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Successful vaccination programs, particularly against influ-
enza virus infection, have provided us with an awareness of the
need to immunize against the predominant circulating viral
strains or genetic subtypes. The lessons and language derived
from experience with influenza (and a few other) viruses have
often been directly translated to human immunodeficiency vi-
rus type 1 (HIV-1) vaccine development. But how appropriate
is this? Should an HIV-1 vaccine antigen always be based on
the dominant genetic subtype that circulates in the geograph-
ical area where a vaccine candidate is to be tested? The an-
swers lie, at least in part, in a consideration of the humoral
response to HIV-1 and, in particular, in the relationships be-
tween the HIV-1 genetic subtypes and antigenic and neutral-
ization serotypes. Here, we will review what is known about
these relationships and seek to clarify confusion that has been
created by the use of serological assays that generate mislead-
ing, or sometimes artifactual, results. Broadly similar issues are
raised when considering the relationship between cellular im-
mune responses and the HIV-1 genetic subtypes, but we will
not discuss these here. Instead, we refer the reader to recent
articles written by leading cellular immunologists (9, 30, 39,
79). Significantly, a recent study on the cross-clade activity of
cytotoxic T-lymphocyte responses in HIV-1-infected Ugandans
argued that the use of nonendemic vaccine strains may be
initially justified from the perspective of inducing cellular im-
munity to HIV-1 (15).

HIV-1 GENETIC SUBTYPES

There have been several thorough and recent reviews of this
topic, which we recommend for a more detailed picture (17, 63,
93, 127). In summary, there are three branches in the phylo-
genetic tree of HIV-1 sequences, which constitute the M
(main), N (new or non-M, non-O), and O (outlier) groups.
Among these, group M viruses are by far the most widespread,
being the variants of HIV-1 that are responsible for more than
99% of infections worldwide. The M-group viruses have been
divided into distinct genetic subtypes or clades, which are de-

fined as groups of viruses that more closely resemble each
other than they do other subtypes, across the whole genome
(14, 63, 99). Using this definition, there are currently nine
circulating genetic subtypes (A through K) within group M.
Prototype viruses representing the genetic subtypes E and I
have not yet been found. The viruses originally identified as
subtype E (the predominant group of viruses involved in het-
erosexual transmission in Thailand) and I (a small group of
viruses from the Mediterranean region) are now considered
intersubtype recombinants and have been termed CRF01_AE
and CRF04_cpx, respectively (see below). A study of isolates
from the Democratic Republic of Congo indicates central Af-
rica as the epicenter of HIV-1 diversity, with a large number of
different genetic subtypes and subtype recombinants circulat-
ing. Moreover, a number of envelope sequences with novel
sequences were identified, suggesting the existence of addi-
tional subtypes (120). The prevalence of intersubtype recom-
binant strains is increasing and creates even more HIV-1 an-
tigenic diversity (43, 64). Several recombinant viruses have now
spread epidemically to establish distinct lineages. These are
referred to as circulating recombinant forms (CRFs), nine of
which have presently been identified (63). CRFs have a desig-
nation that includes the letters of the parent genetic subtypes
(e.g., CRF01_AE), although in CRFs derived by recombina-
tion of more than three subtypes, the letters are replaced by
cpx (complex), e.g., CRF04_cpx (99). Relevant to this review,
recombinant viruses with mosaic envelope sequences gener-
ated by multiple intraenvelope crossover events have been
described previously (100). All of the M group subtypes, and
the CRFs derived from them, can be traced back to a single
successful natural transfer of HIV-1 to a human from a chim-
panzee infected with simian immunodeficiency virus SIVcpz.
This event occurred sometime in the first half of the 20th
century, somewhere in central Africa (50)

