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Abstract: Introduction: Prosthetic joint infections (PJIs) are difficult to treat and represent a significant
burden to the healthcare system. Two-stage revision surgery with placement of an antibiotic-loaded
cement spacer is currently the gold standard for treatment in the United States for late-onset infections.
We evaluate the efficacy of varying doses of vancomycin added to antibiotic-containing acrylic cement
spacers and discuss the biomechanical and antimicrobial properties of using high versus low doses
of vancomycin in cement spacers in the hip and knee. Materials and Methods: Commercially
available Copal cement containing either gentamicin and clindamycin (G + C) or gentamicin and
vancomycin (G + V) was prepared with the manual addition of low (2 g) and high (6 g) doses of
vancomycin. In vitro mechanical testing was then carried out according to ISO 5833 and DIN 53435,
as well as inhibition zone assays against common PJI pathogens. Additionally, inhibition zone assays
were conducted on two commercially available prefabricated spacers containing gentamicin: Copal
Exchange G and Cemex Spacer-K. Results: In biomechanical testing, Copal G + V with the addition
of 6 g of vancomycin failed to meet the ISO standard. Copal G + C and Copal G + V with low and
high dosages of vancomycin were all effective against the tested pathogens and displayed constant
efficacy for a duration of 42 days. High doses of vancomycin showed significantly lower mechanical
stability. Moreover, Copal Exchange G showed significantly larger inhibition zones across 42 days.
Discussion: While higher concentrations of vancomycin appear to improve the antimicrobial efficacy
of cement, they also reduce its mechanical stability. Despite its smoother surface, the Copal Exchange
G spacer exhibits large inhibition zones after 1 day and maintains consistently large inhibition
zones over 6 weeks. Thus, it may be preferred for use in two-stage revision surgery. Conclusion:
Copal Exchange G is more effective than Cemex Spacer K against S. aureus and E. coli. The manual
addition of vancomycin to cement containing double antibiotics is very effective. The influence on
ISO compression is low, the ISO bending modulus is increased, and ISO bending, DIN bending, and
DIN impact, are reduced.

Keywords: two-stage revision; periprosthetic joint infection; vancomycin; PMMA spacer; Copal G + C;
Copal G + V; Copal Exchange G; Cemex Spacer K

1. Introduction

Total hip arthroplasty (THA) and total knee arthroplasty (TKA) are among the most
common procedures performed worldwide given their demonstrated track record of reliev-
ing pain and improving function [1–4]. Although revision surgery is relatively rare, the
number of revisions is increasing and the number of primary arthroplasties continues to
grow [5–8]. Prosthetic joint infections (PJIs) are expected to contribute significantly to the
increase in the number of revision hip arthroplasties performed [9], and PJIs are currently
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the leading cause of TKA revisions [10–13]. By 2030, it is estimated that there will be more
than 250,000 cases of PJI per year [12], which are projected to impose a USD 1.85 billion
economic burden on the healthcare system [14]. Consequently, effective treatment of PJIs
is critical.

In the United States, two-stage revision arthroplasty remains the gold standard for the
treatment of late-onset PJI [15–17]. In the first stage, a thorough surgical debridement is
performed, including complete removal of existing implants given the concern for biofilm
formation, followed by implantation of an antibiotic spacer, typically made of polymethyl-
methacrylate (PMMA) cement. These antibiotic-laden spacers serve several purposes: they
preserve soft tissue tension, maintain functionality, and deliver local antibiotics to the
infected tissue bed [15,18,19]. After 4–6 weeks of parenteral antibiotic therapy, if there are
no further signs of infection, patients undergo a second-stage surgery to remove the spacer
and replace it with a new, definitive implant [15,20,21].

The amount and type of antibiotic added to the PMMA spacer during the first stage
of surgery remain debated [20]. The chosen antibiotic must be effective at treating the
causative organism, have minimal systemic side effects, and not adversely affect the
biomechanics of the PMMA cement. Here, we focus on vancomycin and summarize the
risks and benefits of its addition to PMMA spacers for the treatment of PJI.

