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ABSTRACT: We introduce several improvements to the penalty-
based variational quantum Monte Carlo (VMC) algorithm for
computing electronic excited states of Entwistle et al. [Nat.
Commun. 14, 274 (2023)] and demonstrate that the accuracy of
the updated method is competitive with other available excited-
state VMC approaches. A theoretical comparison of the computa-
tional aspects of these algorithms is presented, where several
benefits of the penalty-based method are identified. Our main
contributions include an automatic mechanism for tuning the scale
of the penalty terms, an updated form of the overlap penalty with
proven convergence properties, and a new term that penalizes the
spin of the wave function, enabling the selective computation of
states with a given spin. With these improvements, along with the use of the latest self-attention-based ansatz, the penalty-based
method achieves a mean absolute error below 1 kcal/mol for the vertical excitation energies of a set of 26 atoms and molecules,
without relying on variance matching schemes. Considering excited states along the dissociation of the carbon dimer, the accuracy of
the penalty-based method is on par with that of natural-excited-state (NES) VMC, while also providing results for additional sections
of the potential energy surface, which were inaccessible with the NES method. Additionally, the accuracy of the penalty-based
method is improved for a conical intersection of ethylene, with the predicted angle of the intersection agreeing well with both NES-
VMC and multireference configuration interaction.

1. INTRODUCTION
The central challenge toward an ab initio description of
chemical processes is solving the electronic Schrödinger
equation for molecules and materials. Its solutions provide,
in principle, a full description of a system’s electronic
properties, facilitating simulation from first principles. While
many quantum chemistry methods target only electronic
ground states, access to low-lying excited states is necessary for
accurately modeling phenomena such as the interaction of light
and matter or catalysis.1−5 Light-matter interactions are of
utmost importance for many processes in photochemistry,
such as photoisomerization in the retinal chromophore6 or
photodissociation in photosynthesis.7 These photoinduced
processes are notably at the core of several research frontiers,
including the enhancement of light-harvesting materials for
solar cells8,9 and the development of phototriggered drugs and
medical screening devices.10,11

Despite the demand for accurate approximations of
electronic excited states, their simulation remains challenging
to this date.12−14 While density functional theory is the
workhorse of many quantum chemistry simulations, its
applicability to excited states is limited and its extensions,
such as time-dependent density functional theory (TDDFT),
have their well-known limitations.15−17 Single-reference
coupled cluster theory can be extended to target excited

states, but it fails to correctly describe bond breaking and
struggles with degeneracies, requiring a costly multireference
treatment.17 A commonly used alternative for the computation
of excited states is the complete active space self-consistent
field (CASSCF) algorithm. Although CASSCF has demon-
strated considerable success, it scales exponentially with the
size of the active space. Consequently, it relies heavily on a
careful selection of active orbitals, often requiring chemical
intuition and prior knowledge of the system under
investigation.18 Furthermore, the choice of compatible active
spaces across molecular geometries poses additional compli-
cations for modeling excited-state potential energy surfaces. As
a consequence, the modeling of excited-state dynamics often
involves substantial human intervention, relying heavily on
chemical intuition and a trial-and-error approach.

Variational quantum Monte Carlo (VMC) provides a
promising alternative to the established protocols. In recent
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years the introduction of neural-network wave functions has
significantly enhanced the accuracy of VMC.19,20 The
application of neural-network wave functions for the VMC
simulation of molecular systems has proven highly successful in
accurately describing states with multireference character and
modeling strong correlation.21 Recently, these methods have
been successfully extended to enable simulations of excited
states22 via a penalty-based formalism. While results on some
applications have already been promising, the methodology for
simulation of excited states with neural-network based VMC is
still under active development.23−26 In this work, we introduce
advancements in penalty-based VMC for excited states and
conduct a comparative analysis of our approach with
alternative methods, such as the recently proposed natural
excited state quantum Monte Carlo (NES-VMC),24 a
sequential variant of the penalty-based method,23 as well as
the auxiliary wave function approach of Lu and Fu (AW).26

Our main contribution is the greatly improved accuracy of
the penalty-based method for excited states, due to improve-
ments in the optimization and the use of the more expressive
self-attention-based Psiformer wave function architecture.27

The methodological improvements include the alteration of
the loss function of Entwistle et al.22 to a form with proven
convergence properties,25 and automatically tuning the scale of
the penalty term to reduce noise in the gradients, while
retaining the global minimum of the loss function and
preventing the collapse of the states. We utilize the KFAC
optimizer28 and tune its hyperparameters to account for the
number of model parameters increasing with the number of
excited states. Furthermore, we introduce a method to target
states with a specific spin by combining the selection of the
magnetic quantum number of the spin-assigned wave function
with a spin penalty that favors low-spin states. This approach
enhances the efficiency of computing excited states by
segmenting them into spin sectors and enables precise
targeting of desired spin states. The method is combined
with the use of pseudo potentials,29,30 which we employ for
heavy atoms (second row and beyond) throughout this work.
We present results for our improved method on a variety of
atomic and molecular systems ranging from 4 to 42 electrons.
The first set of experiments focuses on single-point
calculations, demonstrating high accuracy on the ten lowest-
lying states of first- and third-row atoms, as well as on the five
lowest-lying states of a variety of organic and inorganic
molecules. In order to validate the accuracy of our wave
functions, we compute the oscillator strengths of ground- to
excited-state transitions in the molecules. The second part of
the experiments targets excited-state potential energy surfaces,
where we model the intricate electronic structure of the carbon
dimer and the conical intersection of ethylene. For the carbon
dimer, we recover a large fraction of the potential energy
surface for a total of nine states, composed of four singlet, four
triplet and a quintet state. For the ethylene isomerization
process, we improve over previous calculations with penalty-
based excited-state VMC and predict the pyramidalization
angle of the conical intersection in good agreement with the
NES-VMC method.

2. METHODS
The aim of wave function-based electronic structure methods
is to approximate the solution to the time-independent
electronic Schrödinger equation:

H Ei i i= (1)

where H is the electronic Hamiltonian with eigenstates i and
corresponding energies Ei, with the states conventionally
ordered according to increasing energy. For molecular systems
in the Born−Oppenheimer approximation and using atomic
units, H takes the form
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R r
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with ZI being the nuclear charges, while R iI and rij denote
electron−nucleus and electron−electron distances, respec-
tively. As the electronic Hamiltonian is Hermitian, all Ei are
real and i are orthogonal to each other. Furthermore, we
assume all i to be real-valued which can always be ensured for
molecular wave functions. Ground-state electronic structure
approaches are concerned by computing only the lowest
energy E0, and corresponding ground-state wave function Ψ0

of a given system. The objective of excited state methods
extends to computing the lowest n energies along with their
corresponding states for the system under consideration.