Globally, subtypes A and C account for most current infec-
tions, followed by subtype B and the intersubtype recombi-
nants CRF01_AE and CRF02_AG. Subtype B is dominant in
Europe, the Americas, and Australia (which accounts for the
emphasis that was placed on this subtype in the early-to-middle
years of the AIDS pandemic) (53). Subtype C may be the
subtype that currently infects more people worldwide than any
other; it is common in southern Africa and India (63). Sub-
types A and D infect large numbers of people in central and
eastern Africa. The other subtypes infect relatively, but only
relatively, small numbers of people in central Africa and South
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America. In western Africa, an intersubtype recombinant,
CRF02_AG (formerly designated as the prototype virus lbnG),
is the dominant virus type (64). CRF01_AE (which carries the
subtype E envelope sequence) is the most prevalent virus in
southeast Asia. In China, intersubtype recombinants between
subtypes C and B are becoming common (112). Of course, as
HIV-1 continues to spread globally, the geographical restric-
tions are increasingly breaking down; many European coun-
tries, for example, have residents infected with multiple genetic
subtypes (21, 26, 46, 84).

It is important to emphasize here that the genetic subtypes
or recombinant lineages of HIV-1 are not analogous to classic
viral serotypes and they should not be thought of in this way.
The HIV-1 genetic diversity currently present in the human
population dwarfs anything that has been described for other
human viral infections studied. To put the situation into per-
spective: a few (3, 4) amino acid changes in one of the envelope
glycoproteins of influenza virus can be sufficient to trigger a
new epidemic; reassortants of influenza virus envelope genes
can lead to devastating pandemics (31, 75, 96, 113, 122, 125).
Yet, in HIV-1, replicating viruses can differ as much as 10% in
sequence even within a single individual (54, 106). Therefore,
even within a genetic subtype, the extent of HIV-1 genetic and
antigenic diversity is simply enormous when compared to the
diversity found for viruses for which effective vaccines have
been developed. The degree of genetic, and hence antigenic,
diversity therefore is daunting from the perspective of HIV-1
vaccine development. However, the description of a small
number of human monoclonal antibodies (MAbs) that do neu-
tralize many different HIV-1 isolates, including ones from dif-
ferent genetic subtypes, suggests that some features of the
envelope glycoprotein structure are conserved (see below) (12,
14, 78, 115, 116). It would therefore be desirable to express
such conserved structures in vaccine antigens aimed at induc-
ing a broadly reactive humoral immune response. Unfortu-
nately, all attempts to elicit antibodies with the specificities
described for these human MAbs have failed to date (13, 89).

NEUTRALIZING ANTIBODIES AND THE HIV-1
ENVELOPE SPIKE

The only HIV-1 gene product known to be relevant to pro-
tective humoral immunity is the envelope glycoprotein com-
plex. This is a trimeric structure composed of six individual
subunits three gp120s and three gp41s that mediates virion
attachment and membrane fusion. This complex is the target
for virus-neutralizing antibodies. A series of studies involving
epitope mapping with MAbs and site-directed mutagenesis,
combined with the X-ray crystallographic solution of the gp120
core, have allowed a global approximation of the antigenic
topography of gp120, both in its monomeric, soluble form and
in a virion-associated, oligomeric form (references 28, 55, 56,
65, 71–74, and 108; reviewed in references 69, 89, and 131).
The CD4 binding site (CD4bs) on gp120 is located within a
depression at the interface of the three domains that comprise
the gp120 structure (the outer domain, the inner domain, and
the bridging sheet). This CD4bs surface is devoid of glycosyl-
ation and is relatively well conserved among HIV-1 isolates.
The conserved coreceptor binding surface (97) is located at an
approximately 90° angle to the CD4bs and is comprised prin-

cipally of the bridging sheet, with additional contributions from
the base of the V2 loop. Additional sequences from the V3
loop probably also contribute to coreceptor binding and are
involved in coreceptor specificity (44, 45, 126, 132).

