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Medulloblastoma is the most common malignant brain tu-
mor in children, accounting for 20% of pediatric brain 

tumors (1). Currently, radiation treatment planning in me-
dulloblastoma requires careful tumor delineation. Similarly, 
treatment response assessment in pediatric tumors (including 
medulloblastoma) requires tumor delineation to reliably com-
pute measurements in two perpendicular planes (bidirectional 
or two-dimensional [2D]) based on consensus recommenda-
tions by the Response Assessment in Pediatric Neuro-Oncol-
ogy (ie, RAPNO) working group (2–4). However, 2D mea-
surements may not be sufficient to characterize phenotypically 

heterogeneous medulloblastomas, composed of enhancing tu-
mor (ET), cystic core (CC) and nonenhancing tumor (NET), 
and peritumoral edema (ED), often manifested in varying pro-
portions. Further, manual delineation of the tumor boundaries 
at MRI is time-consuming, hard to perform in real time during 
surgery, and is prone to interrater variability (5,6). There is thus 
an opportunity to develop automated tools for comprehensive 
and accurate segmentation of the entire tumor habitat (ie, ET, 
CC and NET, and peritumoral ED subcompartments) to en-
able more detailed volumetric, as well as downstream, compu-
tational analysis at MRI (7). This could, in turn, also benefit 

Purpose:  To evaluate nnU-Net–based segmentation models for automated delineation of medulloblastoma tumors on multi-institutional MRI scans.

Materials and Methods:  This retrospective study included 78 pediatric patients (52 male, 26 female), with ages ranging from 2 to 18 years, with medulloblas-
tomas, from three different sites (28 from hospital A, 18 from hospital B, and 32 from hospital C), who had data available from three clinical MRI pro-
tocols (gadolinium-enhanced T1-weighted, T2-weighted, and fluid-attenuated inversion recovery). The scans were retrospectively collected from the year 
2000 until May 2019. Reference standard annotations of the tumor habitat, including enhancing tumor, edema, and cystic core plus nonenhancing tumor 
subcompartments, were performed by two experienced neuroradiologists. Preprocessing included registration to age-appropriate atlases, skull stripping, bias 
correction, and intensity matching. The two models were trained as follows: (a) the transfer learning nnU-Net model was pretrained on an adult glioma 
cohort (n = 484) and fine-tuned on medulloblastoma studies using Models Genesis and (b) the direct deep learning nnU-Net model was trained directly on 
the medulloblastoma datasets, across fivefold cross-validation. Model robustness was evaluated on the three datasets when using different combinations of 
training and test sets, with data from two sites at a time used for training and data from the third site used for testing.

Results:  Analysis on the three test sites yielded Dice scores of 0.81, 0.86, and 0.86 and 0.80, 0.86, and 0.85 for tumor habitat; 0.68, 0.84, and 0.77 and 
0.67, 0.83, and 0.76 for enhancing tumor; 0.56, 0.71, and 0.69 and 0.56, 0.71, and 0.70 for edema; and 0.32, 0.48, and 0.43 and 0.29, 0.44, and 0.41 
for cystic core plus nonenhancing tumor for the transfer learning and direct nnU-Net models, respectively. The models were largely robust to site-specific 
variations.

Conclusion:  nnU-Net segmentation models hold promise for accurate, robust automated delineation of medulloblastoma tumor subcompartments, poten-
tially leading to more effective radiation therapy planning in pediatric medulloblastoma.
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the development of reliable prognostic and predictive markers 
of treatment response in medulloblastomas.

This decade, deep learning approaches have emerged as pow-
erful tools by training neural networks to learn higher-level to 
minute image features for semantic segmentation tasks (8). Of 
note, nnU-Net has emerged as a powerful approach in segment-
ing regions of interest on clinical scans, given its ability to offer 
standardized and self-configuring processes for preprocessing, 
network design, and architecture for a variety of segmentation 
tasks (9). In the context of adult brain tumors, many works have 
used publicly available datasets, such as the Brain Tumor Seg-
mentation (BraTS) challenge (10,11), to employ deep learning 
architectures (including nnU-Net [12]) for brain tumor subcom-
partment segmentation. Unfortunately, most of these approaches 
have been developed in the context of adult and not pediatric 
studies, perhaps on account of there being fewer numbers of chil-
dren with brain tumors than adults (13).

In this work, we explore nnU-Net–based segmentation ap-
proaches to segment the entire medulloblastoma tumor habitat, 
comprising the ET, peritumoral ED, and NET plus CC, and 
the specific subcompartments, on conventional MRI scans (T1-
weighted [T1w], T2-weighted [T2w], and fluid-attenuated in-
version recovery [FLAIR]).

Specifically, we evaluate two different segmentation models 
using the nnU-Net architecture. First, we use an nnU-Net–based 
transfer learning model to transfer knowledge from a related do-
main with a larger dataset (eg, adult brain tumor cohort in our 
case), as previous studies have demonstrated its value and suitability 
for brain tumor segmentation tasks (12). Our rationale for training 
the transfer learning model using adult tumor cases is that previous 
studies have demonstrated that domain-specific tasks, especially in 
medical imaging, perform better when trained on domain-specific 
images, as compared with ImageNet data (which mostly consists 

of images from nature) (14–16). Thus, in the context of our study, 
we hypothesize that the high-level image features can be learned 
from a large adult glioma cohort (17) and can be transferred over 
following fine-tuning on a smaller cohort of pediatric medulloblas-
toma cases to learn low-level domain-specific features within an 
nnU-Net model, thereby improving the segmentation of medullo-
blastoma tumor subcompartments on routine MRI scans. Second, 
we evaluate the efficacy of an nnU-Net model trained directly on 
the pediatric medulloblastomas (nnU-Net–based direct training 
model). Finally, we evaluate the robustness of both models to image 
variations across multi-institutional studies by using different com-
binations of the three datasets, with data from two sites at a time 
used for training and data from the third site used for testing. Our 
work presents one of the first attempts at automatic and systematic 
segmentation of medulloblastoma tumor subcompartments on 
routine MRI scans, via a multi-institutional dataset.