Vancomycin is a water-soluble, thermostable glycopeptide that works by inhibiting
bacterial cell wall biosynthesis [22–25]. It is used in the treatment of Gram-positive or-
ganisms, including infections from methicillin-resistant Staphylococcus aureus (MRSA) and
methicillin-resistant Staphylococcus epidermidis (MRSE) [20]. Given that these bacteria are
among the most frequent causative organisms of PJI of the hip and knee [26,27], it is not
surprising that vancomycin is often chosen to be added to PMMA cement spacers during
two-stage revision arthroplasty.

The amount of vancomycin added to cement spacers can be divided into high or low
doses. Although definitions vary somewhat, high-dose vancomycin has generally been
defined as the addition of more than 3.6 g of vancomycin per 40 g bag of PMMA cement,
while a low dose has been defined as 1 g or less per 40 g bag of cement [18,28–30]. Doses
between 1 to 3.6 g of vancomycin per 40 g bag of cement have not been clearly classified
but may be appropriately referred to as intermediate doses.

Commercially available formulations of PMMA may or may not include antibiotics in
the cement powder. However, those that do contain only low doses of vancomycin [31].
Multiple authors have commented that 1 g of vancomycin or less per 40 g bag of cement
is sufficient only for prophylaxis and is not appropriate for the treatment of a known
infection [18,20,31]. In the setting of treatment for PJI, 4 g of vancomycin per 40 g bag of
cement is recommended, and 2 g of vancomycin per 40 g bag of cement is considered the
minimum [28].

Recent studies suggest that higher doses of vancomycin are associated with higher
rates of treatment success for PJI. Corró et al. demonstrated that increasing the dose of
antibiotic from 1 g each of vancomycin and gentamicin to 5 g of each antibiotic per 40 g bag
of PMMA was associated with a greater probability of eradication of the infection at 2-year
follow-up [32]. Additionally, Warwick et al. reported that vancomycin doses of at least
2 g per 40 g of cement and a total antibiotic dose of at least 3.6 g per 40 g of cement were
associated with lower odds of infectious failure [33]. Consequently, emerging literature
appears to support the use of high-dose vancomycin in cement spacers.

In the current study, we assess the efficacy of varying doses of vancomycin added
to commercially available antibiotic-loaded acrylic cement, as well as two prefabricated
gentamicin-containing spacers. We discuss the biomechanical and antimicrobial properties
of using high versus low doses of vancomycin in cement spacers in the hip and knee.
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2. Results
2.1. ISO Compression Strength

All tested cement combinations fulfilled the requirements for ISO compression. The
standard deviation between the tested cements was low, without any statistical outliers.
The addition of high dosages of vancomycin increased the ISO compression strength. The
control Copal G + C showed greater compression strength compared to the control Copal
G + V (Figure 1, green bars). Copal G + C with 2 g vancomycin showed the lowest strength
in compression (Figure 1).
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Figure 1. ISO compression strength in MPa with standard deviation. Controls: Copal G + C (light
green) and Copal G + V (dark green) without manually added vancomycin. Adding 2 g vancomycin
manually to Copal G + C in light grey; adding 6 g vancomycin manually in dark grey. Adding 2 g
vancomycin manually to Copal G + V in grey, adding 6 g vancomycin in black. The ISO minimum
was 70 MPa.

2.2. ISO Bending Modulus

The results of the bending modulus were all within a similar range, without significant
statistical outliers. Adding high concentrations of vancomycin to both Copal cements
increased the average bending modulus (Figure 2).
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Figure 2. ISO bending modulus in MPa with standard deviation. Controls: Copal G + C (light green)
and Copal G + V (dark green) without manually added vancomycin. Adding 2 g vancomycin manually
to Copal G + C in light grey; adding 6 g vancomycin manually in dark grey. Adding 2 g vancomycin
manually to Copal G + V in grey, adding 6g vancomycin in black. The ISO minimum was 1800 MPa.