The interactions between gp120 and its receptors are com-
plex and require conformational changes induced by CD4
binding (101, 103, 114). Both the CD4bs and the conserved
coreceptor binding site are partially masked by the hypervari-
able V1V2 loop structure (132). This masking is most promi-
nent in the oligomeric, functional form of gp120, making the
relatively conserved receptor binding site surface poorly acces-
sible to antibody. The structure of gp120, and whether it forms
intersubunit interactions in the trimeric envelope complex, is
not known, although compelling models have been proposed
(56). Multivalent attachment between a gp120 trimer and a
cluster of CD4 molecules displaces the V1V2 loop and the V3
loop, creating the coreceptor binding site and loosening the
association of gp120 with gp41. The CD4 molecule contains
flexible segments (129), allowing gp120 to drop down onto the
coreceptor, bringing the virus and cell membranes into close
proximity. Further conformational changes that activate the
fusion machinery of gp41 then take place, leading to virus-cell
membrane fusion, as outlined below. The association of gp120
with gp41 is unstable, involving apparently weak, noncovalent
interactions. Regions at the N and C termini of gp120 form a
discontinuous binding site for gp41 (41, 132). The correspond-
ing binding site on gp41 for gp120 includes a putative N-
proximal helical region and a short, intramolecular disulfide-
bonded loop (7, 16). The structure of gp41, as it exists in the
native envelope glycoprotein complex prior to CD4 and core-
ceptor binding, is not yet known. Neither is it understood how
(or strictly, whether) intersubunit interactions between the dif-
ferent gp41 moieties cause this form of the complex to be
trimeric. However, the receptor-triggered events that cause
membrane fusion are associated with substantial conforma-
tional changes in gp41 that lead to the formation of a highly
stable, trimeric coiled-coil structure. This comprises three N-
terminal leucine/isoleucine zippers, one from each subunit of
the trimer (18, 124). A second, more C-terminally oriented
heptad repeat region of gp41 binds into grooves on the exterior
surface of the coiled-coil. Hence, the gp41 subunit folds back
on itself to form a stable six-helix bundle in which the fusion
peptide and the transmembrane domain of gp41 are now po-
sitioned at the same end of the molecule (18, 124). In this form
of the gp41 protein, the N-terminal fusion peptide points to the
target membrane into which it becomes inserted, so that a
single gp41 subunit is now attached simultaneously to two
membranes: the viral membrane via its transmembrane do-
main and the cell membrane via the fusion peptide.

It is likely that the stable six-helix bundle represents the
terminal conformation of a fusogenic envelope. It has been
argued that it is the transition to this six-helix bundle that
drives membrane fusion events after the fusion peptide is lo-
cated in the cell membrane (29, 66). In other words, the six-
helix bundle does not itself cause membrane fusion, rather, the
dynamic events associated with its formation cause the two
membranes to be brought close enough together for fusion to
take place. This distinction is important for understanding why
antibodies to this six-helix bundle form of gp41, which is highly
immunogenic, do not neutralize HIV-1 infectivity; by the time
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an antibody is able to react with the six-helix bundle, the fusion
events are already over. Although receptor binding is necessary
for formation of the six-helix bundle at the right time and place
for fusion to occur, it is likely that this form of gp41 will also
occur spontaneously, when some of the gp120 moieties natu-
rally dissociate from gp41 during the process known as shed-
ding (104). Because the six-helix bundle form of gp41 is highly
stable, it probably persists on the surface of virions and per-
haps on virus-infected or envelope-expressing cells.

Most virions, at least in tissue culture, suffer from baldness,
or at least a receding hairline, in that they have lost the gp120
components from their full, theoretical complement of about
72 individual functional spikes or they never had them incor-
porated in the first place (49, 57). The shedding of gp120 will
lead to the creation of the six-helix bundle form of gp41 that
cannot, itself, mediate virus fusion with the host cell (see
above). Thus, a virion can contain a mixture of fusion-compe-
tent and dead (postfusion form) spikes. It is not certain how
many fusion-competent spikes must exist on a virion for it to
retain infectivity, but it may be approximately a dozen (57).
Just as the complete loss of gp120 from some spikes does not
eliminate the infectivity of the entire virion, the binding of
antibodies to some fusion-competent spikes does not do so
either. Rather, the evidence suggests that the level of occu-
pancy of binding sites by antibody molecules must exceed an
antibody density threshold, after which the entire virion is
neutralized (87). On HIV-1, the occupancy of a limited num-
ber of fusion-defective or dead (postfusion form) spikes by
antibodies likely has minimal effects on virion infectivity, as
shown by the absence of neutralization by cluster I and II
anti-gp41 antibodies (6). The envelope glycoproteins are also
expressed on the surface of naturally infected or envelope-
transfected cells. In both cases, the expressed proteins can
mediate cell-cell fusion, so functionally active, native com-
plexes are clearly present. But so are defective species of en-
velope, often in abundance. These include complexes that have
lost their gp120 moieties (as occurs on virions) or protein
forms that have been improperly processed and so never form
a native, fusion-competent complex (see below).

