Skip to main content
. 2024 Sep 13;11:1445565. doi: 10.3389/frobt.2024.1445565

TABLE 4.

Classification performance compared to CNN and Transformer-based state-of-the-art models for APTOS 2019 dataset.

Method Accuracy Precision Sensitivity F1-score
CapsNet + VGG16 (Kumar et al., 2021) 75.50
NASNet (Dondeti et al., 2020) 77.90 76.00 77.00
MobileNet (Kassani et al., 2019) 79.01 76.47
DNN + Blended VGG and Xception (Bodapati et al., 2020) 80.96
Inception-ResNet-v2 (Gangwar and Ravi, 2021) 82.18
Composite Gated attention DNN (Bodapati et al., 2021a) 82.54 82.00 83.00 82.00
Modified Xception (Kassani et al., 2019) 83.09 88.24
Modified VGG16 (Bodapati et al., 2021b) 84.31 84.00
LA-NSVM (Shaik and Cherukuri, 2021) 84.31 75.86 66.16 69.90
TMILv4 (Yang et al., 2024) 85.60 73.70
SwAV 87.00 86.00 87.00 86.00