2.3. ISO Bending Strength

After adding vancomycin to both Copal cements, the bending strength was reduced.
There was no significant difference between Copal G + C and Copal G + V. Copal G + C plus
6 g vancomycin resulted in a bending strength just above the ISO minimum (50.9 MPA),
while Copal G + V with the same vancomycin concentration failed to meet the minimum
(43.3 MPa) (Figure 3).
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Figure 3. ISO bending strength in MPa with standard deviation. Controls: Copal G + C (light green)
and Copal G + V (dark green) without manually added vancomycin. Adding 2 g vancomycin manually
to Copal G + C in light grey; adding 6 g vancomycin manually in dark grey. Adding 2 g vancomycin
manually to Copal G + V in grey, adding 6 g vancomycin in black. The ISO minimum was 50 MPa.



Antibiotics 2024, 13, 818 5 of 18

2.4. DIN Bending Strength

In the DIN bending tests, only Copal G + C without added vancomycin met the minimum
bending strength requirements. All other tested cements had bending strengths below the
DIN minimum. Higher doses of vancomycin resulted in lower bending strength (Figure 4).
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Figure 4. DIN bending strength in MPa with standard deviation. Controls: Copal G + C (light green)
and Copal G + V (dark green) without manually added vancomycin. Adding 2 g vancomycin manually
to Copal G + C in light grey; adding 6g vancomycin manually in dark grey. Adding 2 g vancomycin
manually to Copal G + V in grey, adding 6 g vancomycin in black. The DIN minimum was 65 MPa.

2.5. DIN Impact Strength

The DIN impact strength was reduced after adding vancomycin to the tested cement.
The higher the dose of vancomycin added to the cement, the lower the impact strength.
The two Copal cements behaved similarly (Figure 5).
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Figure 5. DIN impact strength in kJ/m2 with standard deviation. Controls: Copal G + C (light green)
and Copal G + V (dark green) without manually added vancomycin. Adding 2 g vancomycin manually
to Copal G + C in light grey; adding 6 g vancomycin manually in dark grey. Adding 2 g vancomycin
manually to Copal G + V in grey, adding 6 g vancomycin in black. Strength compared with references.
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2.6. Efficacy against Staphylococcus aureus

All cements were effective against S. aureus over the tested period of 42 d. All inhibition
zones remained high over the entire test period. Copal G + C with vancomycin, which
contained three antibiotics, had a wider inhibition zone compared to Copal G + V with
added vancomycin, which contained two antibiotics. There was a small difference observed
between low and high dosages of vancomycin for both Copal groups (Figure 6).
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Figure 6. Inhibition zone test results against S. aureus in mm and standard deviation SD (n = 3) of Copal
cements after adding low and high dosages of vancomycin over a period of 42 d. IZT inhibition zone test.

2.7. Efficacy against E. faecalis

All cements were effective against E. faecalis over the tested period of 42 d. All
inhibition zones remained high over the entire test period. The inhibition zones of Copal G
+ C with vancomycin, which contained three antibiotics, and Copal G + V with vancomycin,
which contained two antibiotics, were similar. There was only a small difference observed
between low and high dosages of vancomycin for both Copal groups. Higher vancomycin
concentrations had larger zones of inhibition (Figure 7).
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2.8. Efficacy against MRSA

All tested cements were effective against MRSA over the tested period of 42 d. All
inhibition zones remained high over the entire test period. The was no difference between
Copal G + C with vancomycin, which contained three antibiotics, and Copal G + V with
vancomycin, which contained two antibiotics. There was a small difference observed be-
tween low and high dosages of vancomycin for the two Copal groups. Higher vancomycin
concentrations had larger zones of inhibition (Figure 8).
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Figure 8. Inhibition zone test results against MRSA in mm and standard deviation SD (n = 3) of Copal
cements after adding low and high dosages of vancomycin over a period of 42 d.

2.9. Prefabricated Spacers with Gentamicin

Copal Exchange G and Cemex Spacer K were compared according to their antimicro-
bial efficacy by using inhibition zone tests against predetermined bacteria. The diameter of
the inhibition zones was measured in mm. Both spacers were tested against the following
bacteria: S. aureus, MRSA, E. coli, and E. faecalis.

No efficacy was observed for both tested spacers against E. faecalis and MRSA.
Both tested spacers were effective against S. aureus over a period of 42 days. In all

cases, Copal Exchange G had greater inhibition zones in mm and eluted cumulatively more
gentamicin than Cemex Spacer K over time. The largest inhibition zone was observed after
1 day for Copal Exchange G (Figure 9).