ANTIGENIC SEROTYPES AND GENETIC SUBTYPES

Antigenic serotypes are defined primarily by antibody reac-
tivity with isolated components of the envelope glycoprotein
complex. The determination of antigenic serotypes is techni-
cally far easier than the determination of neutralization sero-
types, but the relevance of antigenic serotypes to vaccine de-
velopment is extremely limited. For instance, it is well
established that antibody reactivity with monomeric gp120 is
not predictive of reactivity with envelope spikes or neutralizing
ability (2, 34, 61, 68, 88, 98, 102, 117, 119). Thus, it is not
unusual to find sera that react with a given isolated monomeric
gp120 at titers of 105 or above but that have no significant
neutralizing titer against the primary virus expressing the cor-
responding gp120 in trimeric form on its surface.

Antigenic serotypes can frequently be related to genetic
subtypes. Peptides represent the easiest molecules to use for
the definition of antigenic serotypes. Peptides corresponding
to two linear epitopes are particularly noteworthy. One is the
immunodominant V3 loop epitope cluster on gp120; the other

is a poorly immunogenic epitope on gp41 defined by the
unique human MAb 2F5. Although there is clearly a secondary
structure to the V3 loop, its antibody epitopes are often con-
tinuous, so they can be represented by peptides and used in
simple serology assays with sera from infected people. Here,
there is a good correlation between the serotype and the ge-
netic subtype, to the extent that V3 loop peptide immunoas-
says can be used with some confidence to diagnose the genetic
subtype of the infecting strain (1, 19, 47, 59, 76, 80, 92). It
should be noted that because of the existence of recombinant
viruses, these measurements only serve to define a subtype for
the envelope sequence rather than the whole virus. These
assays are not perfect, but their simplicity renders them useful
whenever absolute precision is a luxury rather than a necessity.
Unfortunately, what is learned from V3 peptide assays is of
little or no value to vaccine design: the V3 loop is generally
only a weak cross-neutralization epitope on primary isolates
(89).

The 2F5 epitope is potentially much more important for
vaccine development, since this is one of the few sites on the
primary virus envelope that represents a real vulnerability from
the neutralizing antibody perspective (10, 24, 78, 95, 115). The
2F5 epitope is apparently linear, in that the 2F5 MAb binds to
the short peptide ELDKWA (94). Unfortunately, all attempts
to present this epitope to the immune system as a peptide, or
a peptide fragment within a more complex immunogen, have
failed to induce neutralizing antibodies (22, 33, 58, 77). This
probably indicates that the true epitope on the native complex
has a structure that is significantly affected by other regions of
gp41 and/or gp120. Nonetheless, it is possible, to some extent,
to pick out viruses that are sensitive or insensitive to the 2F5
MAb by inspection of the primary sequences within the
ELDKWA region of gp41 (115). How this relates to genetic
subtypes is as yet unclear.

