Fig. 4s, t)46, which could
also be attributed to surface nonidealities. The nonideal
frequency tuning characteristics and mode shapes due to
wrinkles are simulated using FEM (Figs. S19–S20). The
simulated resonance characteristics show that the spur-
ious resonance modes become more obvious with greater
vRF driving (Fig. S20). Furthermore, for resonators with
small Q factors due to surface nonideality and large vRF,
the resonance frequencies can also be close to each other,
leading to merged resonances with a small peak for the
spurious mode and a small frequency selectivity. These
findings are consistent with the results presented in
Fig. 1j. A summary of the fitting to all the resonances at
various VGS and vRF also reveals low Q factors and
decreasing Q factors with larger VGS and vRF, which
cannot be fitted well above VGS= 15 V (Fig. 4u, v). To
further confirm the consistency of the effects of diameter
and surface nonideality on device properties, we obtain
measurement results from 13 additional singly-isolated
MoS2 drumhead NEMS resonators with various diameters

(Devices S6–S18), which consistently show that larger
membranes typically contain more surface nonidealities
on the suspended membranes and thus have lower Q
factors (Figs. S5–S17).
We further investigate Device S5, with an array of five

microtrenches with the same diameter of 3 μm and uni-
form thickness of 10 nm (Fig. 5a, g) but with a large
bubble on the surface formed during device fabrication
(Fig. 5b, e). Despite having the same material and geo-
metry, the five resonators in Device S5 have different
surface nonidealities on the suspended membrane: reso-
nators “b” and “c” are influenced by the bubble (Fig. 5e),
resonator “a” has a residue on the suspended membrane
(Fig. 5c), resonator “e” has a small wrinkle near the
clamping edge (Fig. 5d), and resonator “d” has a very flat
and clean suspended material (Fig. 5g). The PL intensities
for resonators “b” and “c” are much lower than those for
the other resonators (Fig. 5l–o), further confirming the
effects of the bubble. We measure the resonance tuning
characteristics of all five devices by varying VGS. Both
resonators “e” and “d” show single clear resonances with
high intensity so that the frequency tuning characteristics
can be well fitted with our model (Fig. 5h, i). However,
resonators “c” and “a” show multiple spurious modes in
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the resonances (Fig. 5j, k). The extracted Q factors for the
flat resonator “d” without surface nonidealities are the
highest for Device S5 (Fig. 5p–s), which shows that sur-
face bubbles can also lead to larger dissipation. Resonator
“e” with a small wrinkle has a lower Q factor than reso-
nator “d” but a much higher Q factor than resonators “a”
and “c”. These control experiments further confirm the
importance of surface nonidealities for the resonance
characteristics and damping properties of 2D NEMS
resonators.
The measurement results from all 52 MoS2 NEMS

resonators consistently show that devices with large dia-
meters (3–8 μm) generally have irregular resonance fre-
quency tuning characteristics and many spurious modes,
especially at large VGS, due to the higher chance of
including surface nonidealities. In contrast, devices with
smaller diameters (1–2 μm) show clear resonance modes
with frequency and Q factor tuning characteristics well
fitted by the models. We summarize the measured Q
factor vs. diameter relationship in Fig. 5t, where the Q

factor for each device is the largest Q factor at varying gate
voltages. Because dissipation increases with a larger drive
(|VGS× vRF|), the largest Q factor is usually obtained near
the first measurable resonance at a small driving ampli-
tude. The Q factor first increases and then decreases with
increasing diameter, reaching a maximum value at 2 μm
and a minimum value at 8 μm. We model the overall
effect from multiple damping mechanisms as follows:

Q�1 ¼ Q�1
TED þ Q�1

Anchor þ Q�1
SN þ Q�1

Other; ð3Þ

where QTED
−1 represents thermoelastic dissipation, QAn-

chor
−1 represents anchor loss, QSN

−1 represents the loss
induced by surface nonidealities, and QOther

−1 represents
other diameter-independent damping mechanisms
including air/fluid damping, material-defect-induced
damping, and phonon‒phonon dissipation. Surface-
induced energy dissipation has been found to limit or
decrease the Q factor as the device size increases47,48. For
thermoelastic dissipation and anchor loss, a larger
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diameter can lead to a larger Q factor. When the diameter
is 1–2 μm, thermoelastic dissipation and anchor loss
dominate and the Q factor increases with diameter,
reaching ~3315 at a diameter of 2 μm. When the diameter
further increases, the damping induced by surface
nonidealities becomes more important and the Q factors
dramatically decrease to ~10 at a diameter of 8 μm.
Therefore, to achieve high-Q factors in 2D NEMS
resonators a clean, smooth, and high-quality suspended
membrane is the key for minimizing surface-induced
energy loss.