2.1. Variational Optimization. 2.1.1. Variational Monte
Carlo. Variational quantum Monte Carlo (VMC) belongs to
the family of variational methods for approximating the
eigenstates of a quantum many-body system. These methods
are based on the variational principle of quantum mechanics,
which states that the functional given by the expectation value
of the Hamiltonian

H
H[ ] = = | |
| (3)

is minimized for the (unnormalized) ground-state wave
function Ψ0. This Rayleigh quotient can be understood as a
loss function for optimization of a parametrized ansatz :

argmin* = [ ]
(4)

where θ are the model parameters and the optimal parameters
* are to be found. A challenging aspect of this optimization is

the computation of integrals over the high-dimensional domain
of the wave function. VMC solves this problem by numerically
approximating integrals, such as the computation of the
expectation value of observable O, through Monte Carlo
integration:

O
n

O r
r

1 ( )
( )

n

r 2| | (5)

outlining an algorithm that poses very few restrictions on the
form of ansatz parametrization. Minimizing Monte Carlo
estimates of the objective function amounts to an alternating
scheme of sampling electron positions r N3 from the
probability density associated with the square modulus of the
wave function and updating the model parameters θ with a
variant of stochastic gradient descent. Note that for the
electronic Hamiltonian it is convenient to work with the spin-
assigned real-valued wave function r( ): N3 . For a
detailed description of the VMC method with application to
neural-network wave functions see the work of Schaẗzle et al.31

2.1.2. Optimizing Excited States with the Overlap Penalty.
The variational method can be extended to excited states by
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accounting for the orthogonality of the eigenstates. The
relevant partition of the spectrum of the Hamiltonian can be
constructed by finding the orthogonal subspace with minimal
energy. A conceptually simple way of approximating the n
lowest eigenstates , . . . , n0{ } of a system is to impose their
orthogonality by extending the objective function with an
overlap penalty:

H, . . . , n

i i j
ij

i j0 2
i[ ] = + | | |

< (6)

resulting in the coupled optimization of multiple ansatzes. The
global minimum of this objective function is attained for the
lowest-lying states, if αij is chosen to be larger than the energy
gap between the ith and jth state.25 The overlap between each
pair of (unnormalized) states can again be computed by Monte
Carlo integration.22 To enforce pure eigenstates and increase
the training stability, we apply the orthogonality constraint
only with respect to lower-lying states, resulting in a total of
n(n − 1)/2 relevant overlap terms, for n states. To achieve this,
the gradients of the overlap term are computed only with
respect to j by detaching i from the computational graph.
Note that in contrast to the above construction, a loss function
with symmetric overlap penalty terms yielding gradients to
both the lower and higher lying states would be minimized by
all linear combinations of the lowest n states. While Entwistle
et al.22 used a variant of the loss function that diverges upon
the collapse of two eigenstates, increasing training stability at
the cost of a small bias in the excitation energies, our improved
method is unbiased, and stable using the simpler penalty term
introduced by Pathak et al.32 Recently Wheeler et al.25 have
introduced an ensemble method, where the presented loss
function can be derived in a more general framework.

2.1.3. Targeting Spin States with Spin Penalty. In many
applications, selection rules prohibit excitations that would
involve changing the spin of the electronic state. Consequently,
states within a fixed spin sector are often of interest. While
states of the targeted spin sector can be selected from a
simulation of all low-lying eigenstates through evaluation of the
spin of the acquired wave functions, this procedure potentially
involves the computation of many ultimately irrelevant states.
A common approach to address this issue is to offset states
based on their spin, pushing them out of the targeted region of
the spectrum. We employ a similar technique in the context of
VMC by augmenting our loss function with a spin penalty:

H S, . . . , n

i i

i j
ij

i j

0 2

2

i i[ ] = +

+ | | |
< (7)

where S
2

i is the expectation value of the squared magnitude
of the spin operator and β weighs the penalty term. The
expectation value of the spin operator is evaluated through
Monte Carlo sampling, as described in Section 2.5. As the
molecular Hamiltonian commutes with the spin operator, they
share a common set of eigenstates. This makes pure spin states
a valid target of the variational optimization and evaluation of
the spin expectation value with Monte Carlo integration
efficient. For sufficiently large β, this objective function favors
solutions with low total spin, that is singlet (doublet) states for
systems with an even (odd) number of electrons. In order to
obtain higher spin states, i.e., triplet (quartet) states, we fix the

mS component of our ansatz accordingly. We again include the
spin penalty, now yielding the solution minimizing the total
spin magnitude within the subset of constrained wave
functions. Although the restriction to the subspace of higher
spin states by fixing the difference between spin-up and spin-
down electrons has been previously discussed in the context of
penalty-based excited state optimization,23 the integration of
the spin penalty enables us to leverage this concept to target
states with specific spins. For a detailed explanation of the
treatment of spin in VMC wave functions, see Section S3. Note
that while minimizing the total spin of the wave function allows
for reformulating the gradients to contain only first
derivatives,22 this is no longer possible when targeting a
specific value of the spin expectation through the minimization
of the difference from that targeted value. Furthermore, we
highlight that the aforementioned penalty approach can be
extended to restrict VMC ansatzes based on other observable
quantities. For example, it is possible to penalize or favor states
of a certain spacial symmetry or target other properties of the
eigenstates if their operators commute with the Hamiltonian.

2.2. Comparison with Other VMC Methods for
Excited States. While the field of VMC for molecules in
first quantization using neural-network wave functions has
mostly settled on the optimal strategy for ground-state
optimization, the methodology of excited-state optimization
is still subject to ongoing development. In this section, we
compare the penalty-based method with other available
strategies and point out some of their respective advantages
and disadvantages.