The next level of antigenic complexity following peptides
that is used to define antigenic serotypes is monomeric gp120.
This protein contains several epitope clusters, many of which
are discontinuous in nature (73). Some of these are strong
neutralization epitopes for T-cell line-adapted viruses, includ-
ing the V3 loop and the CD4bs-related epitopes. When MAbs
are used to probe the topology of gp120s from multiple sub-
types, some patterns are observed that reveal a subtype depen-
dency to the antibody-recognition pattern (70, 134). Most of
the MAbs used in this sort of study were raised against subtype
B gp120s, either during natural infection of humans or after
gp120 immunization of animals. MAbs to the variable regions
of gp120 usually, but not invariably, recognize subtype B
gp120s more efficiently than they do gp120s from other sub-
types. Those that recognize more conserved regions of gp120
show a stronger degree of cross-subtype reactivity, in some
cases virtual panreactivity (70, 82) Unfortunately, these MAbs
almost never strongly neutralize multiple primary isolates,
even from within the same genetic subtype. This is because
epitope exposure on the native envelope glycoprotein complex
is much less than is found on the dissociated gp120 subunits
under the immunoassay conditions discussed above (68, 90,
98).

In serological studies using monomeric gp120, there can be
reasonable concordance between the genetic subtype of the
infecting virus and serum reactivity. Thus, sera from people
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infected with subtype A viruses tend to react better with sub-
type A gp120s than they do with gp120s from subtypes B, C, D,
etc. (59, 67, 118). This phenomenon probably reflects the im-
munodominance of the V3 loop epitope cluster in gp120-bind-
ing assays. This immunodominance, it is important to note, is
not seen in primary virus neutralization assays (59).

The above assays are reliable in that they generate readily
interpretable and reproducible results, even if those results
have little direct relevance to vaccine immunogen design.
Greater problems arise, however, with attempts to study more
complex forms of the HIV-1 envelope glycoprotein complexes,
notably those that are presented on the surfaces of virions of
virus-infected cells. Here, artifacts are a major concern, which
is why the results of such assays stand to cause significant
confusion within the HIV-1 vaccine field. The artifacts also
have an impact on any attempts to relate the results of cell- and
virion-antibody binding assays to neutralization assays. The
principal problem affecting the performance and interpreta-
tion of assays that attempt to measure antibody binding to the
native HIV-1 envelope glycoprotein complex is the heteroge-
neity of the spike structures on the virion and cell surfaces.
Thus, antibody binding to defective spikes does not affect
HIV-1 infectivity, yet antibody binding sites on defective spikes
can be dominant in the overall assay signal, as will be shown
below. The first example of difficulties in estimating neutraliz-
ing Ab by a direct binding assay arose from attempts to mea-
sure MAb binding to envelope glycoprotein complexes on the
surface of primary, CD41 T cells infected with HIV-1 primary
isolates (128, 134). Unfortunately, gp120 monomers dissociate
from the native complexes, or are otherwise secreted, and bind
to the CD4 antigen on the surface of the same or another cell.
These complexes of gp120 monomers with CD4 are good sub-
strates for antibody binding, because several immunodominant
epitopes are nicely exposed on the gp120-CD4 complex (73).
These include the V3 loop and the C5 region of gp120, both
epitope clusters that are substantially or completely seques-
tered on the native envelope glycoprotein complex (8, 55, 56).
Conversely, the CD4bs epitopes are occluded (by CD4) and so
MAbs to this site do not register in the assay, a feature that is
diagnostic of the problem and the underlying artifact (128,
134). This type of assay has no more practical value than a
simple capture enzyme-linked immunosorbent assay using a
gp120-CD4 complex as the test antigen. The assay is still being
used, for example, to evaluate the properties of vaccinee sera
where, in our view, it is suggested inappropriately that it mea-
sures antibody responses to native envelope glycoprotein com-
plexes (38).