Materials and Methods
This retrospective, Health Insurance Portability and Account-
ability Act–compliant study was approved by the institutional 
review board of each site (identification no. 2022–1683). The 
need for informed consent was waived due to the study’s retro-
spective nature.

Notation
We define an image scene I as I = (C, f ), where I is a spatial grid 
C of voxels c ∈ C in a three-dimensional (3D) space ℝ3. Each 
voxel, c ∈ C, is associated with an intensity value f(c). IET, IED, 
and INET + CC correspond to the ET, ED, and NET plus CC 
subcompartments within every I, respectively, such that IET, IED, 
INET+CC ∈ I.ITH is the tumor habitat that comprises all the tumor 
subcompartments, representing IET + IED + INET + CC.

Workflow
Figure 1 shows the pipeline for the two nnU-Net–based seg-
mentation models evaluated in this work. First, for the nnU-
Net transfer learning approach (denoted as nnU-NetTL), the 
three MRI protocols (gadolinium-enhanced T1w [Gd-T1w], 
T2w, and FLAIR) were employed on the BraTS glioma dataset 
to obtain three tumor subcompartments IET, IED, and INET + CC 
separately, as well as ITH, using the nnU-Net framework (9), 
accounting for a total of four pretrained segmentation models. 
Preprocessing was then conducted on our pediatric medullo-
blastoma datasets, including registration to age-appropriate at-
lases, skull stripping, bias correction, and intensity matching. 
Then, we used each of the four pretrained segmentation models 
trained in stage 1 to apply transfer learning on the preprocessed 
pediatric medulloblastoma MRI scans (Gd-T1w, T2w, and 
FLAIR) to obtain medulloblastoma tumor subcompartment 
segmentations. Second, for the nnU-Net deep learning ap-
proach (nnU-NetDL), after employing the preprocessing scheme 
on the pediatric medulloblastoma scans, the nnU-Net frame-
work was directly applied on those scans to obtain the segmen-
tations for the medulloblastoma tumor subcompartments.

Data Curation
Our datasets consisted of 484 adult glioma studies (high grade 
and low grade) from the BraTS dataset (17), as well as 78 me-

Abbreviations
BraTS = Brain Tumor Segmentation, CBTN = Children’s Brain 
Tumor Network, CC = cystic core, ED = edema, ET = enhancing 
tumor, FLAIR = fluid-attenuated inversion recovery, Gd-T1w = 
gadolinium-enhanced T1w, NET = nonenhancing tumor, T1w = 
T1-weighted, T2w = T2-weighted, 3D = three-dimensional, 2D = 
two-dimensional

Summary
Two automated nnU-Net–based models for segmentation of pediatric 
medulloblastomas demonstrated high performance and agreement 
with expert neuroradiologists when evaluated on multi-institutional 
MRI data.

Key Points
	■ Transfer learning and direct deep learning nnU-Net models exhib-

ited high performance metrics scores for segmentation of pediatric 
medulloblastomas, with Dice scores of 0.68, 0.84, and 0.77 for the 
transfer learning model and Dice scores of 0.67, 0.83, and 0.76 for 
the direct deep learning model for enhancing tumor segmentation 
on three MRI test datasets.

	■ Both models demonstrated robust segmentation performance 
across site-specific variations in multi-institutional studies (eg, Dice 
scores ranged from 0.81 to 0.88 for tumor habitat segmentation).

Keywords
Pediatrics, MR Imaging, Segmentation, Transfer Learning, Medullo-
blastoma, nnU-Net, MRI
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tional data, we performed quality control of all MRI scans using 
an in-house, open-source tool called MRQy (18). Briefly, MRQy 
extracts a series of quality measures (eg, noise ratios, variation 
metrics) and MR image metadata (eg, voxel resolution and image 
dimensions) and identifies outliers (including poor-quality cases) 
using these measures and metadata from across the multi-insti-
tutional datasets. Patients with poor-quality MRI protocols, as 
identified by MRQy, were excluded from the analysis (a total of 
six patients from hospital C). Additional details regarding the 
available tumor characteristics (including tumor location, pres-
ence of metastasis, and extent of resection) for every patient in-
cluded in our study are provided in Table S1.