The most recent alternative to penalty-based VMC for
excited states is the natural-excited-state VMC (NES-VMC)
approach of Pfau et al.24 In NES-VMC, the problem of finding
the lowest n eigenstates of the physical Hamiltonian is
transformed to finding the ground state of the Hamiltonian
of an extended system with n times as many electrons. Unlike
penalty-based approaches, this elegant formulation allows trial
wave functions to be optimized to match a linear combination
of the lowest excited states without imposing additional
constraints. The main drawback of NES-VMC lies in the
necessity to model and sample an extended system of
electrons. The larger effective system size increases computa-
tional costs in two ways. First, it requires the evaluation of
much larger determinants, which constitutes the step with the
steepest theoretical scaling in the whole deep-learning VMC
algorithm. Second, wave functions of the extended system form
a higher dimensional Hilbert-space than those of the physical
system, leading to a quicker onset of the “curse of
dimensionality”. On top of the increased computational
costs, NES-VMC requires an additional diagonalization of
the local energy matrix to recover the energies and wave
functions of the individual states from the solution of the
extended system. This also means that one does not have
access to the energies and other properties of the states
throughout optimization, making the convergence of individual
states difficult to measure without incurring further computa-
tional costs for frequent diagonalizations. A small additional
drawback of the coupled nature of the states in NES-VMC is
the requirement for heuristics to prevent numerical instabilities
when states become nearly linearly dependent. Lastly, unlike in
penalty-based VMC, there is no straightforward way to impose
restrictions on the spin of the ansatzes. This limitation may
require the simulation of other, irrelevant, lower-lying states,
simply to access the higher-lying states of interest.
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Next, the sequential variant of the penalty-based method for
excited states recently proposed by Liu et al.23 is considered. In
this approach, a simple ground-state computation is carried out
to convergence before running a second calculation for the first
excited state. The second calculation incorporates an overlap
penalty term with respect to the fixed ground state obtained
from the first calculation. The process is then repeated for
higher-lying excited states, with a growing number of penalty
terms applied to all previously obtained wave functions. While
this strategy might help stabilize the early steps of training and
potentially enable access to higher-lying states when optimizing
numerous ansatzes in parallel is prohibitively expensive, its
sequential nature makes it difficult to use in practice. Most
importantly, one only receives feedback on the quality of the
highest state after completing the computations for all
preceding states. This could result in a significant amount of
repeated computation compared to regular penalty-based
VMC, where the quality of all states can be assessed from
the earliest stages, allowing for early adjustments. Additionally,
the necessity to fully converge all computations for the lower-
lying states before starting the next calculation means there is
no flexibility to stop the training early if relative energies have
converged, or to continue training if the desired accuracy has
not yet been achieved, without breaking the sequential
paradigm.

Another closely related alternative is the auxiliary wave
function method of Lu and Fu.26 This method avoids the
dependence on a free parameter to scale the overlap penalty by
combining the orthogonalization of Choo et al.33 with the real-
space overlap computations used by Entwistle et al.22 In this
method, excited states are found by running sequential
optimizations where previously converged lower-lying states
are projected out from the currently optimized ansatz. To
achieve this, overlaps between the current wave function and
all lower-lying wave functions are computed, allowing the
energy contributions from the n − 1 lower-lying states to be
subtracted, to obtain the energy expectation value of the nth
excited state. While this method eliminates the hyperparameter
used for weighting the overlap penalty, it does so at the cost of
retaining only an implicit representation of the excited-state
wave functions, while still requiring the computation of the
same overlap terms as in the penalty-based method. Addition-
ally, the computation of observables necessitates evaluating all
pairwise overlaps with respect to each lower-lying state, leading
to significantly higher computational costs and making the
targeting of specific spin states infeasible. Furthermore,
stochastic errors in the difficult-to-estimate overlap terms
affect the evaluation of observables more directly than in
penalty-based VMC. Lastly, Lu and Fu demonstrated that their
results can be reproduced with penalty-based methods,
incurring slightly lower computational costs, if the overlap
penalty is weighted correctly. This task is facilitated by the
automatic penalty scaling introduced in this work.

Finally, we consider the method of targeting excited states
via variance minimization.34,35 This approach minimizes the
variance of the local energies of each state, leveraging the fact
that this variance should be zero for all eigenstates of the
Hamiltonian. The method relies on sufficiently accurate initial
guesses to ensure convergence to the desired states. Cuzzocrea
et al.36 demonstrated that for increasingly complex Slater−
Jastrow type ansatzes, the variance minimization scheme
becomes prone to escape the local minima of the target
state, and often converges to other states with lower variance.

A further complication of variance minimization with neural-
network ansatzes is the appearance of mixed third derivatives
of the wave function in the gradient expression of the loss
function. Due to the large number of ansatz parameters, these
quantities significantly increase the computational cost of the
gradient calculation, which already forms one of the bottle-
necks of the algorithm. Variance minimization has therefore
not been often employed in the recent neural-network-based
VMC approaches to excited states.

2.3. Neural-Network Wave Function Ansatz. Neural-
network-based wave function ansatzes have been very
successful in describing intricate many-body correlation in
quantum systems.21 The state-of-the-art architectures for
molecules in first quantization are implemented via the
concept of linear combinations of generalized Slater determi-
nants:

r r A r( ,..., ) det ( )N
p

p
1 = [ ]

(8)

employing the determinant as an antisymmetrizer over
permutation equivariant many-body orbitals:

A r r r r( , , ) ( )ik
p

k
p

i k
p

i= { } { } (9)

The expressivity of the wave functions arises from the
parametrization of k

p as neural networks, while the envelope
functions k

p implement the correct asymptotics. The major
difference between the existing architectures is how the latent-
space representation of the electrons, ultimately projected to
obtain the many-body orbitals k

p, is constructed from the
electron and nuclear positions. The experiments throughout
this work are performed with the Psiformer architecture.27 The
Psiformer electron embeddings h are instantiated based on the
(scaled) electron nuclei distances and their respective spin.
Electronic correlation is then built up incrementally through
subsequent self-attention interactions, resembling the encoder
part of a transformer:

h f W f b( )i
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l l l l1 1 1 1 1= + ++ + + + + (10)
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where SELFATTN is the standard multiheaded self-attention
block,37 ⊕h denotes the concatenation over attention heads h, i
indexes electrons and l indexes the layer. The subscripts q, v, k
stand for queries, values and keys, respectively and W and b are
the weights and biases of the Psiformer layer. An electron-wise
linear projection on vectors of dimension N Ndet· is applied to
transform the output of the last layer to the orbitals k

p.
Additionally, the electronic cusps are modeled with a
multiplicative Jastrow factor:

J r r
r r
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(12)

The Psiformer is implemented in the DEEPQMC program
package.38 For more information on the Psiformer we refer to
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the original publication of von Glehn et al.,27 while further
details about the implementation of neural-network wave
functions in DEEPQMC can be found in Schaẗzle et al.31 Lastly,
we emphasize that the penalty-based method for computing
excited states can be applied in combination with any other
valid ansatz architecture as well.

2.4. Pretraining and CASSCF Baseline. It is well-
known20,31 that molecular ground-state VMC calculations
employing neural-network ansatzes greatly benefit from a short
supervised pretraining phase preceding the variational
optimization. In this stage, a mean squared error loss function
between the many-body orbitals of the ansatz and the single-
particle orbitals of a reference HF or CASSCF solution is
minimized:

n
r r r r r

1

( ( ) ( , , ) ( ))
i pjk

k
p

j k
p

j k j

pre

ref, 2
i

=

{ } { }

(13)

where k
pref, are the orbitals of the reference solution with p

enumerating determinants and k the respective orbitals. This
pretraining serves as an informed initialization scheme for the
parameters of the neural network, and can help in avoiding
convergence to local minima, along with reducing the number
of expensive variational optimization steps necessary to achieve
a certain threshold of accuracy.