Both tested spacers were also effective against E. coli. Copal Exchange G was effective
over the course of 42 days whereas Cemex Spacer K was no longer effective after 14 days.
Additionally, Copal Exchange G eluted cumulatively more gentamicin than Cemex Spacer
K over time. The largest inhibition zone was observed after 1 day and 7 days for Copal
Exchange G (Figure 10).
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3. Discussion
3.1. Microbiology

Chronic infections and infections due to virulent bacteria often necessitate two-stage
revisions of prosthetic joint infections [34–40]. Failure of treatment after two-stage revision
is often related to staphylococci or new bacteria recovered in the re-implantation procedure,
suggesting the initial infection had already been polymicrobial [41,42]. Treatment of culture-
negative PJI and low-grade infections with difficult-to-treat bacteria require high local
antibiotic concentrations [43]. Previous work suggests that treatment with local antibiotics
does not result in specific antimicrobial resistance [44].

Polymicrobial infections often present with a shorter time between implantation and
onset of symptoms. While some authors have claimed the rate of treatment success for PJIs
with biofilm-forming bacteria is not lower than PJIs due to other bacteria [43,45–47], others
have reported lower rates of eradication for infections with rifampicin-resistant bacteria,
even after two-stage revision [48]. Indeed, there appears to be a growing number of failed
two-stage revisions for PJIs [49–54].
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Biofilms pose a particular challenge to the treatment of PJI. Irreversible attachment of
bacteria on surfaces and local tissues begins within one minute and increases 100 times after
10 min [55]. While bacteria-that produce biofilms are up to 1000 times more resistant to
antimicrobial agents, mature biofilms need 4 weeks to develop [37,56,57], so early treatment
of PJI is key. Some evidence suggests local antibiotic delivery with antibiotic cement might
increase the minimal infecting dose of S. aureus by more than 100,000-fold [58]. Additionally,
the use of various antibiotic carriers may be important to deliver local antibiotics [55].
Winkler et al. also found that the addition of 2 g of vancomycin might allow a shorter
interval of spacer treatment [59], and the use of dual-loaded antibiotic cement appears to
improve eradication rates in infected TKAs [59–62]. Consequently, the high local antibiotic
availability released from cement spacers might be useful to improve the eradication of
bacteria and shorten the period of spacer treatment [53,63–66].

Although the amount of antibiotic added to a cement spacer clearly has a significant
impact on the local tissue availability of the antibiotic, other factors, including the viscosity
and type of cement, the mixing technique, and the specific combination of antibiotics
added can all affect the amount and pharmacokinetics of the antibiotic delivered to the
surrounding tissues [67–69].

In vitro studies have suggested that the elution of vancomycin from an antibiotic
spacer is not linear. Rather, there is a large burst of antibiotic initially, followed by an
asymptotic taper [70]. Consistent with this model, the amount of locally released antibiotic
has been found to be greatest in the first 48 h [71], and the greater the amount of antibiotic
used in the cement, the longer the antibiotic remains detectable [72]. Chang et al., for
example, reported it took 2 days for local vancomycin to reach undetectable levels when
1 g was added per 40 g of PMMA, while it took 21 days when 4 g were added [70]. With
8 g of vancomycin, the antibiotic was still detectable in the eluent at 60 days, albeit at
very low levels. The findings of the current study appear to support these conclusions.
With antibiotic spacers that contained gentamicin only, the diameter of the inhibition zone
appeared to decrease with incubation time. However, when high doses of vancomycin
were added to cement, the antimicrobial activity of the cement was sustained across
42 days. Adding high doses of vancomycin to commercially available cement mixtures
may, therefore, be one strategy to maintain the local antibiotic activity of cement spacers
for extended periods of time.