Careful Reference Standard Annotations of Medulloblastoma 
Tumor Habitat and Individual Tumor Subcompartments
Reference standard labels were carefully and rigorously gen-
erated via consensus by two experienced board-certified neu-
roradiologists (expert 1 [A.N.], with 9 years of experience, and 
expert 2 [D.M.], with 8 years of radiology experience), on a 

Figure 1:  Workflow of the two proposed nnU-Net–based segmentation models. For the nnU-Net transfer learning model (nnU-NetTL), we illustrate the deep learning ap-
proach conducted on adult brain tumors in stage 1; then, in stage 2, we show the transfer learning approach employed on the pediatric medulloblastoma cases, using stage 
1 results. We also illustrate the nnU-Net deep learning model (nnU-NetDL) trained directly on the pediatric medulloblastoma studies. Conv = convolutional, FLAIR = fluid-atten-
uated inversion recovery, ReLu = rectified linear unit, T1w = T1-weighted, T2w = T2-weighted, 3D = three-dimensional.

dulloblastoma studies that were retrospectively collected from pa-
tients between 2 and 18 years of age and performed from the year 
2000 up to the date of institutional review board–approved data 
(May 16, 2019). The MRI scans of the medulloblastoma cases 
were obtained from three different institutions: Cincinnati Chil-
dren’s Hospital Medical Center (hospital A), with 28 cases; Chil-
dren’s Hospital Los Angeles (hospital B), with 18 cases; and Chil-
dren’s Hospital of Philadelphia (hospital C), with 32 cases. The 
following inclusion criteria were used for our data: (a) availability 
of Gd-T1w, T2w, and FLAIR axial view MRI scans; (b) patients 
with only medulloblastoma tumors; and (c) acceptable diagnostic 
quality of the MRI scans, as identified by the collaborating radiol-
ogists. Following these inclusion criteria, we excluded 31 of the 
total 48 patients available for hospital B because of unavailability 
of all three sequences; similarly, hospital A had 42 cases, but only 
28 had all three sequences for analysis. The 78 medulloblastoma 
studies included in our analysis were acquired using 1.5-T and 
3-T Philips (Ingenia, Achieva) and Siemens MRI scanners. To 
account for variability in imaging scans across the multi-institu-
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per-section basis, using 3D Slicer (version 5.6.1; www.slicer.org) 
(19). IET was defined as the hyperintense region appearing on 
the Gd-T1w image, while IED was defined as signal hyperinten-
sity on T2w and FLAIR scans. INET + CC was identified as gray or 
dark on Gd-T1w and FLAIR scans, with the only difference on 
T2w scans being the hyperintensity of the CC subcompartment 
(ICC). Finally, ITH was defined as the union of the three tumor 
subcompartments, IET + IED + INET + CC.

Preprocessing
The first step involved performing registration of our pediat-
ric medulloblastoma scans to age-specific atlases to account 
for the anatomic differences across the different age groups be-
cause of brain development in pediatric patients. A total of four 
age-specific atlases (0–2, >2 to 5, >5 to 10, and >10 to 18 years) 
were used (20). We first registered the Gd-T1w images to the 
age-specific atlases (19) and then registered the corresponding 
T2w and FLAIR scans to the Gd-T1w atlas-registered scans us-
ing 3D Slicer (19). This was done for the purpose of aligning all 
MRI protocols (Gd-T1w, T2w, and FLAIR) to the same refer-
ence space. This process was followed by skull stripping using 
the Brain Extraction Tool in the FMRIB Software Library (21). 
Finally, correction for intensity inhomogeneities was conducted 
using N4ITK bias correction in 3D Slicer (19), followed by 
applying an intensity-matching approach (22).

Segmentation of Medulloblastoma Using nnU-Net–based 
Approaches

Direct-learned nnU-NetDL model.— Following preprocessing, 
we trained the nnU-Net model directly on the medulloblasto-
mas. Specifically, the nnU-Net model flow was incorporated, 
which generates three different U-Net configurations: a 2D 
U-Net, a 3D U-Net, and a 3D U-Net cascade in which the first 
U-Net operates on downsampled images while the second is 
trained to refine the segmentation maps created by the former. 
Following cross-validation, nnU-Net then empirically chooses 
the best performing configuration or ensemble (9).

For training of both segmentation models (nnU-NetDL and 
nnU-NetTL), an initial learning rate of 0.01, stochastic gradient 
descent as optimizer, and a combination of Dice and cross-en-
tropy as the loss function were used. For nnU-NetTL, separate 
nnU-Net architectures were trained for individual subcompart-
ments of the tumor, IET, IED, and INET + CC, as well as for ITH, using 
the BraTS dataset with three MRI modalities (Gd-T1w, T2w, 
and FLAIR). All the training experiments were conducted in a 
fivefold cross-validation scheme.

Transfer-learned nnU-NetTL model.— We first trained a source 
nnU-Net model on 387 patients from the adult glioma data-
set (BraTS 2018, known as the source dataset) with three MRI 
modalities (Gd-T1w, T2, and FLAIR) (17) and then validat-
ed the model on 97 patients from the dataset; separate nnU-
Net models were trained for IET, IED, and INET (lumped with 
necrotic core subcompartment) subcomponents, as well as ITH. 
Following pretraining on adult glioma cases, transfer learning 
was incorporated within the nnU-Net framework to develop 
nnU-NetTL using Models Genesis (23) to fine-tune every layer 

of the model on our pediatric medulloblastoma training data. 
Specifically, this involved our target model copying all the mod-
el designs and their parameters from the source model contain-
ing the knowledge learned from the source dataset (BraTS) and 
applying it to the target dataset (pediatric medulloblastomas). 
An output layer for the target model was added, where the 
number of outputs was the number of class labels in our tar-
get dataset (medulloblastoma cases). The model parameters of 
the target model’s output layer were then randomly initialized. 
Finally, we trained the target model using the target dataset (ie, 
the pediatric brain tumor cases), where the output layer was 
trained from scratch but the parameters for all other layers were 
fine-tuned based on the pretrained weights of the source model.