In the context of excited-state calculations, one can use the
lowest n roots of a multistate CASSCF calculation as a
pretraining target. Care must be taken during the definition of
the active space,22 such that the resulting Slater-determinants
of the CASSCF solution have the right spin configurations, and
contain the necessary orbitals to describe all excitations of
interest. The latter is of special importance when a great
number of excited states of the smallest systems are
considered, such as for the lithium atom in Section 3.2.1. In
the case of the lithium atom, the lowest states can all be
described as excitations of the single valence electron to higher
and higher orbitals. To qualitatively describe the lowest n
states, one must include at least n orbitals in the active space,
which in turn might necessitate the use of single particle basis
sets larger than the ones usually employed in deep-learning
VMC pretraining targets. In the present work, the relatively
large aug-cc-pVTZ39−41 basis set is used for most systems to
ensure a quantitatively correct initialization of the highest
excited states considered. The only exception is benzene,
where the cc-pVDZ basis set41 is used instead, as the CASSCF
computation with the aug-cc-pVTZ basis set is deemed too
expensive, and where there is no need for diffuse basis
functions. When targeting states with a specific spin, this has to
be reflected in the calculation of the CASSCF baseline by
restricting to the selected spin sector. The number of
pretraining iterations is set to 1000 for all systems except for
benzene, where 100 000 pretraining iterations were used, to
make the variational training as efficient as possible.27 All
CASSCF calculations have been performed with the PYSCF
program package.42 Minimal active spaces are chosen for all
systems in the present study, selected by searching for the
smallest active spaces that still produce sensible excitation
energies with respect to the reference values. While these
calculations give a qualitatively valid picture of the excitation
energies, they are far from the quantitative accuracy of the

deep-learning VMC simulations. For example, the mean
absolute error of the excitation energies predicted by the
baseline CASSCF calculations for the atoms and molecules
considered in Section 3.2 is 350 meV (8 kcal/mol).

2.5. Evaluating Observables. In quantum mechanics, the
wave function gives a complete description of the state of the
system. Having access to the electronic wave function of
molecules grants theoretical access to all their observable
electronic properties. To extract these properties from our
wave function models, Monte Carlo integration is employed.
For single state properties eq 5 can be applied directly. For off-
diagonal properties between unnormalized states, such as the
overlap or the transition dipole moment, we follow Entwistle et
al.22 and evaluate the geometric mean of the Monte Carlo
estimates with respect to either of the two wave functions. In
the following, we sketch out the evaluation of the expectation
values of the total spin magnitude and the oscillator strength
operators.

2.5.1. Spin Magnitude. The total spin magnitude of the
spin-assigned wave function manifests in the symmetries of its
spatial part (see Section S3). It can therefore be obtained from
the spin-assigned wave function, by evaluating its symmetry
properties under exchanges of opposite-spin particles.43 We
follow the procedure employed in NES-VMC,24 and evaluate
the spin as

S
N N

N N N

r r

r r

4
( 2)

(..., ,..., ,...)

(..., ,..., ,...)i N N j N

j i

i j

2

1

= + +

< (14)

where N (N ) denotes the number of spin-up (spin-down)
electrons, respectively. While the evaluation of the spin scales

with ( )N N N
2

2
· , it does not involve the computation of the

local energy and is therefore of negligible cost for the systems
of the present study.

2.5.2. Transition Dipole Moment and Oscillator Strength.
The oscillator strength is a useful quantity to approximate the
rate of transitions between electronic states as a result of
interaction with light, under the constant electric field and
dipole moment assumptions. Previous studies on neural-
network-based VMC for excited states have used the accuracy
of the predicted oscillator strength as a proxy to assess the
quality of the underlying wave function models.22,24 This is
motivated by the fact that the oscillator strength is highly
dependent on the quality of the wave function approximation
and thus provides a useful measure for the accuracy of the
wave function on top of the energy. The oscillator strength f ij is
a dimensionless quantity obtained from the energy gap ΔEij
and the absolute value of the transition dipole moment defined
as the expectation of the dipole operator qri i= between
states i and j:

f E
2
3ij ij

i j 2= | | | |
(15)

In practice, the off-diagonal expectation value of the dipole
operator is evaluated using reweighted samples from the wave
functions, and the excitation energy ΔEij is obtained by
independently evaluating the energy expectation values of the
two states.
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2.6. Implementation Details. This section describes the
most important technical details of the penalty-based method
as implemented in the DEEPQMC program package.31 In
DEEPQMC, the conventional deep-learning-based ansatzes
used for ground-state calculations are conveniently extended
to model a range of electronic states via the JAX framework’s44

vectorizing map function transformation. Using this trans-
formation, the N3 ansatz functions parametrized by a
single set of parameters θ become functions n N n3×

parametrized by n sets of parameters , . . . , n0[ ]. In
combination with the excited-state loss function of (7), these
extended ansatzes can then be used in the existing deep-
learning VMC framework of DEEPQMC, with a few minor
modifications detailed below. To obtain the n sets of electron
configuration samples in parallel, the same vectorizing map
transformation is used on the singe-state Markov-chain Monte
Carlo sampling routines. The hyperparameters of the KFAC
optimizer28 used during the variational training are adjusted as
follows. Since an ansatz that describes n electronic states is
parametrized by n times as many parameters as a single-state
ansatz, the squared norm of a parameter update will on average
be n times larger as well ( ( )n i i

n 2 compared to ( )i i
2

). Accordingly, the KFAC hyperparameter controlling the
maximum squared norm of parameter updates is scaled by the
number of computed states, n. The effect of this change is most
pronounced on the largest considered systems, such as
benzene, where the larger absolute values of total energies
can yield gradients with larger magnitudes, while on most of
the smaller systems investigated here the effect is not
noticeable.

Lastly, the treatment of the free parameters αij deserves
some attention. As demonstrated by Pathak et al.,32 and later
refined by Wheeler et al.25 these hyperparameters can be
chosen freely without affecting the global minimum of the loss
function, as long as

E Eij
j i> | | (16)

Furthermore, we’ve found that while all αij values satisfying
(16) avoid the collapse of the optimized states, values closer to
the E Ej i| | limit can in some cases reduce the noisiness of the
training. Unfortunately, choosing the optimal value for αij
while satisfying the above constraint can require system-
dependent manual tuning of these parameters. To alleviate this
issue, the automatic scaling of the αij parameters based on
running estimates of Ei and Ej is introduced. In particular, the
scaling of the overlap penalty between states i and j is
computed in each training step as

E E

E

max( ewm( ) ewm( ) ,

ewm( Var( ) ), 10 E )

ij
j i

i
h

loc loc

loc
3

= · | |

(17)

where 1> is the new free parameter shared between all pairs
of states, ewm( )· denotes the exponentially weighted mean
over the training iterations, Eloc is the batch of local energies in
the current step, overbar denotes the mean, and Var( )· the
variance. The first argument of the maximum function ensures
that the constraint (16) is fulfilled while automatically scaling
αij in a system-specific way, while the second argument
prevents the collapse of the states in the earliest stages of the
training where Eewm( )i

loc is not yet a good estimate of Ei. As a
result of this parametrization, the optimal value for the new

parameter α̃ is significantly less system-dependent than that of
αij. For the bulk of the systems considered here, α̃ is set to four
to ensure a comfortable margin of safety in satisfying (16),
while for a handful of systems it is decreased to two and one to
ensure optimal convergence in all cases. For concrete values of
α̃ employed for each system, see the Supporting Information.
It is recognized that reducing the dependence on the value of
the α̃ parameter warrants further research. On the other hand,
considering the already limited range in which the parameter is
varied, along with the numerous benefits of the method
compared to other excited-state VMC approaches (detailed in
Section 2.2), the penalty-based method can already be
considered relevant, accurate, and easy-to-apply in practice.