As a second example of estimating neutralizing Ab by direct
binding, assays are being employed that rely on antibody bind-
ing to envelope species on cell lines transfected with an enve-
lope gene, with the suggestion that the signal derives from
native envelope glycoprotein complexes (37, 86). These assays
may, however, be compromised by the presence on the surface
of transfected cells of misfolded or improperly processed en-
velope glycoprotein complexes, on which at least some
epitopes are inappropriately expressed. Such defective com-
plexes are probably functionally inert, but they are not inert in
antibody-binding assays. Consequently, attempts to correlate
the two parameters of antibody binding and fusion inhibition
are fraught with difficulty; one can simply never be sure

whether the immunoassay signal is or is not derived from a
functional envelope glycoprotein complex. The most common,
but probably not the only, source of improperly constituted
envelope is the incomplete cleavage of gp160 into its gp120 and
gp41 components, an event mediated by the cellular protease
furin or related enzymes (27, 62, 111). Incomplete cleavage of
Env occurs to a much greater extent in Env-transfected cells
than in naturally infected cells. In a recent study employing this
method it was indeed shown that up to 75% of envelope on the
transfected cell surface existed in the form of immature gp160
(133). This is because the cellular proteases become saturated
when Env is overexpressed by virtue of the use of strong pro-
moters or more effective signal sequences, something which to
a degree can be overcome by cotransfection of additional furin
(7). Furthermore, the presence of Gag proteins affects the
organization of Env on the surface of transfected cells. In
infected cells and cells cotransfected with Env and Gag, the
Env glycoproteins are clustered at the sites of Gag assembly,
but in the absence of Gag, the Env glycoproteins are diffusely
scattered across the cell surface (42). Whether the absence of
Gag affects the structure of the envelope glycoprotein com-
plexes is not known, but there is evidence that the intracyto-
plasmic, Gag-interactive domain of gp41 has an influence on
the topology of the extracellular gp120-gp41 complex (109,
110).

More reliable results can be obtained from assays in which a
cell line is infected with HIV-1, provided that CD4 is down-
regulated at the time of the assay (105). Here, the envelope
glycoprotein complexes are apparently mostly present in the
form of assembling or budding virions (35, 85). Assays of this
type have been used to show that antibody binding to the
infected cell surface (read serotype) strongly correlates with
neutralization. Unfortunately, this assay has only been success-
fully used for cell line-adapted viruses (88, 102) and not yet for
primary isolates.

Assays that attempt to measure antibody binding to func-
tional envelope spikes by virion capture are also problematic
and form a third example of the difficulties in this area (37, 81).
Here again, a positive immunoassay signal does not necessarily
mean that an antibody has reacted with a functional envelope
complex capable of mediating infection. It may instead have
emanated from an antibody complex with a defective spike.
For instance, most gp41 epitopes are sequestered on a native
complex, but they are exposed when gp120 has dissociated
(105). This creates a fusion-defective spike with immunodom-
inant, yet nonneutralizing gp41 epitopes available for antibody
binding. Likewise, the virion reactivity of MAbs to nonneutral-
izing C5 epitopes on gp120 likely involves defective complexes;
there is ample evidence that this region of gp120 is involved in
gp41 binding and is thus substantially or completely inaccessi-
ble on the native complex (41, 130). Antibodies will certainly
bind to virions via defective spikes, but this is a result of little
practical value. Of course, some of the other spikes on the
same virion will probably still be fusion competent, so it can
legitimately be claimed that the gp41 epitopes are accessible
on infectious virions (81). But this is beside the point. The
nonneutralizing gp41 epitopes are not exposed on a native
complex, and it is to native complexes that a vaccine-induced
antibody must bind if a neutralizing antibody-based vaccine is
to be effective. Defective spikes on the virion or infected cell
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surface may have some relevance as targets for complement-
mediated virolysis or antibody-dependent cellular cytotoxicity,
but it is far from obvious that these immune mechanisms are at
the forefront of HIV-1 vaccine design.