Evaluating Robustness of nnU-Net Models across Multi-
institutional Studies
To ensure the robustness of our segmentation models and their 
generalizability across multi-institutional data, we evaluated our 
models (nnU-NetDL and nnU-NetTL) using different combina-
tions of training and test sets, with the data from two sites at a 
time used for training, while using the third site for testing. Spe-
cifically, we employed the multi-institutional data across the two 
segmentation approaches as follows: (a) hospital A and hospital 
B as training, hospital C (n = 32) as testing; (b) hospital A and 
hospital C as training, hospital B (n = 18) as testing; and (c) hos-
pital B and hospital C as training, hospital A (n = 28) as testing.

Statistical Analysis
We evaluated the efficacy of both segmentation models (nnU-
NetDL and nnU-NetTL) using multiple performance metrics (Ta-
bles S2–S6), namely Dice coefficient (24), Hausdorff distance 
(25), Fréchet distance (26), precision (27), recall (27), and Jac-
card index (24).

Additionally, to statistically compare the performance of both 
segmentation approaches, we conducted a paired t test to identify 
any significant differences between the results of the two models. 
Specifically, for the test set used in each of the three data combi-
nations, Dice scores obtained for each tumor subcompartment 
using nnU-NetDL and nnU-NetTL were input to a paired t test, 
followed by false discovery rate correction, to compute the two-
tailed P value (with .05 determined as the level of significance). 
Twelve total experiments (four for the tumor subcompartments 
and the lesion habitat for each data combination of the three) 
were thus conducted using R software package (version 4.3.1; the 
R Foundation for Statistical Computing).

Data and Code Availability
The MRI scans obtained from hospitals A and B are protected 
through institutional compliance at the local institutions. The 
clinical repository of these patient scans can be shared per specific 
institutional review board requirements. Upon reasonable request, 
a data sharing agreement can be initiated between the interested 
parties and the clinical institution following institution-specific 
guidelines. Data from hospital C was obtained from the Children’s 
Brain Tumor Network (CBTN), based on an established agree-
ment between the senior author and the CBTN. We will release the 
segmentations obtained from the CBTN studies into the CBTN 
network for future research purposes. CBTN membership can be 
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obtained following the guidelines provided on their website to ob-
tain access to the scans of the associated segmentations.

Results

Patient Characteristics
Our datasets included a total of 78 medulloblastoma studies that 
were retrospectively collected from patients between 2 and 18 
years of age. The MRI scans of the medulloblastoma cases were 
obtained from three different institutions: 28 cases from hospital 
A (19 male, nine female; mean age = 3.85 years), 18 cases from 
hospital B (10 male, eight female; mean age = 5.4 years), and 
32 cases from hospital C (23 male, nine female; mean age = 8.8 
years). Table 1 shows the demographics of all study patients.

Segmenting Medulloblastoma Tumor Habitat and Tumor 
Subcompartments Using nnU-NetTL Model
When training the source nnU-Net model on adult patients with 
glioma from the BraTS dataset, we obtained Dice scores of 0.90 
± 0.005 [SD], 0.78 ± 0.02, 0.81 ± 0.1, and 0.62 ± 0.007 for ITH, 
IET, IED, and INET (with necrotic core), respectively. Next, when ap-
plying the nnU-NetTL model on pediatric medulloblastoma cases 
using the three data schemes for training and testing (presented in 
the Evaluating Robustness of nnU-Net Models across Multi-in-
stitutional Studies section), our results demonstrated comparable 
accuracies and performance metrics scores in segmenting the tu-
mor subcompartments (and the tumor habitat) across all exper-
iments. For instance, Dice scores of 0.81, 0.86, and 0.86 were 
obtained for ITH segmentation for each of the three test datasets 
(hospital C, hospital B, and hospital A), respectively. Similarly, 
Dice scores of 0.68, 0.84, and 0.77 for IET segmentation, scores 
of 0.56, 0.71, and 0.69 for IED segmentation, and scores of 0.32, 
0.48, and 0.43 in INET + CC segmentation were obtained for each 
of the three test datasets, respectively.

Segmenting Medulloblastoma Tumor Habitat and Tumor 
Subcompartments Using nnU-NetDL Model
When applying the nnU-NetDL model, our results sim-
ilarly demonstrated comparable accuracies and perfor-

mance metrics scores in segmenting the tumor subcom-
partments (and the tumor habitat) when using different 
combinations of training and test sets. For instance, Dice 
scores of 0.80, 0.86, and 0.85 were obtained for ITH segmen-
tation for each of the three test datasets (hospital C, hospi-
tal B, and hospital A), respectively. Similarly, Dice scores of 
0.67, 0.83, and 0.76 were obtained for IET segmentation for 
each of the three test datasets, respectively.

Comparison between nnU-NetTL and nnU-NetDL Model 
Performance
Detailed results of the performance metrics, including Dice co-
efficient, Hausdorff distance, Fréchet distance, precision, recall, 
and Jaccard index, that were used to assess the performance of 
the two segmentation models across different training and test-
ing sets are provided in Tables S3–S5. Table 2 summarizes the 
performance of the two segmentation models on the test set of 
each of the three data combinations we employed in our work.

When conducting the paired t tests, followed by the false dis-
covery rate procedure, to compare the performance of the two 
segmentation models on the test sets, results showed that no ev-
idence of differences were observed across the two segmentation 
approaches for the 12 conducted experiments, indicating that the 
two segmentation approaches exhibited a similar performance. 
In Table S6, we report the P values and the 95% CIs for the 12 
conducted experiments.