These findings are confirmed by several in vivo studies. Using 4 g of vancomycin per
40 g of PMMA for patients with PJI of the hip, Hsieh et al. examined the joint fluid at the
time of spacer explantation [22]. At a mean of 107 days since the index surgery, vancomycin
was still detected at levels above the minimum inhibitory concentration, and they found
that the joint fluid remained bioactive against S. aureus. Importantly, they reported serum
levels of vancomycin were low at all tested time points, and all patients had serum levels
below the threshold of detection by 72 h after the first-stage surgery. Thus, the addition of
vancomycin to PMMA appears to be an effective method of achieving high doses of local
antibiotics with minimal systemic availability. While low doses of vancomycin (≤1 g/40 g
of cement) may not result in the release of the antibiotic for the full length of time between
the first- and second-stage surgeries, intermediate doses (2–3.6 g/40 g of cement) are likely
sufficient, and high doses (≥3.6 g/40 g of cement) appear to provide sustained release of
the antibiotic in the order of months.

Additionally, the porosity of the cement plays a critical role in the elution of van-
comycin from the spacer. More porous cement is better able to release the antibiotic into
the surrounding soft tissue, and, to this end, some have advocated for the addition of
dextran to the cement mixture to further increase porosity [73]. Similarly, studies have
found that adding vancomycin after initially mixing the powdered cement with the liquid
phase for 30 s creates more pores for cement elution and can result in a greater amount of
locally available vancomycin [74]. Hand mixing the antibiotic with the cement is generally
considered favorable, as this technique leaves large crystals of antibiotic that increase poros-
ity; however, it can also result in a non-homogenous distribution of the antibiotic which
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introduces some variability into the amount of eluted antibiotic [18,30] Mixing the cement
at atmospheric pressure, without a vacuum, can also increase porosity [18,75–77]. Using a
high-viscosity cement such as Palacos (Heraeus Medical, GmbH, Wehrheim, Germany) has
also been associated with greater elution and a higher likelihood of successful eradication
of PJI [33,77–83].

The combination of antibiotics used in the cement spacer has been reported to affect the
elution of vancomycin. Penner et al., for example, reported that the elution of vancomycin
and tobramycin was greater when the antibiotics were used together than when vancomycin
was added in isolation to PMMA cement [84]. This effect was theorized to be due to the
additional volume from the second antibiotic, which increases the porosity of the cement as
it dissolves, similar to the effect of adding dextran. Others have reported that the addition
of cefazolin similarly potentiates the elution of vancomycin compared to vancomycin
alone [71], suggesting the volume effect of the second antibiotic may be most critical, rather
than the specific choice of antibiotic. However, Slane et al. found that cement with the
largest amount of loaded antibiotic did not have the best elution kinetics, and they found
that a combination of 3 g of tobramycin and 2 g of vancomycin was the most optimal [85].
This result may suggest a more complex interplay of the physical interactions between the
antibiotic and the cement and between the antibiotics themselves [67,86].

There are some concerns regarding systemic toxicity, such as nephrotoxicity, due to
the uncontrolled elution of antibiotic-containing PMMA spacers [87–89]. Nevertheless,
multiple studies have recently called this paradigm into question [19,22,90,91]. Thus,
systemic toxicity due to the antibiotics released from cement spacers seems unlikely, and
the clinical practice guidelines from the Infectious Disease Society of America agree that
systemic toxicity from antibiotics used in cement is exceedingly rare [21].

3.2. Biomechanics

The amount of vancomycin used can alter the mechanical integrity of cement. In vitro
biomechanical studies have confirmed that increasing the amount of antibiotics can weaken
the PMMA and decrease the compressive, diametral, and flexural strength to levels below
the ISO standard [85,92]. Of note, in the current study, high dosages of vancomycin
increased the ISO compression strength of Copal cement, although the bending strength
and impact strength were decreased. The discrepant results observed with compressive
strength may be due to a difference in the mechanical properties of the specific type of
cement tested, which was Copal in the results reported here, compared to Palacos [85] and
Simplex [92] when reported elsewhere. Alternatively, this difference may be attributed to
dissimilar testing protocols used across studies. Nonetheless, it is important to exercise
caution when using cement with manually added antibiotics, as the mechanical properties
of the resulting mixture are often compromised.