2.7. Scaling. The two dominant factors determining the
cost of any excited-state VMC computation are the size of the
considered physical system, and the number of computed
electronic states. A clear advantage of the penalty-based
method over extended-system approaches such as NES-VMC
is that these two axes of scaling are almost entirely decoupled
from each other. In the NES-VMC method, increasing the
system size and considering more electronic states both
increase the number of simulated Fermions, bringing with it
the usual difficulties including reduced sampling efficiency, the
need to compute determinants of larger matrices, and the
worsening of the “curse of dimensionality”. In contrast,
considering new electronic states in penalty-based VMC only
adds Fermions that are simulated almost independently from
the ones already present, interacting with them only through
the overlap penalty term of (7). In fact, the computation of this
overlap term is the only part of the algorithm that scales
quadratically with the number of electronic states, while the
time complexity and memory requirement of all other steps
scale linearly. Fortunately, the cost of the overlap computation
is much smaller than that of the local energies, when
considering 1−30 electronic states, and therefore the
penalty-based method exhibits very favorable scaling in this
regime, as demonstrated in Figure 1. The points on this plot
are obtained by performing a small number of training
iterations for the neon atom using an electron configuration
batch size of 64, while varying the number of computed states.
To reduce noise each experiment has been averaged over three

Figure 1. Scaling of the computational cost with the number of states.
The wall-clock time of a single training iteration is shown for the neon
atom, with an electron configuration batch size of 64 on a single A100
GPU. Dashed lines represent least-squares fits to the penalty-based
and NES-VMC results with n 10.
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repetitions. With ten states or more, one finds an empirical
scaling of roughly n( )1.1 , indicating a practically linear scaling
of the penalty-based method with the number of electronic
states. Considering the NES-VMC results on the same system,
one finds a much steeper approximate scaling of n( )2.5 which
is, as expected, similar to the scaling of ground-state deep-
learning VMC methods with the number of electrons.31 This
steep scaling results in the fact that while a single state iteration
takes roughly the same time with the NES-VMC code,45 an
iteration with ten states already takes four times as long. Lastly,
we note that when during inference with the penalty-bassed
method, one is interested in the properties of only a subset of
the states (e.g the highest-lying states only), one is free to
decouple the optimized ansatzes, and evaluate expectation
values only for the selected states. This can help avoiding
unnecessary computation compared to the NES-VMC method,
where the ansatzes of the different states are only meaningful
as a single unit, and cannot be easily decoupled from each
other.

3. RESULTS
3.1. Convergence of the Penalty-Based Optimization.

Before turning to the various benchmark test sets, it is
instructive to consider the convergence of the relevant
quantities throughout the penalty-based excited-state VMC
computation, in order to gain an intuitive understanding of the
method. In Figure 2, the evolution of the total energy, the
excitation energy, the pairwise overlaps and the spin expect-
ation value are depicted throughout a VMC optimization for
the lowest five states of the HCl molecule. The lowest excited
states of HCl are 2-fold degenerate triplet states followed by a
set of doubly degenerate singlet states, leading to several
interesting characteristics of the molecular spectrum. The spin
penalty term is utilized, and two separate simulations are
performed for the singlet (3 states) and triplet (2 states) spin
sector. The ansatzes for the triplet states are assigned two
unpaired spin-up electrons, ensuring that these wave functions
will have m 1z = . As usual, the variational optimization is
preceded by a short supervised pretraining. It can be seen that
all three terms entering the loss function converge smoothly to
their optimal values. Due to the pretraining, the states start off
approximately orthogonal and within the correct spin sector,
which is maintained throughout the optimization. The
excitation energies converge rapidly and stabilize after
approximately ten thousand training iterations. Similar training
trajectories are obtained for the other experiments throughout
this paper. For a comprehensive evaluation of the optimized
wave function properties, the training is followed by an
evaluation stage, during which the observables of interest are
sampled extensively with fixed wave function parameters.
Postprocessing of the wave function, such as the diagonaliza-
tion step in the NES-VMC and AW methods, is not required.

3.2. Single Point Calculations. 3.2.1. Atoms. In this
section, we demonstrate the capability of the penalty-based
excited-state method to model an extended number of excited
states simultaneously by computing the lowest nine excitation
energies of a range of first- and third-row atoms (lithium to
neon and germanium to selenium). We employ highly
accurate, experimentally determined atomic spectral lines as
reference, after removing the effect of spin−orbit coupling by
weighted averaging of the finely split levels. For the first-row
atoms, all electrons are included in the computations, while for

the third-row atoms, the electrons occupying the three lowest
shells are replaced with the ccECP pseuodopotential.47

The computed excitation energies are plotted in Figure 3,
alongside the reference experimental data. It is clear that these
excitation energies provide a quantitatively correct description
of all states in question. To further asses the accuracy of our
method we examine the mean absolute errors (MAEs) of the
excitation energies for the atoms obtained with different
methods in Table 1. We find that on the subset of first row
atoms NES-VMC exhibits an advantage with 17 meV (0.39
kcal/mol), compared to the 37 meV (0.86 kcal/mol) of

