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Abstract: The triad of vascular impairment, muscle atrophy, and cognitive decline represents critical
age-related conditions that significantly impact health. Vascular impairment disrupts blood flow,
precipitating the muscle mass reduction seen in sarcopenia and the decline in neuronal function
characteristic of neurodegeneration. Our limited understanding of the intricate relationships within
this triad hinders accurate diagnosis and effective treatment strategies. This review analyzes the
interrelated mechanisms that contribute to these conditions, with a specific focus on oxidative stress,
chronic inflammation, and impaired nutrient delivery. The aim is to understand the common path-
ways involved and to suggest comprehensive therapeutic approaches. Vascular dysfunctions hinder
the circulation of blood and the transportation of nutrients, resulting in sarcopenia characterized
by muscle atrophy and weakness. Vascular dysfunction and sarcopenia have a negative impact on
physical function and quality of life. Neurodegenerative diseases exhibit comparable pathophysio-
logical mechanisms that affect cognitive and motor functions. Preventive and therapeutic approaches
encompass lifestyle adjustments, addressing oxidative stress, inflammation, and integrated therapies
that focus on improving vascular and muscular well-being. Better understanding of these links can
refine therapeutic strategies and yield better patient outcomes. This study emphasizes the complex
interplay between vascular dysfunction, muscle degeneration, and cognitive decline, highlighting the
necessity for multidisciplinary treatment approaches. Advances in this domain promise improved
diagnostic accuracy, more effective therapeutic options, and enhanced preventive measures, all
contributing to a higher quality of life for the elderly population.

Keywords: vascular diseases; vascular atrophy; cognitive dysfunction; neurodegenerative diseases;
oxidative stress; inflammation; aging; insulin resistance; nutrients; comorbidity
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1. Introduction

The growing prevalence of neurodegenerative diseases among the elderly highlights a
major challenge in modern medicine. These disorders, which include Alzheimer’s disease
(AD), Parkinson’s disease (PD), and other types of dementia, contribute significantly to cog-
nitive and motor decline in aging populations [1–4]. The pathogenesis of these conditions
is complex, involving a combination of genetic, environmental, and molecular factors that
result in progressive neuron loss and dysfunction [5–7]. This neurodegenerative process is
heavily influenced by age-related changes like oxidative stress, mitochondrial dysfunction,
and chronic inflammation [8–10]. Vascular impairment, muscular atrophy, and cognitive
dysfunction are intricately interconnected and form a triad [11–13]. Vascular diseases
impair blood circulation, resulting in a lack of vital nutrients and oxygen to the brain
and muscles. This can lead to serious conditions like sarcopenia and neurodegeneration.
Sarcopenia, a condition marked by a decline in muscle mass and function, is worsened
by inadequate vascular function, which hampers the flow of blood to the muscles and the
delivery of essential nutrients. Neurodegenerative diseases such as AD and PD are both
affected by vascular deficiencies, which contribute to oxidative stress, inflammation, and
damage to neurons [14–16].

Vascular impairment refers to a condition in which blood vessels restrict or hinder
the flow of blood to the upper and lower extremities. Within this particular framework,
certain crucial anatomical regions, such as the brain and muscular tissues, experience a lack
of oxygenated blood, resulting in potential harm or injury [17–19]. Cerebral small vessel
disease (SVD) increases the risk of stroke, cognitive impairment, and dementia [20–22]. This
occurs because the blood vessels in the brain experience small subcortical infarcts, lacunes,
enlarged perivascular spaces, microbleeds, and atrophy [23–25]. These circumstances cause
insufficient blood circulation in the brain, leading to inadequate perfusion. Hypertension,
smoking, aging, and diabetes are factors that contribute to the occurrence of SVD [26–29].

Hypertension is a significant risk factor that contributes to cognitive decline [30–32].
This condition disrupts the structure and functional integrity of the blood vessels in the
brain [33–35]. Furthermore, the depletion of calcium and impairment of contractile function,
along with the augmentation of the extracellular matrix, induce significant alterations in the
blood supply to specific regions of the body [36–38]. This exacerbates vascular reactivity,
leading to dilation, tortuosity, and the formation of microaneurysms, while also diminishing
the blood flow to the brain [39–41]. Cerebral vascular injury encompasses a range of
conditions that impact the structure and function of blood vessels in the brain, thereby
affecting cognitive function. Among these conditions, brain infarctions without apparent
symptoms, white matter hyperintensities (WMHs), microinfarctions, and microsurgeries
are highlighted [42–44]. Furthermore, it is essential to take into account the dysfunction
of the blood–brain barrier, events with interstitial fluid drainage, alterations in cerebral
blood flow, and damage to myelin [45–47]. Image markers such as WMHs, microsangrings,
microinfarcts, cortical superficial siderosis, enlarged perivascular spaces, and large infarcts
are commonly employed for the accurate diagnosis of cerebral vascular lesions [48–51]
(Figure 1).