Although the specific choice and combination of antibiotics appears to have some effect on
these parameters, the total mass of antibiotics used appears to be the most important [56,70,77,85].
For daptomycin-containing PMMA cements, a significant reduction in bending strength with
little influence on compression and bending modulus was observed by Humez et al. [93].
Similar results were reported by Krampitz et al. after adding voriconazole to PMMA [94].
This decrease in strength may be due to an increase in porosity from the addition of large
amounts of antibiotics [18,95]. On the other hand, a significant reduction in bending strength
combined with a slight increase in compression and bending modulus may be a consequence of
an increase in the hydrophilicity of the cement matrix [77]. Consequently, cement with ≥4.5 g
of antibiotic should not be used for implant fixation, as the compressive strength of cement with
such large amounts of antibiotic has been found to be below the minimum standard [18,92,96].
Furthermore, while high-dose vancomycin is preferred for creating a spacer in the first stage
of a two-stage exchange, at most 1–2 g of antibiotic powder should be used during the re-
implantation stage for fixation [30], when the implant is meant to stay permanently and the
integrity of the cement is necessary to create a strong and lasting bond between the bone and
the implant.
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Along the same lines, all factors that increase the porosity of the cement can weaken
its strength [77]. This includes the use of dextran [73], mixing at atmospheric pressure [76],
and adding antibiotics to the cement after combining the powder and liquid phases of the
cement [74].

Furthermore, the strength of the antibiotic cement changes with time as the antibiotic
elutes from the PMMA. Amin et al. demonstrated significant decreases in the compressive
strength of PMMA with 5 g of vancomycin after 6 weeks of incubation in vitro [74]. In
one case, although the compressive strength of the antibiotic cement was above the ISO
minimum at the outset, it dropped below this minimum at the end of incubation. Paz
et al. similarly confirmed that when cefazolin and/or vancomycin were added to PMMA,
the cement demonstrated a reduction in compression strength and bending strength after
1 month of incubation, no matter the dose that was used [71]. Only cement with no
antibiotic added demonstrated retention of its mechanical properties. The reduced strength
of antibiotic-loaded cement with time may be explained by the voids and microcracks
formed from the elution of the antibiotics, which Paz et al. assessed using scanning electron
microscopy [71]. Given the compromised biomechanical properties of antibiotic-loaded
cement, restricted weight bearing may be considered between the first- and second-stage
surgeries. Moreover, surgeons should exercise caution if the second-stage re-implantation
surgery is delayed, as these data indicate the strength of the spacer declines with time, and
catastrophic failure may result from prolonged retention of the spacer [97].

4. Methodology

Commercially available Copal PMMA cement (Heraeus Medical GmbH, Wehrheim,
Germany) containing either gentamicin and clindamycin (1 g G + 1 g C) or gentamicin and
vancomycin (0.5 g G + 2 g V) was used. Copal G + C is characterized by the following
composition: 42.7 g of Copal G + C powder contains 1.0 g gentamicin (as gentamicin
sulfate) and 1.0 g clindamycin (as clindamycin hydrochloride). Other ingredients include:
Poly(methyl methacrylate/methacrylate), Zirconium dioxide, Benzoyl peroxide, and col-
orant E141. A 20 mL monomer liquid contains: methyl methacrylate, dimethyl-p-toluidine,
hydroquinone, and colorant E 141 [98]. Copal G + V is composed as follows: 43.0 g Copal
G + V cement powder contains 0.5 g gentamicin (in the form of gentamicin sulfate) and
2.0 g vancomycin (in the form of vancomycin hydrochloride). Other ingredients include:
poly(methyl methacrylate/methacrylate), zirconium dioxide, benzoyl peroxide, and col-
orant E 141. A 20 mL monomer liquid contains methyl methacrylate, dimethyl-p-toluidine,
hydroquinone, and colorant E 141. Further material characterization of Copal has been
previously reported [77,99–101].

Additionally, we used two commercially available prefabricated spacers containing
gentamicin, the Copal Exchange G knee spacer, size S (Heraeus Medical GmbH, Wehrheim,
Germany), and the Cemex Spacer K knee spacer, size S (Tecres S.p.A, Sommacampagna,
Italy). All cements were prepared according to the instructions of the manufacturer [98,101].