Figure 2. Convergence of relevant quantities throughout the
optimization. Two penalty-based excited-state VMC computations
are carried out to characterize the lowest three singlet and two triplet
electronic states of the HCl molecule. The plotted quantities from top
to bottom: total energies, energies of the excitations from the ground
state, pairwise overlaps, and the expectation values of the spin
magnitude operator.
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penalty-based VMC. The impressive accuracy of NES-VMC
was achieved24 by performing twice as many training iterations
as is done in the present work. It is plausible that the accuracy
of the penalty-based method would continue to improve
similarly with additional training steps. Considering the
distribution of errors across the different excitation energies,
it becomes apparent that the NES-VMC method tends to
accumulate most of its error in the highest computed excited
state. In contrast, the penalty-based method offers an
advantageous, relatively uniform description of all states.
With a maximum error of 166 meV (3.8 kcal/mol), the
penalty-based method appears to suffer less from the
occasional outliers present in the NES-VMC results, which
exhibit a maximum error of 263 meV (6.1 kcal/mol).
Inspecting the individual states more closely, the errors of
the sharpest outliers in the NES-VMC results (the highest
computed states of boron and fluor) are improved by more
than a factor of 2 and six, respectively, in the present work. On

the contrary, compared to NES-VMC, the penalty-based
method appears to encounter slightly more difficulty with
highly degenerate states, such as the first quintuple degenerate
excited state of nitrogen. This is presumably due to the
accumulating noise from the numerous terms in the loss
function, derived from the overlaps between states that are very
close in energy. Consequently, this noise in the gradients of the
loss hinders the convergence of the degenerate states, leading
to overestimated excitation energies. This issue is somewhat
mitigated by scaling the weight of these loss terms by the
energy difference between the given states, as described in
Section 2.1.2, to achieve a MAE of 72 meV (1.7 kcal/mol) for
these five excitation energies. While we generally found the
variance matching scheme introduced alongside the first
version of penalty-based VMC for excited-states22 to not be
necessary, it can help improving the accuracy for highly
degenerate states. If one were to apply this variance matching,
the MAE for the five degenerate excitation energies of nitrogen
would be reduced to just 14 meV (0.34 kcal/mol). Fortunately,
electronic states with this level of degeneracy are exceedingly
rare in molecular systems outside of single atoms, therefore we
do not expect this to pose a serious limitation to the method in
practice. Lastly, we note that as opposed to the first published
version of penalty-based excited-state VMC with neural-
network ansatzes,22 here all states of the lithium atom are
found correctly.

Comparing now with the sequential variant of the penalty-
based method for excited states23 on the first row atoms from
lithium up to oxygen, the present work achieves a favorable
MAE of 31 meV (0.72 kcal/mol) compared to 39 meV (0.90
kcal/mol). The additional error likely arises from the use of
pseudopotentials, particularly in combination with the lightest
atoms, where the energies of the two core electrons are not
sufficiently separated from the valence energies for the

Figure 3. Excitation energies of first- and third-row atoms. The lowest
nine electronic excitation energies are computed for all first-row, and a
range of third-row (Ge−Se) atoms. Experimental reference values
from the NIST Atomic Spectra Database are depicted with gray
horizontal lines,46 while dots display the results of the present work,
with colors denoting the spin of the given excited state.

Table 1. Accuracy Comparison Between Various Excited-State VMC Methods on Vertical Excitation Energies of the Systems in
the Present Studya

MAE MAX STD

test set subset method [meV] [meV] [meV]

Atoms First row atoms NES-VMC 17 263 37
This work 37 166 43

Li−O, 10 states Sequential PB 39 107 39
This work 31 140 37

Li−O, 5 states PauliNet 85 518 120
This work 21 85 32

Ge−Se Sequential PB 28 50 25
This work 21 64 25

All atoms This work 33 166 40
Molecules without BeH NES-VMC 34 284 67

This work 45 176 60
without BeH, C6H6 NES-VMC 33 284 69

This work 32 90 37
BH, H2O, CO PauliNet 134 258 103

This work 27 58 26
BeH, CO, H2O, H2S, H2CSi Sequential PB 73 153 86

This work 24 58 23
All molecules This work 45 176 60

aThe last three columns contain the mean absolute errors, maximum errors, and standard deviation of errors in the excitation energies, respectively,
for the given method in units of meV. Results of the sequential variant of the penalty-based method are taken from Liu et al.,23 penalty-based
numbers with the PauliNet ansatz are reproduced from Entwistle et al.,22 while NES-VMC results are taken from Pfau et al.24 Partitioning of the
systems into subsets is necessary as the various works considered slightly different sets of atoms and molecules.
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pseudopotential approximation to be fully valid. Turning to the
third-row atoms, where both works employ pseudopotentials,
one finds slightly lower MAEs of 21 meV (0.48 kcal/mol) and
28 meV (0.64 kcal/mol) for the present and the sequential
penalty-based results, respectively. Considering the results on
the atomic systems overall, the updated penalty-based VMC
method appears capable of describing as many as ten, often
highly degenerate electronic states simultaneously, at a high
level of accuracy.

3.2.2. Molecules. Next, the five lowest-lying excited states of
15 molecules are considered, with system sizes ranging from 4
to 42 electrons. The geometries of LiH and BeH are taken
from Entwistle et al.,22 benzene is taken from the work of
Loos49 et al., while the remaining 12 geometries are taken from
Chrayteh et al.50 The latter two publications also provide a
number of accurate excitation energies in the complete basis
set limit, and oscillator strengths in a triple-zeta quality basis,
both obtained with high-order coupled cluster methods, which
serve as references here. The statistical measures of accuracy
for molecules displayed in Table 1 are computed only for the
states where reference data is available (see the horizontal lines
of Figure 4). Electrons from the first two shells of second-row

atoms are replaced with the ccECP potential.29 It should be
noted that, especially in the case of oscillator strengths,
reference values obtained with different basis sets or at
different orders of the coupled cluster expansion may exhibit
wider disparities than the differences between the investigated
QMC methods, highlighting the difficulty of reliably estimating
these quantities.

On the top pane of Figure 4, the first four vertical excitation
energies of the 15 molecules in question are plotted. Similar to
the findings for atoms, we observe that both the NES and
penalty-based methods yield excitation energies in very good
agreement with the theoretical best estimates. As demonstrated
in Table 1, when compared to the atomic test set, the MAEs of
the two methods are somewhat closer for the molecules,
measuring at 34 meV (0.78 kcal/mol) for NES-VMC and 45
meV (1.0 kcal/mol) for penalty-based VMC. This closing of

the accuracy gap can largely be attributed to the absence of
highly degenerate states in molecules, which were the primary
cause of noisy and outlier states in the atomic systems. In
terms of errors made on individual molecules and states, the
penalty-based excited-state method shows improvement over
the potentially misconverged highest tioformaldehyde state of
NES-VMC. Additionally, it performs slightly better on the
third excitation energy of nitroxyl. However, it does make
larger errors on benzene, as well as on the highest states of
formaldehyde and ethylene. It is worth noting that despite the
two methods exhibiting very similar MAEs, their error
distributions are quite different. The predictions of the NES-
VMC method exhibit slightly lower errors than those of the
penalty-based method for the majority of systems, but at the
same time contain more severe outliers for a handful of states.
In contrast, the penalty-based approach tends to produce
relatively uniform errors, which could conceivably be further
reduced by conducting more training iterations. This trend is
also evident in the slightly larger standard deviation of errors
for NES-VMC. Interestingly, both VMC-based methods fail to
capture the 3A1 state of formaldehyde (both with FermiNet
and Psiformer), potentially indicating a more fundamental
issue with the description of this state, which warrants further
research. The fact that the failure to describe this state is
reproducible across different ansatz architectures, loss
functions, and pretraining schemes points to a more general
optimization problem associated with this electronic state. It is
conceivable that the minimum of the loss function
corresponding to this state is especially narrow or shallow,
making it difficult to locate with stochastic gradient based
optimization methods. For convergence curves, reference and
baseline CASSCF excitation energies obtained for this state see
the Supporting Information.