NEUTRALIZATION SEROTYPES AND
GENETIC SUBTYPES

Multiple studies have been performed to investigate whether
genetic subtypes correspond to neutralization serotypes (51,
52, 60, 67, 83, 123). These involved testing panels of primary
HIV-1 isolates from multiple subtypes (usually A through E;
subtype E was represented by CRF01_AE viruses which have
an E envelope sequence) for the ability to be neutralized by
heterologous sera from people infected with viruses from de-
fined subtypes (again, usually A through E). Most commonly,
checkerboard analyses were carried out to see whether there
was any subtype-dependency to the patterns of neutralization
that were observed. These analyses are limited by the likeli-
hood that many viruses are circulating recombinant forms (see
above), something that was not understood at the time the
studies were performed. Nevertheless, the studies all con-
cluded that there was little or no relationship between the
genetic subtypes and what was observed in neutralization as-
says. Some sera had cross-subtype-neutralizing activity (usually
weak); some isolates were fairly easily neutralized; others were
resistant, but this was not subtype dependent. There is no
consistent evidence, for example, that sera from people in-
fected with subtype A viruses preferentially neutralized sub-
type A viruses (3, 51, 52, 67, 83, 123). One report did find that
subtypes B and E formed discrete neutralization serotypes
when compared directly against each other (60). The envelope
glycoproteins from subtypes B and E are at opposite ends of
the antigenic diversity spectrum, so if there was ever going to
be a subtype dependency to the outcome of neutralization
assays, it would probably be seen with these two subtypes.
However, no consistent discrimination between subtypes B and
E has been observed in several other studies (3, 51, 52, 59, 67,
83, 123). Overall, neutralization serotypes, in the conventional
sense of the phrase, are not apparent in these various studies.

The lack of correlation between genetic subtypes and neu-
tralization may seem intuitively surprising. It implies that the
sequence similarities that are sufficient to enable organization
of isolates into genetic subtypes are not important in defining
neutralization epitopes common to different isolates. Is then
the concept of neutralization serotypes just not useful for
HIV-1 because of the enormous sequence diversity of different
isolates? Put another way, are there so many serotypes that
they render facile any classification attempts? Highly potent
neutralizing responses that are essentially unique to a partic-
ular isolate have been described (references 20 and 107; see
below). The most persuasive evidence that some grouping of
primary isolates into neutralization serotypes may be possible
comes from the description of the few MAbs (e.g., b12, 2F5,
and 2G12) that are able to neutralize a sizeable proportion of
isolates (32, 89). Of note is the fact that these antibodies,
broadly speaking, do not significantly discriminate between
genetic subtypes. They are directed to relatively conserved
features of the envelope that are largely retained in an approx-
imately similar proportion of isolates from a given genetic

subtype (48, 91, 115). An exception exists for the broadly cross-
neutralizing human MAb 2G12. This does not recognize iso-
lates with subtype E envelopes because of an unusual struc-
tural feature (an additional disulfide bond) in the V4 loop
region that appears to be unique to the subtype E gp120
protein (115). It should be emphasized that these conserved
antigenic features appear to be very poorly immunogenic.
Thus, neutralizing antibodies against these epitopes do not
represent a significant fraction, if any, of the typical antibody
response against HIV-1 envelope in infected persons or people
immunized with experimental Env vaccines developed thus far
(11).

Apart from the triad of broadly cross-reactive neutralizing
antibodies described above, HIV-1 primary isolates can some-
times be neutralized by highly type-specific antibody prepara-
tions, such as autologous sera or MAbs against the variable
loops on gp120 (2, 23, 36, 121). An example of a highly potent
but isolate-specific neutralizing antibody response has been
studied in detail (20, 107). A serum sample from an HIV-1-
infected chimpanzee was shown to potently neutralize the au-
tologous virus but no other viruses against which it was tested.
In passive antibody transfer experiments, this serum could
protect macaques from infection with a simian-human immu-
nodeficiency virus that expressed the corresponding envelope
(107). The dominant epitopes targeted by the serum were
highly conformational and involved elements from all the hy-
pervariable loops of gp120 (20). Such an epitope specificity
explains the inability of the serum to cross-neutralize any other
primary isolates. Some MAbs against the V3 loop of HIV-1
have been shown to neutralize limited subsets of isolates within
a genetic subtype (2, 23). We suggest that it is this type of
cross-reactivity that would usually define a neutralization se-
rotype for a less variable virus. This line of thought suggests
that each genetic lineage of HIV-1 then consists of scores of
distinct neutralization serotypes. Although these types of neu-
tralizing antibody responses can protect against challenge with
a primary isolate (107), they have little practical value for the
development of a vaccine. This is the case even if that vaccine
were aimed at only a single genetic subtype or lineage of HIV-1
circulating in a single geographical area. The extent of HIV-1
diversity forces vaccine development to focus on the very
highly conserved HIV-1 epitopes that have thus far been
shown to be retained across subtypes. For the humoral re-
sponse, a genetic subtype-targeted approach to vaccine design
therefore seems currently unnecessary and without scientific
foundation.