We consistently aim for high Q factor in NEMS devices as
it is critical for potential applications of MoS2 NEMS reso-
nators in terms of sensitivity, frequency stability, and power

efficiency. Specifically, a decreased Q factor can reduce the
sensitivity of the resonator to external stimuli, affecting its
performance in sensing applications. Lower Q factors may
result in reduced frequency resolution, limiting the accuracy
of RF signal processing and communication. Larger damping
can also increase energy dissipation leading to higher power
consumption and reduced energy efficiency. When the
resonator continues to scale down, the surface nonidealities
are less significant, and several techniques can further
minimize energy dissipation and enhance the Q factor. For
example, optimizing the environment by reducing the tem-
perature and vacuum pressure25,41,42, applying external ten-
sile strain to the suspended membrane32, performing
vacuum thermal annealing after transfer38, and growing and

(see figure on previous page)
Fig. 5 Comparison of characteristics among 2D MoS2 NEMS resonators on 5 microtrenches next to each other in Device S5 with a bubble
under the material. a–d SEM images showing (a) 5 side-by-side resonators named “a”, “b”, “c”, “d”, and “e” with the same diameter of 3 μm.
b Resonators “a”, “b”, and “c” with a large bubble outlined by the white dashed box. c Resonator “a” with residue on the membrane outlined by the
white dashed box. d Resonator “e” with wrinkle in the white dashed box. e AFM image of the bubble area with the thickness shown in color scale.
f, g Thickness profile measured along the white dashed lines in (a), showing (b) a maximum height of ~300 nm for the bubble and (c) a thickness of
10 nm for the MoS2 membrane. Gate tuning of the frequency measured by varying VGS from 0 V to 25 V and at a fixed vRF of 20 mV for resonators (h)
“e”, (i) “d”, (j) “c”, and (k) “a”, with the amplitude shown in color scale. Resonator “b” does not show measurable resonance. Photoluminescence
spectra measured at different positions for resonators (l) “e”, (m) “d”, (n) “b–c”, and (o) “a”. Comparison of typical measured resonances and extracted
Q factors for different resonators at the same driving force, showing the Q factors of (p) 351 ± 75 for resonator “e”, (q) 572 ± 58 for resonator “d”, (r)
188 ± 37 for resonator “c”, and (s) 129 ± 37 for resonator “a”, at VGS= 5 V. t Summarized Q factors for all 52 MoS2 NEMS resonators and the modeled Q
factor vs. diameter relationship, with diameters ranging from 1 μm to 8 μm. The Q factor shown for each device is the largest at varying gate voltages.
The black dashed line is the model fitting using QTED

−1+ QAnchor
−1 (~D-1.1)43, and the red dashed line is the model fitting using

QTED
−1+ QAnchor

−1+QSN
−1 (~D1.2)+ QOther
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transferring high-quality 2D materials with fewer material
defects can significantly reduce damping and enhance the Q
factor49. Furthermore, developing fabrication techniques that
can reduce surface nonidealities is important for further
optimizing the Q factor. For example, employing a stress-free
transfer process with the assistance of poly(methyl metha-
crylate) (PMMA) and growing uniform high-quality 2D
materials can facilitate the fabrication of a large-scale array of
2D NEMS resonators29,50. This approach could help reduce
wrinkles and residues on the resonators to further enhance
the Q factor, but could be more time-consuming. Polymers
such as SU-8 can provide support when 2D materials are
released, but wet chemical processes are used16. Therefore,
there is a growing need to develop simple fabrication tech-
niques for producing high-quality 2D NEMS resonators with
clean and flat surfaces.
Given that long-term stability and reliability are critical

for commercial and industrial applications, we measure
Device 5-3 in Fig. 1a over time and summarize how the
frequency and Q factor change. Initially, the device is
placed in a vacuum chamber and the system is con-
tinuously pumped to evacuate air within the cavity and
maintain a stable vacuum pressure. Subsequently, we
maintain a fixed electric driving force and record the
resonances for 500 times with a 5-min time gap.
The measured resonances exhibit robust and repeatable
characteristics over time (Fig. 6a), with stable vibration
amplitudes, resonance frequencies, and Q factors
(Fig. 6b–d). This robust and reliable operation of 2D
MoS2 NEMS resonators makes them highly promising for
applications in sensing, RF signal processing, and
computing units.

Conclusions
In summary, we measure 52 2D MoS2 NEMS reso-

nators with varying diameters from 1 μm to 8 μm, and
achieve the highest Q factor of 3315 ± 115 for a reso-
nator with a diameter of 2 μm. This is achieved through
optimizing the device geometry by considering the
effects of surface nonidealities on dissipation, the
competition between different damping mechanisms,
and optimizing the driving conditions by considering
the strain-modulated dissipation model. We further
demonstrate the long-term stability of the resonators.
This study sheds light on the mechanisms behind the
previously observed low Q factor in 2D NEMS resona-
tors and provides clear guidelines for designing high-Q
2D NEMS resonators, which is important for their
applications in sensing, RF signal processing, quantum
engineering, memory, and computing.
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