Turning now to the oscillator strengths plotted on the
bottom pane of Figure 4, one finds a generally good agreement
between the penalty-based excited-state VMC method and the
reference results, with a few notable exceptions. Specifically,
the intensity of the highest two transitions of carbon monoxide
and boron monofluoride are overestimated by penalty-based
VMC compared to coupled cluster. For certain excitations of
the LiH, BeH, HNO, and HCF molecules, the lack of accurate
reference data makes it difficult to ascertain the performance of
the penalty-based excited-state VMC method. Nonetheless, the
generally accurate oscillator strength estimates obtained from
the penalty-based method serve as compelling evidence that it
not only delivers accurate energies but also well-converged
wave functions, which can be of great use in computing a wide
range of observable quantities of excited states. Furthermore, it
is clear that contrary to previous hypothesis,24 the penalty-
based method is competitive with the NES-VMC approach
when employing the same, sufficiently expressive ansatz in
both cases.

3.3. Excited-State Potential Energy Surfaces. While
performing single-point computations targeting the excited
states of molecules is a valuable endeavor in its own right,
characterizing portions of molecular excited-state PESs holds
even greater significance. Access to these PESs can enable
simulations of the evolution of molecular systems in their
excited states,52 paving the way for describing crucial
photochemical processes such as the light-harvesting step in
photovoltaic devices53,54 or the photoisomerization of the
retinal chromophore that initiates vision.55 Furthermore,
information about the PES is often essential for bridging

Figure 4. Excitation energies and oscillator strengths of main-group
molecules. Electronic excitation energies and oscillator strengths are
computed for the lowest four transitions in a set of 15 molecules.
Theoretical best estimates are depicted with gray horizontal lines
where available,48 while the predictions of penalty-based VMC are
displayed with dots, with colors denoting the spin of the
corresponding excited state. Excitation energies are plotted on the
top pane, while oscillator strengths are shown on the bottom pane.
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theoretical results with experimental estimates, in tasks such as
determining adiabatic excitation energies or the zero-point
vibrational energy correction. Unfortunately, the theoretical
characterization of excited-state PESs often presents even
greater challenges than a single-point calculation, such as the
problem of consistently defining the active space in active-
space-based methods, or the treatment of strong correlation
near conical intersections in approximate time-dependent
density functional theories.22,56 In this section, we will
demonstrate how the penalty-based method can be easily
applied to compute excited-state molecular PESs for systems
with challenging electronic structures.

3.3.1. Excited States of the Carbon Dimer. Despite its
small size, the electronic structure of the carbon dimer remains
the subject of intensive interest in both experimental58 and
theoretical studies.51,59 It exhibits strong multireference
character and numerous nearly degenerate low-lying excited
states with singlet, triplet and quintet spins, some of which can
be characterized as double excitations. Accurately and
consistently describing its numerous electronic states across a
range of bond lengths presents a challenge tackled only by the
most sophisticated electronic structure methods.

The excited-state PESs of the carbon dimer, computed using
the penalty-based excited-state method, are shown in Figure 5

with solid lines. The capability of penalty-based VMC to
perform separate computations for states with different spins
has been leveraged to efficiently characterize the lowest four
singlet, four triplet and one quintet states. It is important to
note that two of the singlet and two of the triplet states are
degenerate across the entire range of bond lengths, resulting in
only three−three lines being plotted for these spin sectors. The
results reported with NES-VMC24 are shown in Figure 5 with
dashed lines. In regions where NES-VMC results are available,
they are in excellent agreement with the curves obtained from
penalty-based excited-state VMC. Note that the penalty-based
method converges in multiple regions where its counterpart
cannot provide a sufficiently accurate description, such as the

compressed geometries of the b g
3 state, the stretched

geometries of the c g
3 + and all singlet states, as well as the

entire B g
1 curve. Additionally, due to the computational

efficiency afforded by the use of the spin penalty, one is able to
describe a section of the lowest-lying quintet C g

5 state,
including its minimum, by performing a single-state penalty-
based calculation. Considering that both the b g

3 and B g
1

states are characterized as double excitations,24 a class of
excited states that many other methods struggle with, the
ability of penalty-based VMC to accurately describe large
sections of these PESs is particularly noteworthy.

Comparing the predictions of the penalty-based excited-state
method with results obtained using the highly accurate
stochastic heat-bath configuration interaction (SHCI) ap-
proach51 shown with dotted lines in Figure 5, one finds
excellent agreement for most geometries of all states. Notable
exceptions are the high-lying compressed regions of the b g

3

state, and the stretched regions of the A u
1 and B g

1 curves.
For the compressed geometries, the VMC-based method
underestimates the excitation energies, while for the stretched
geometries, it delivers slightly higher estimates. In the stretched
geometries of the singlet states, we observe higher-than-usual
variance in the expectation of the energy during training,
indicating potential problems with the fitting of these states,
whereas we identified no such signals for the compressed
triplet states. Overall, the accuracy of the penalty-based
method appears to be on par with that of NES-VMC and
comparable with the SHCI reference. Additionally, its
consistency and ability to target specific spin states enable it
to deliver results on larger section of the carbon dimer PESs
than its VMC-based counterpart.

The vertical and adiabatic excitation energies from the
ground state to the considered excited states of the carbon
dimer are plotted in Figure 6. The relative energies obtained
from penalty-based VMC are in good agreement with both
NES-VMC and, where applicable, reference experimental,57

full configuration interaction,49 and SHCI results.51 The
discrepancies between the penalty-based method and the
appropriate references are well below 43 meV (1.0 kcal/mol)
for all states except for B g

1 , where both the vertical andFigure 5. Excited potential energy surfaces of the carbon dimer.
Potential energy surfaces for nine of the low-lying excited states of the
carbon dimer are calculated. Solid lines represent penalty-based
excited-state VMC results, dashed curves were obtained using NES-
VMC,20 and dotted lines depict semistochastic heat-bath config-
uration interaction results in the cc-pV5Z basis.51

Figure 6. Vertical and adiabatic excitation energies of the carbon
dimer. Vertical (vert) excitation energies are plotted with solid,
adiabatic (ad) ones with dashed, and experimental ones with dotted
lines. The zero-point vibrational energy was not considered during the
computation of the adiabatic excitation energies. The penalty-based
VMC predictions are compared with results obtained from NES-
VMC,24 full-configuration interaction using the cc-pVQZ basis,49

semistochastic heat-bath configuration interaction with the cc-pV5Z
basis,51 and experiments.57
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adiabatic excitation energies are overestimated by penalty-
based VMC by about 100 meV (2.3 kcal/mol).