To manufacture the cement blocks, vancomycin powder with a 90.2% antibiotic con-
centration was used. Thus, 2.21 g and 6.65 g of antibiotic powder were added to reach 2 g
and 6 g of pure vancomycin, respectively. Each vancomycin dose was then combined with
1 bag of Copal G + C (42.7 g powder containing 1 g of gentamicin and 1 g of clindamycin)
or 1 bag of Copal G + V (43 g powder containing 0.5 g Gentamicin and 2 g Vancomycin).
The cement was mixed according to the instructions of the manufacturer. Afterwards, the
cement dough was cast into stainless steel molds. A total of 3 different molds were used
for the various mechanical and microbiological tests.

For microbiological tests, the following strains of bacteria were used: Methicillin-
sensitive S. aureus ATCC 29213, MRSA ATCC 43300, E. faecalis ATCC 29212, and E. coli
ATCC 25922 (see Table 1).
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Table 1. Overview of cements and preformed spacers used, the concentration of vancomycin added
to the Copal cement powders, and the bacterial strains for microbiological testing. Copal spacer
(Copal Exchange G), Tecres spacer (Cemex Spacer K). All cements and spacers contain industrially
premixed gentamicin.

Cement/Spacer Antibiotics Tested Strains

Copal G + C
2 g Vancomycin
added manually

S. aureus ATCC 29213
E. faecalis ATCC 29212

MRSA ATCC 43300

Copal G + C
6 g Vancomycin
added manually

S. aureus ATCC 29213
E. faecalis ATCC 29212

MRSA ATCC 43300

Copal G + V
2 g Vancomycin
added manually

S. aureus ATCC 29213
E. faecalis ATCC 29212

MRSA ATCC 43300

Copal G + V
6 g Vancomycin
added manually

S. aureus ATCC 29213
E. faecalis ATCC 29212

MRSA ATCC 43300

Copal Spacer S. aureus ATCC 29213
E. coli ATCC 25922

Tecres spacer S. aureus ATCC 29213
E. coli ATCC 25922

4.1. Mechanical Tests
4.1.1. ISO 5833 Compressive Strength

The International Organization for Standardization (ISO) compressive strength test
was used to determine the pressure or compressive force that is needed until the ce-
ment loses its stability and breaks. All cement specimens (height: 12 mm ± 1, diameter:
6 mm ± 0.1, tested in replicates of 12) were placed in the middle of a test machine capable of
applying and measuring compressive force (Zwick/Roell, Ulm, Germany) and running the
testXpert II Zwick/Roell software (https://www.zwickroell.com/accessories/testxpert-
testing-software/, accessed on 31 December 2021). The machine applied increasing force
until the specimen fractured, or until the 2% offset load or upper-yield-point load was
reached. At that point, the internal pressure was measured in MPa. To comply with the
standards of the ISO 5833 [102], specimens had to reach a minimum internal pressure of
70 MPa on average.

4.1.2. ISO 5833 Bending Modulus and Bending Strength

For each cement combination, rectangular cement bodies (75 × 10 × 3.3 mm) were
used and tested in replicates of 6. After extracting the cement bodies from the stainless steel
molds, they were placed in a four-point test rig (Zwick/Roell, Ulm, Germany) running the
testXpert II Zwick/Roell software. Care was taken to place the test specimens as centrally
on the device as possible. The machine applied increasing force on the test specimen while
measuring its deflection until the specimen broke. The software then calculated the bending
and strength modulus of each cement combination in MPa. To comply with the standards
of ISO 5833 [102], specimens had to reach a minimum bending modulus of 1800 MPa and a
bending strength of 50 MPa.

4.1.3. DIN Bending and DIN Impact Strength according to DIN 53435

The bending and impact strength of each cement combination was tested against the
Deutsches Institut für Normung (DIN) 53435 standard [103]. For each cement combination,
rectangular cement bodies (15 × 10 × 3.3 mm) were used and tested in replicates of 8.
The specimens were placed in the DYNSTAT bending test apparatus (Zwick/Roell, Ulm,
Germany). The apparatus began to rotate at 100◦/min, applying a bending moment of

https://www.zwickroell.com/accessories/testxpert-testing-software/
https://www.zwickroell.com/accessories/testxpert-testing-software/
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400 Ncm on the specimen. Once the specimen broke, the machine was stopped and the
bending moment of the test body at the breaking point was recorded in Ncm. To determine
the impact strength, specimens were placed in the DYNSTAT strength apparatus (Zwick/Roell,
Ulm, Germany) and the pendulum was placed in its starting position. Once the pendulum
was released, it collided with the test body with an impact energy of 0.5 J. The required impact
energy (KJ/m2) to break the test body was then recorded. To comply with the standards of
DIN 53435 [103], the specimens had to reach a minimum bending strength of 65 MPa. Impact
strength results are compared against reference data.