Qualitative Examples of Good and Poor Segmentations 
across nnU-NetTL and nnU-NetDL Models
Figures 2–4 showcase some qualitative examples comparing 
performances of both models (nnU-NetTL and nnU-NetDL) 
on cases from hospitals A (Fig 2), B (Fig 3), and C (Fig 4). 
Specifically, Figure 2 presents both good (rows A–D) and 
poor (rows E–H) segmentation examples on cases obtained 
from hospital A using both nnU-NetTL and nnU-NetDL mod-
els. Based on our visual assessment, it was challenging to 
identify which model performed better, which is in line with 
the results of our statistical tests conducted for performance 
comparison not yielding significant differences across the two 

Table 1: Patient Demographics and MRI Acquisition Information across Our Multi-institutional Data

Parameter

Data Distribution

Hospital A Hospital B Hospital C

Total no. of patients 28 18 32
Mean age ± SD (y) 7.57 ± 4.15 5.4 ± 3.87 8.8 ± 4.16
Sex 19 male, 9 female 10 male, 8 female 23 male, 9 female
Scan type T1-FFE axial postcontrast T1-FFE axial postcontrast T1-FFE axial postcontrast
MR acquisition type 2D 2D 2D
Scanning sequence Gradient recalled Gradient recalled Spin echo
Sequence variant Steady state Steady state Segmented k-space/spoiled/

oversampling phase
Pixel spacing (mm) 0.46–1 0.46–1 2
Mean section thickness (mm) 5.4 5.4 4 mm

Note.—T1-FFE = T1-weighted fast field echo, 2D = two-dimensional.

http://radiology-ai.rsna.org
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Table 2: Performance of Segmentation Models on Test Sets of Data Combinations

Region and Model

Metric

Dice Coefficient Hausdorff Distance Fréchet Distance Jaccard Index
Precision 
(%)

Recall 
(%)

Training with Hospitals A and B and Testing on Hospital C

Tumor habitat
  nnU-NetDL 0.81 ± 0.10

(0.79, 0.83)
2.74 ± 0.47 2.87 ± 0.48 0.72 ± 0.10 84 ± 11 84 ± 9

  nnU-NetTL 0.81 ± 0.10
(0.79, 0.83)

2.77 ± 0.51 2.90 ± 0.52 0.69 ± 0.13 82 ± 14 82 ± 12

Enhancing tumor
   nnU-NetDL 0.67 ± 0.21

(0.83, 0.70)
2.96 ± 0.45 3.13 ± 0.46 0.54 ± 0.19 82 ± 19 62 ± 22

  nnU-NetTL 0.67 ± 0.21
(0.64, 0.71)

2.945 ± 0.47 3.11 ± 0.49 0.54 ± 0.21 80 ± 22.5 64 ± 22.5

Edema
  nnU-NetDL 0.55 ± 0.26

(0.50, 0.60)
2.49 ± 0.45 2.55 ± 0.46 0.43 ± 0.22 63 ± 31 60 ± 23

  nnU-NetTL 0.56 ± 0.26
(0.51, 0.61)

2.46 ± 0.47 2.52 ± 0.48 0.43 ± 0.22 64 ± 0.32 61 ± 22

NET + cystic core
  nnU-NetDL 0.30 ± 0.30

(0.25, 0.35)
3.18 ± 0.87 3.27 ± 0.88 0.21 ± 0.24 32 ± 33 59 ± 29

  nnU-NetTL 0.32 ± 0.30
(0.27, 0.37)

3.16 ± 0.81 3.26 ± 0.82 0.24 ± 0.24 35 ± 0.33 60 ± 30

 Training with Hospitals A and C and Testing on Hospital B

Tumor habitat
  nnU-NetDL 0.86 ± 0.05

(0.85, 0.87)
2.56 ± 0.45 2.70 ± 0.45 0.76 ± 0.07 87 ± 3 85 ± 8

  nnU-NetTL 0.86 ± 0.04
(0.85, 0.87)

2.56 ± 0.45 2.69 ± 0.45 0.76 ± 0.06 87 ± 4 86 ± 8

Enhancing tumor
  nnU-NetDL 0.83 ± 0.13

(0.80, 0.86)
2.55 ± 0.3 2.71 ± 0.3 0.73 ± 0.16 93 ± 5 78 ± 17

  nnU-NetTL 0.84 ± 0.13
(0.81, 0.87)

2.52 ± 0.26 2.67 ± 0.26 0.75 ± 0.15 93 ± 4 79 ± 17

Edema
  nnU-NetDL 0.71 ± 0.13

(0.68, 0.74)
2.49 ± 0.49 2.57 ± 0.5 0.57 ± 0.15 81 ± 6 66 ± 19

  nnU-NetTL 0.71 ± 0.14
(0.68, 0.74)

2.48 ± 0.53 2.55 ± 0.53 0.57 ± 0.16 84 ± 5 65 ± 19

NET + cystic core
  nnU-NetDL 0.49 ± 0.20

(0.44, 0.54)
2.88 ± 0.5 3.00 ± 0.54 0.34 ± 0.18 54 ± 0.24 57 ± 29

  nnU-NetTL 0.48 ± 0.20
(0.43, 0.53)