3.3.2. Conical Intersection in Ethylene. Conical inter-
sections play an important role in the study of excited-state
dynamics associated with processes such as photoisomerization
and photodissociation, providing a pathway for nonradiative
relaxation from electronic photoexcitations. From a computa-
tional perspective, conical intersections pose a significant
challenge, as the multireference character of the electronic
states increases when the potential energy surfaces converge.
However, to achieve a good description of the dynamics, an
accurate and well-balanced model of the excited-state potential
energy surface is crucial. Here we study the conical intersection
of ethylene, which serves as a small-scale model system for
photoswitches. Upon photoexcitation to the lowest singlet
excited state, ethylene undergoes torsion (angle τ) along the
C−C bond, followed by pyramidalization (angle ϕ) of one of
the CH2 groups, as depicted in the inset of Figure 7. This leads

to a conical intersection, where a radiationless transition to the
ground-state potential energy surface occurs.60 The process
involves intricate changes in the electronic structure that pose
well-known problems for single-reference methods such as
TDDFT.61 While our focus lies on the study of the singlet
states, the simulations are further complicated by the presence
of multiple lower-lying triplet states.

To address this, we employ the spin penalty method to
restrict our calculations to the singlet sector, ensuring that no
more than one excited state need to be computed at any point
along the trajectory. The results are compared with accurate
multireference configuration interaction (MR-CI) calcula-
tions60 and previous studies with neural-network VMC.22,24

Figure 7 shows the energies of the ground state and the first
excited state relative to the ground-state energy at the
equilibrium geometry. Our results are in excellent agreement
with the NES-VMC method, representing a significant
improvement over previous calculations using penalty-based
VMC.22 The avoided crossing at 90= is well reproduced,
and the excitation energy of 2.41 eV is within 0.01 eV of the
NES-VMC result. Furthermore, we estimate the location of the
conical intersection to be between 97.5◦ and 100◦ ( 99 ),
bringing it closer to the MR-CI reference ( 96 ) and being in
good agreement with the NES-VMC result( 98 ). We note

that while the study of ethylene with NES-VMC required
simulations for three excited states across the PES and a special
treatment of the equilibrium geometry, we do not need to
compute additional states and run all single-point calculations
along the trajectory with the same parameters. The good
agreement with NES-VMC and qualitative reproduction of the
MR-CI results indicate that the penalty-based method is
capable of accurately modeling the complicated electronic
structure of the ethylene isomerization process.

4. DISCUSSION
An updated version of the deep-learning penalty-based excited-
state VMC method is presented and applied to compute a wide
range of atomic and molecular excited states, demonstrating its
enhanced accuracy and attractive computational properties.
The improvements include the use of a new state-of-the-art
attention-based neural network ansatz, systematic tuning of the
optimizer hyperparameters, and an updated overlap penalty
term that guarantees the global minimum of the loss function
yields the exact solution of the electronic structure problem.
The method’s dependence on the choice of free parameters is
greatly reduced by a formulation that automatically adapts
these parameters to the physical system under consideration.
Lastly, a new penalty term is introduced which, in combination
with a spin-assigned ansatz, enables the targeting of specific
spin states, significantly improving the computational efficiency
in many applications.

The computational aspects of the penalty-based method are
examined in relation to other prevalent VMC-based algorithms
for computing molecular excited states. Compared to NES-
VMC, penalty-based methods exhibit favorable scaling with the
number of computed electronic states, due to the former
approach’s need to model and sample an extended system of
Fermions. On the other hand, a remaining weak dependence
on the choice of scaling parameters and accumulating noise
from the penalty terms in rare, highly degenerate systems can
cause comparatively worse numerical issues for the penalty-
based method in a limited number of cases. In contrast to
variance minimization approaches, penalty-based methods do
not require additional approximations to obtain stable
gradients. The approach presented here is more practical
than both the NES-VMC algorithm, as it requires no additional
diagonalization to recover the individual states, and the
sequential variant of the penalty-based method, as it replaces
a set of sequential calculations with a single parallel one,
granting access to all electronic states at every stage of the
computation.

The accuracy of results obtained with the penalty-based
method is compared to both accurate reference values and
numbers obtained with other deep-learning VMC-based
approaches. On a set of first- and third-row atoms, where
practically exact experimental references are available, penalty-
based excited-state VMC recovers the lowest nine excitation
energies with a mean absolute error of less than 1 kcal/mol. Its
accuracy is on par with its sequential variant, and is comparable
to that of the NES-VMC method, even though fewer training
iterations are carried out here. For 15 small to medium
molecules, deviations from theoretical reference energies
remain well under control, while the reliably accurate oscillator
strengths indicate consistently high wave function quality
across a wide range of systems. Considering excited-state
potential energy surfaces, the efficiency and black-box nature of
the penalty-based method in tackling this traditionally

Figure 7. Conical intersection of ethylene. The energies of the lowest
two singlet states of ethylene are plotted as a function of the torsion
and pyramidalization angles, relative to the energy of the ground state
at the equilibrium geometry. Results obtained with the updated
penalty-based method are plotted alongside those of the original
version with the PauliNet ansatz,22 NES-VMC,24 and multireference
configuration interaction with single and double excitations.60 The
inset plot on the right pane shows the region around the conical
intersection, with the vertical lines marking the approximate location
of the conical intersection.
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challenging class of problems become evident. Large sections
of nine carbon dimer potential energy surfaces with singlet,
triplet, and quintet spins between bond lengths of 1.0 and 1.9
Å are accurately recovered. The derived vertical and adiabatic
excitation energies are in good agreement with both
experimental and theoretical reference values. Turning to the
ethylene potential energy surfaces, the updated penalty-based
method significantly improves on results obtained with earlier
versions and predicts the position of the conical intersection in
good agreement with MR-CI and NES-VMC. The description
of both the carbon dimer and ethylene potential energy
surfaces is made significantly more efficient by the use of the
spin penalty term, roughly halving the number of states needed
to be considered simultaneously in any single computation.

Overall, the computational advantages and accurate
predictions of deep-learning penalty-based VMC place it
among the most promising methods for computing electronic
excited states with VMC. Notably, it delivers similar accuracy
to the NES-VMC method when the same neural-network
ansatzes are used in both algorithms, while offering several
practical advantages. Given the recent surge in interest in deep-
learning excited-state VMC for molecular electronic structure,
the penalty-based approach is poised to become a prominent
method for describing the most challenging excited states of
small to medium molecules.
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