For all mechanical tests, the number of samples and statistical evaluation were carried
out in accordance with the standards specified by ISO 5833 and DIN 53435 [102,103].

4.2. Spacers

Both Copal Exchange G and Cemex Spacer K contained roughly equal concentrations
of gentamicin. To properly compare both spacers according to their antibiotic release
and efficacy and to simulate in vivo conditions that occur within the joint, the concave
inner, non-articulating surface of each spacer was covered with antibiotic-free bone cement
(Palacos R, Heraeus Medical GmbH, Wehrheim, Germany, see Figure 11). Each spacer was
tested in triplicate. Once the cement had hardened, the spacers were examined for their
antimicrobial activity against bacteria. Of note, the Copal Exchange G spacer had a smooth
surface and calcium carbonate (CaCO3) as the contrast agent for X-rays, while the Cemex
Spacer K had a rough, porous surface and barium sulfate (BaSO4) as the contrast agent.
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4.3. Microbiological Tests

All test specimens (25 × 10 mm) and spacers (size S) were tested to examine the
antibacterial efficacy via an inhibition zone assay. Table 1 illustrates which test specimens
and spacers were used against which bacterial strains.

4.3.1. Preparation

To perform the microbiological tests, 2 different mediums were prepared: PBS as a
buffer solution to extract the antibiotics as an eluent from the test specimens and spacers,
and Müller–Hinton Agar (MHA) to grow the bacterial colonies and perform the inhibition
zone assays.

Specimens were placed in a separate tube with 20 mL of PBS.
The tubes were incubated at room temperature (25 ◦C) for 1 day, 7 days, 14 days,

28 days, and 42 days. At each time point, 2 mL of PBS eluent was removed and stored
separately. The rest of the PBS was discarded, and the specimens were immersed in another
20 mL of fresh PBS. The tubes were then sealed again and placed upside down until the
next extraction time point.
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4.3.2. Bacteria Preparation

To achieve bacterial suspensions for standardized microbial testing for all the inhibition
zone assays, beads of each bacterial strain were plated and diluted on MHA in a Petri dish.
These were incubated overnight at 37 ◦C.

A single colony or several colonies were removed with a swab and mixed into a saline
solution (0.85% NaCl) until a McFarland Standard of 0.5 (±0.1) was achieved.

4.3.3. Spacer Preparation and Eluate Extraction

Each spacer was placed in a beaker and submerged in 120 mL of PBS. The beakers
were sealed with a sheet of aluminum and stored at room temperature (25 ◦C). At each
time point (1 d, 7 d, 14 d, 28 d, and 42 d), 2 mL of eluent was removed and the beakers
were refilled with 120 mL of fresh PBS.

4.3.4. Inhibition Zone Test

A total of 60 µL of the eluent from each group for each time point was pipetted onto
Petri dishes loaded with the specified bacteria. The Petri dishes were incubated overnight
at 37 ◦C and the diameter of the inhibition zones was measured and documented in mm
the next day. The rest of the eluent was frozen and preserved. The average diameter and
standard deviation were calculated. Each cement concentration and time point was tested
in triplicate.

5. Conclusions

PJI remains a challenging and increasingly common problem as the number of primary
THAs and TKAs increases. If gentamicin-containing spacers must be used, Copal Exchange
G is more effective than Cemex Spacer K against S. aureus and E. coli. The addition of
high doses of vancomycin to a PMMA spacer based on double-containing PMMA cements
such as Copal G + C and Copal G + V as part of a two-stage treatment for PJI can be an
effective means of delivering local antibiotics, which appears to be one important variable
for infection eradication. After the addition of vancomycin, the ISO compression strength
is largely unchanged, the ISO bending modulus is increased, and ISO bending strength,
DIN bending strength, and DIN impact, are reduced.
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