In the absence of any truly useful information on neutral-
ization serotypes, what we should do? Are there any arguments
for a vaccine antigen that is closely matched to the locally
circulating strains? At present, we believe that concerns about
creating vaccines closely matched to local circulating HIV-1
strains are overstated from the standpoint of humoral immu-
nity, as implied above. For example, vaccines based on mono-
meric gp120 are not likely to become significantly more effec-
tive when formulated as a multivalent vaccine (derived from
multiple isolates or genetic subtypes) than they are as a mono-
valent formulation (40). Phase III vaccine efficacy trials are still
under way, but initial analyses of phase II trials with (mono-
valent) monomeric gp120 vaccines (prepared from SF2 and
MN strains) have indicated no obvious benefit in persons who
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experienced breakthrough infections. The distribution of in-
fected individuals in vaccinated and control groups further-
more was similar (40). Another analysis performed on a subset
of the same cases has suggested that the frequency of certain
signature sequences, particularly the V3 loop, in viruses de-
rived from breakthrough infections differ from historic virus
sequences from the same genetic subtype (4, 5). This diver-
gence, however, was not significant if all breakthrough cases
were considered (25). Nevertheless, it was suggested that skew-
ing of V3 loop sequences in selected viruses indicates the
presence of immune pressure on the challenge virus, allowing
only more variable viruses to break through, and thus mono-
meric gp120 vaccines should be combined in bivalent or mul-
tivalent formulations to block a broader range of viruses (4).
That analysis is controversial, as great emphasis is put on
sequences which do not appear to constitute a strong cross-
neutralizing epitope for primary isolates of HIV-1. It has in-
deed been clearly established that immunization with simple
gp120 or gp160 subunit vaccines does not induce antibodies
against broadly conserved neutralizing epitopes, not even at
low levels (40, 89). Antibodies against more variable and ex-
posed epitopes that are elicited by vaccines of this type may
neutralize the autologous virus and even a few closely envelope
sequence-related isolates. Such antibodies, however, are un-
likely to make an impact on the HIV-1 epidemic because of the
enormous issue of virus diversity (even within genetic sub-
types). A multivalent vaccine that induced neutralizing anti-
bodies only to variable epitopes could only be effective if it
included perhaps thousands of different subunit components,
and each individual component would have to be able to deal
with a measurable fraction of circulating strains: this seems
implausible, based on current knowledge.

In summary, the primary goal in this area should be to
design an immunogen that can be shown to elicit neutralizing
antibodies against a significant proportion of primary isolates
from any geographical area. If such an immunogen is devel-
oped, the corresponding sera should then be evaluated against
isolates from many geographical areas, including the target
area. This will reveal whether the immunogen could benefit
from some engineering to optimize neutralizing responses to
viruses from the target area; clinical trials can assist in vaccine
design, in an iterative process, if and when meaningful results
on virus neutralization are obtained. Our collective hope must
be that any real success at generating primary isolate-neutral-
izing antibodies with a practical immunogen could be exploited
rapidly, to generate variants of that immunogen able to
broaden the immune response. That seems to us to be more
important than worrying whether a subtype B protein could be
tested in Africa, a subtype A in Asia, etc. After all, the genetic
subtypes were not designated based on the antigenic or immu-
nogenic properties of the envelope glycoproteins and they do
not correspond to neutralization serotypes. It is to be hoped
that regional and national political considerations are not per-
mitted to override sound scientific arguments in the develop-
ment of an HIV-1 vaccine.
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