2.76 ± 0.51 2.89 ± 0.55 0.34 ± 0.18 62 ± 19 51 ± 29

(Table 2 continues)

models. Figure 2 shows a qualitative example where nnU-
NetTL undersegmented ITH, whereas nnU-NetDL underseg-
mented IED. Further, while nnU-NetDL oversegmented INET + 

CC, nnU-NetTL yielded an undersegmented result. Similarly, 
good (rows A–D) and poor (rows E–H) segmentation exam-
ples from hospital B, as shown in Figure 3, suggested that in 
these specific instances, the two models undersegmented IET, 

IED, and ITH, with nnU-NetDL notably undersegmenting IED 
more than nnU-NetTL did. Further, the nnU-NetDL model 
oversegmented the discontinued INET + CC label, while nnU-
NetTL undersegmented it. Finally, in Figure 4, good (rows 
A–D) and poor (rows E–H) segmentation examples on cases 
obtained from hospital C suggested that both models un-
dersegmented IED, ITH, and INET + CC. The good segmentation 
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results in Figures 2–4 generally yielded similar performances 
across the two segmentation models.

Discussion
Accurate segmentation of pediatric brain tumors plays a ma-
jor role in radiation therapy planning yet is understudied. In 
this work, we presented two automated nnU-Net–based seg-
mentation approaches for segmenting medulloblastomas using 
multi-institutional clinical MRI scans. The first model utilized 
transfer learning and Models Genesis on a pretrained nnU-Net 
model on a large adult brain tumor dataset to segment medul-
loblastomas, while the second method trained the nnU-Net 
model directly on patients with medulloblastoma. Further, to 
ensure the generalizability and robustness of our approaches, 
we employed data from three institutions by performing three 
experiments for each model (using data from two sites for train-
ing and data from the third site for testing). Our results demon-
strated high performance metrics scores from both models for 
the segmentation task with no evidence of differences observed 
between the Dice scores obtained using each model across the 
different tumor subcompartments. Further, our experiments 
that employed different training and test sets per model exhib-
ited relatively high and consistent Dice scores across the differ-
ent training and test sets (with similar segmentation results for 
the two experiments when using hospitals B and C as the test 
sets), suggesting that the nnU-Net segmentation models may be 
generalizable and robust to site-specific variations.

A few approaches have been developed this decade in the con-
text of pediatric brain tumors (28), yet with a focus on low- and 
high-grade gliomas and none being specifically targeted toward 
medulloblastomas (29–32). These studies have largely focused 
on deep learning–based or Bayesian approaches (30,31), but, to 
our knowledge, none have explicitly explored transfer learning or 
nnU-Net–based approaches for pediatric tumors. For the previous 
pediatric brain tumor segmentation approaches that considered 
medulloblastoma cases, the reported Dice scores from NET, CC, 
and ED subcompartments have been suboptimal (ranging from 
0.25 to 0.6), underlining the challenges to segmenting the tumor 
subcompartments in a heterogeneous tumor such as medulloblas-
toma. For instance, Peng et al (32) developed a 3D U-Net neural 
network architecture model to automatically segment the tumors 
of high-grade gliomas, medulloblastomas, and other leptomenin-
geal diseases in pediatric patients on T1 contrast-enhanced and 
T2/FLAIR images. Similarly, the work in the study by Madhog-
arhia et al (31) employed a convolutional neural network–based 
model to segment the subcompartments of multiple pediatric 
brain tumors, primarily gliomas, and included a limited dataset 
of medulloblastoma cases (n = 24). The model processed images 
at multiple scales simultaneously, using a dual pathway. The 
first pathway kept the images at their normal resolution, while 
the second pathway downsampled them. While the model was 
able to differentiate between the enhancing and nonenhancing 
tumor compartments of medulloblastomas, the reported Dice 
scores were relatively low (0.62 for ET, 0.18 for ED, and 0.26 for 

Table 2 (continued): Performance of Segmentation Models on Test Sets of Data Combinations

Region and Model

Metric

Dice Coefficient Hausdorff Distance Fréchet Distance Jaccard Index
Precision 
(%)

Recall 
(%)

Training with Hospitals B and C and Testing on Hospital A

Tumor habitat
  nnU-NetDL 0.85 ± 0.08

(0.83, 0.87)
2.41 ± 0.34 2.55 ± 0.36 0.75 ± 0.11 91 ± 4 81 ± 13

  nnU-NetTL 0.86 ± 0.08
(0.84, 0.88)

2.37 ± 0.35 2.51 ± 0.37 0.76 ± 0.11 92 ± 4 82 ± 13

Enhancing tumor
  nnU-NetDL 0.76 ± 0.18

(0.73, 0.79)
2.55 ± 0.44 2.70 ± 0.44 0.65 ± 0.21 76 ± 19 83 ± 17

  nnU-NetTL 0.77 ± 0.18
(0.74, 0.8)

2.53 ± 0.44 2.67 ± 0.44 0.65 ± 0.21 77 ± 18 83 ± 18

Edema
  nnU-NetDL 0.70 ± 0.19

(0.66, 0.74)
2.22 ± 0.44 2.27 ± 0.45 0.56 ± 0.19 78 ± 18 67 ± 23

  nnU-NetTL 0.70 ± 0.19
(0.66, 0.74)

2.21 ± 0.45 2.27 ± 0.47 0.56 ± 0.19 77 ± 18 67 ± 23

NET + cystic core
  nnU-NetDL 0.41 ± 0.28

(0.36, 0.47)
2.99 ± 0.75 3.08 ± 0.78 0.3 ± 0.23 0.76 ± 0.31 0.31 ± 0.24

  nnU-NetTL 0.43 ± 0.27
(0.38, 0.48)

2.95 ± 0.69 3.05 ± 0.75 0.31 ± 0.22 75 ± 29 33 ± 24

Note.—Data are presented as means ± SDs. Data in parentheses are 95% CIs. NET = nonenhancing tumor, nnU-NetDL = direct learning 
nnU-Net model, nnU-NetTL  = transfer learning nnU-Net model.
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Figure 2:  Representative examples of (A–D) good and (E–H) poor segmentation results obtained on patients from site A using both segmentation models. Each row 
shows, from left to right, the original MRI scan, the reference standard label for the subcompartment of interest, segmentation result from the nnU-NetDL model, and segmenta-
tion result from nnU-NetTL. Tumor habitat example segmentation results are shown in A (prediction accuracies of 0.9 for nnU-NetDL and 0.9 for nnU-NetTL) and E (accuracies 
of 0.54 for nnU-NetDL and 0.53 for nnU-NetTL). The poor results in E are perhaps on account of the subtle differences between enhancing and nonenhancing tumor and the 
highly heterogeneous tumor case. Enhancing tumor example segmentation results are shown in B (prediction accuracies of 0.73 for nnU-NetDL and 0.73 for nnU-NetTL) and F 
(accuracies of 0.44 for nnU-NetDL and 0.49 for nnU-NetTL). The poor results in F are perhaps on account of subtle differences between enhancing and nonenhancing tumor 
in this case. Edema example segmentation results are shown in C (prediction accuracies of 0.72 for nnU-NetDL and 0.714 for nnU-NetTL) and G (accuracies of 0.55 for nnU-
NetDL and 0.58 for nnU-NetTL). Finally, nonenhancing tumor plus cystic core example segmentation results are shown in D (prediction accuracies of 0.65 for nnU-NetDL and 
0.69 for nnU-NetTL) and H (accuracies of 0.15 for nnU-NetDL and 0.29 for nnU-NetTL). The poor results in H are perhaps on account of subtle differences between enhanc-
ing and nonenhancing tumor in this case. nnU-NetDL = direct learning nnU-Net model, nnU-NetTL = transfer learning deep learning model.

NET), indicating that the model had undersegmented the tumor 
subcompartments. In contrast, our nnU-Net–based segmenta-
tion models (transfer learning and deep learning based) consis-
tently yielded high values for most subcompartments, both on 
the training and test sets (eg, Dice scores when testing on hospital 
B were 0.84 and 0.83 for ET, 0.71 and 0.71 for ED, and 0.48 and 
0.44 for CC plus NET for the transfer-learned and direct-learned 
nnU-Net models, respectively). We attribute our improved seg-
mentation performance (compared with existing approaches) to 
our deliberate attempt to account for certain challenges that are 
pertinent to pediatric medulloblastoma studies during the train-
ing of our models.

There are some merits to our approach. First, we accounted 
for differences in brain anatomy by employing age-specific atlases 
during preprocessing before our model construction. Second, we 
employed data from three institutions, using different combina-
tions of training and test sets, which yielded relatively high and 
consistent Dice scores across training and testing. This suggests 
that our segmentation models, when validated on larger studies, 
may be reproducible and robust to multi-institutional studies.

Our study also had limitations. First, a major challenge that 
we had to address was the difficulties in creating precise reference 
standard labels of the tumor subcompartments in retrospective 
pediatric brain tumor studies that are not typically encountered 
with adult brain tumor segmentations (33,34). This is due to rea-
sons including the rapidly developing brains of children, the need 

for dedicated imaging protocols to acquire high-quality scans 
that show the tumor details (eg, compressed sensitivity encoding 
MRI) (35), which we did not have in our retrospective datasets, 
and the lack of availability of high-quality scans following patient 
sedation to control motion artifacts, which is usually conducted 
in the presence of anesthesia experts to mitigate the dangerous 
effects of sedating pediatric patients (34). In this work, we at-
tempted to mitigate the issue of retrospective scans with relatively 
poor resolution by conducting intensity standardization (22), as 
well as excluding the scans that were identified as poor quality, 
using a quality control tool, MRQy (18). Another issue we faced 
was that some of the tumors were found to be heterogeneous 
(eg, mix of ET, NET, and CC), which made reference standard 
labeling arduous. Specifically, in our data, all three tumor sub-
compartments were present in only 70% of the patients. In the 
remaining 30% of the datasets, some of the subcompartments 
were missing. For instance, we found the ED subcompartment to 
be rarely present in medulloblastoma around the tumor core, as 
reported in literature (36). To increase class representation of ED 
to improve the model’s performance, we labeled ED around the 
ventricles, as ventricular ED has similar features as peritumoral 
ED. Additionally, the CC subcompartment has been reported in 
previous works to be in 40%–50% of pediatric medulloblasto-
mas (37), whereas it was found scarcely in our datasets and had 
similar visual appearance to the NET on Gd-T1w and FLAIR 
scans. For this reason, we combined both these classes, resulting 
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Figure 3:  Representative examples of (A–D) good and (E–H) poor segmentation results obtained on patients from site B using both segmentation models. Each row 
shows, from left to right, the original MRI scan, the reference standard label for the subcompartment of interest, segmentation result from the nnU-NetDL model, and segmenta-
tion result from nnU-NetTL. Tumor habitat example segmentation results are shown in A (prediction accuracies of 0.85 for nnU-NetDL and 0.86 for nnU-NetTL) and E (accura-
cies of 0.8 for nnU-NetDL and 0.8 for nnU-NetTL). Enhancing tumor example segmentation results are shown in B (prediction accuracies of 0.897 for nnU-NetDL and 0.899 for 
nnU-NetTL) and F (accuracies of 0.38 for nnU-NetDL and 0.4 for nnU-NetTL). Edema example segmentation results are shown in C (prediction accuracies of 0.772 for nnU-
NetDL and 0.773 for nnU-NetTL) and G (accuracies of 0.46 for nnU-NetDL and 0.52 for nnU-NetTL). Finally, nonenhancing tumor plus cystic core example segmentation results 
are shown in D (prediction accuracies of 0.8 for nnU-NetDL and 0.81 for nnU-NetTL) and H (accuracies of 0.28 for nnU-NetDL and 0.33 for nnU-NetTL). nnU-NetDL = direct 
learning nnU-Net model, nnU-NetTL = transfer learning deep learning model.

Figure 4:  Representative examples of (A–D) good and (E–H) poor segmentation results obtained on patients from site C using both segmentation models. Each row 
shows, from left to right, the original MRI scan, the reference standard label for the subcompartment of interest, segmentation result from the nnU-NetDL model, and segmenta-
tion result from nnU-NetTL. Tumor habitat example segmentation results are shown in A (prediction accuracies of 0.89 for nnU-NetDL and 0.89 for nnU-NetTL) and E (accura-
cies of 0.51 for nnU-NetDL and 0.53 for nnU-NetTL). Enhancing tumor example segmentation results are shown in B (prediction accuracies of 0.9 for nnU-NetDL and 0.93 for 
nnU-NetTL) and F (accuracies of 0.49 for nnU-NetDL and 0.51 for nnU-NetTL). Edema example segmentation results are shown in C (prediction accuracies of 0.78 for nnU-
NetDL and 0.78 for nnU-NetTL) and G (accuracies of 0.42 for nnU-NetDL and 0.42 for nnU-NetTL). Finally, nonenhancing tumor plus cystic core example segmentation results 
are shown in D (prediction accuracies of 0.81 for nnU-NetDL and 0.78 for nnU-NetTL) and H (accuracies of 0.48 for nnU-NetDL and 0.51 for nnU-NetTL). nnU-NetDL = direct 
learning nnU-Net model, nnU-NetTL = transfer learning deep learning model.
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in improved pixel representation, which has been previously em-
ployed in the BraTS dataset as well (17). We also had a limitation 
with the availability of T1 precontrast scans, which were available 
for about 20% of the cases only, but were used when available 
to identify hemorrhage while creating reference standard labels.

Second, in some instances, distinguishing between ET and 
NET in our medulloblastoma datasets was difficult (unlike in 
adult brain tumors) when the intensity features looked similar. 
To account for this challenge, in consultation with collaborating 
radiologists who served as expert readers, we decided to make 
use of the center of the caudate nucleus region in the Gd-T1w 
postcontrast MRI scans as an intensity threshold to determine 
whether the subcompartment was ET or NET. The intensity of 
the tumor core region above the defined threshold was labeled as 
an ET region, while intensity below the threshold was labeled as 
a nonenhancing region. Third, we found that scans that yielded 
poor Dice scores were the ones where the tumor was small (cor-
responding to a few pixels) for a specific class. However, despite 
the small labels, our nnU-Net segmentation models, while not 
perfect, did manage to reasonably localize the tumor region. One 
approach that we will consider in the future to overcome the is-
sue of segmenting small tumor regions is to develop a human-in-
loop model (38) to improve the training labels and, in turn, the 
segmentation accuracy of our models. Last, a concern was that 
in some cases, portions of the brain tissue were removed during 
skull stripping. This could be due to the subtle intensity differ-
ences between the skull and the brain tissues in pediatric brain 
scans, which makes it challenging to accurately remove the skull 
from the images using automated approaches. While the skull 
stripping approach was carefully chosen following comparison 
across different skull stripping approaches (including FreeSurfer 
and Swiss Skull Strip), in the future, we will consider evaluating 
more recent approaches, such as HD-BET (39).

In conclusion, this work presented one of the first approaches 
to segment pediatric medulloblastoma cases via nnU-Net–based 
models. Our results, obtained on multi-institutional MRI scans, 
suggest that our nnU-Net–based automated segmentation mod-
els hold promise for improved tumor delineation, which in the 
future may yield development of robust diagnostic and prognos-
tic markers for improved patient outcomes in medulloblastomas. 
Our future work will involve extending our segmentation mod-
els to larger multi-institutional data, with emphasis on curating 
high-resolution MRI scans while also accounting for the different 
histologic and molecular subgroups of medulloblastomas. We 
also plan to include subjective evaluations conducted by indepen-
dent radiologists to complementarily evaluate the performance 
of our segmentation approaches and eventually help fine-tune 
our models. Another interesting future direction for our nnU-
Net–based approaches would be pretraining the models on adult 
hemangioblastoma cases, which share similar characteristics with 
pediatric medulloblastomas, with both tumors arising from the 
posterior fossa (40), as well as on pediatric brain tumor cases, 
such as the ones recently released by the BraTS challenge (41).

We also plan to extend our segmentation analysis to other 
types of pediatric brain tumors, including high-grade and low-
grade gliomas.
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