Sarcopenia is a pathological condition characterized by a significant decline in muscle
strength (dynapenia), mass (quantity), and function (quality) [52–54]. This condition
can result in a decrease in motor coordination, an increased risk of bone fractures, and
difficulties in performing everyday activities. It can also lead to mortality [55–59]. Age-
related vascular alterations, such as decreased muscle perfusion, hinder the delivery of
nutrients and oxygen. Consequently, the presence of inefficient blood vessels caused
by arterial stiffness and arteriolosclerosis can lead to a decrease in lean muscle mass,
ultimately causing sarcopenia [18,60–62]. Chronic inflammatory processes, oxidative stress,
insulin resistance, and impaired blood flow, all resulting from endothelial dysfunction
and calcification of skeletal muscle vasculature, play a crucial role in the development of
sarcopenic conditions [63–65]. Furthermore, as individuals age, their muscles and blood
vessels become less responsive to insulin, resulting in decreased microvascular blood
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flow [66–68]. This reduction in blood flow leads to a decrease in the supply of amino acids,
as insulin plays a crucial role in redirecting blood flow from non-nutritive capillaries to
nutritive capillaries. Additionally, insulin activates endothelial nitric oxide in the arterioles
of the pre-capillary muscle, which in turn increases the surface area of the capillary for the
exchange of nutrients [62,69–71].
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Figure 1. Vascular impairment and cognitive dysfunction: The vascular system serves numerous
functions within the human body. When it is not functioning properly, it is associated with risk
factors such as hypertension, aging, and diabetes. The vascular system possesses the capacity to
expand the perivascular spaces, promote microhemorrhage and atrophy, and facilitate subcortical
infarctions. In this specific scenario, especially within the brain, the blood–brain barrier may undergo
a decline in functionality and be impacted by disorders in the endothelial cells, as well as the
presence of defensive substances such as fibrinogen, thrombin, and immunoglobulin. The outcome
is a heightened susceptibility to the occurrence of stroke, cognitive decline, dementia, Alzheimer’s
disease (AD), and Parkinson’s disease (PD).
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Muscle is intricately connected to nerve tissue through the process of innervation.
In the sarcopenic condition, there is a particular event in which the loss of nerve supply
primarily affects fast muscle fibers, which then regain nerve supply from slow-twitching
motor neurons [52,72]. Consequently, the number of slow-twitch fibers increases, explain-
ing the slow movements that are seen as people age [73,74]. When there is inadequate
blood flow and therefore insufficient supply of nutrients to the muscles, along with the
occurrence of neurological disorders, a reciprocal relationship is formed. This indicates
that sarcopenia can worsen neurological conditions and vice versa [75,76]. As a result, the
degenerative condition deteriorates, causing a decrease in nerve supply, reduced ability
to regenerate, and impaired functioning of mitochondria, sarcoplasm, and calcium ions
in muscle fibers [77–80]. Furthermore, sarcopenia can alter the microstructure of both the
parietal grey matter and white matter, resulting in decreased brain volumes either overall
or in specific regions [81–83]. Another contributing factor to sarcopenia is the presence
of increased muscle fat infiltration (MFI). This indicates a lower quality of muscle and is
linked to thinner cortical thickness in specific regions of the brain, as well as a decrease in
the volume of gray matter in both the brain and cerebellum. Additionally, MFI is associated
with reduced muscle strength, impaired function, and an increased risk of mortality in
adults [84–86]. Sarcopenia encompasses not only muscular pathology but also encompasses
neurological alterations [13,87]. Whether the changes in nerve supply, either due to normal
bodily processes or disease, contribute to the worsening of muscle strength and physical
performance in sarcopenia. The changes involve the instability of the neuromuscular
junction or alterations in myo-fibrous calcium homeostasis. Furthermore, sarcopenia is
associated with cerebral decline, and decreased physical performance, such as reduced
handgrip strength, gait speed, and the chair stand test which is used to verify particularly
the quadriceps muscles [88–93].

Finally, it is crucial to consider the inseparable relationship between vascular diseases,
sarcopenia, and neurodegeneration. Inadequate nutrient supply weakens arteries, leading
to sarcopenia, a condition where essential alterations in the vascular body system can
cause injuries in the muscular tissue. Arterial stiffness, the accumulation of fatty material
and calcium in the arterial walls leading to the obstruction of blood flow, is a peripheral
arterial disease that affects the blood supply to other tissues. It can also cause abdominal
aortic aneurysm (AAA) and various other harmful changes in the blood vessels, which
can disrupt the balance between the vascular, muscular, and cerebral environments [94].
Simultaneously, inadequate blood flow to the brain hinders the optimal growth of the
nervous system, potentially resulting in neurodegenerative disorders such as AD [95–99].

The complex interplay of vascular disease, sarcopenia, and neurodegeneration, known
as the inseparable triad, has received little attention, particularly in terms of understanding
their common pathophysiological mechanisms. Vascular disorders hinder the flow of
blood, leading to insufficient delivery of nutrients to both muscle and brain tissues. This
exacerbates the symptoms of sarcopenia and neurodegenerative disorders such as AD and
PD. While the specific impacts of these conditions are recognized, the exact biochemical
and cellular processes that link them together are not completely comprehended. This
review aims to fill the existing knowledge gap by investigating the role of arterial stiff-
ness, oxidative stress, and chronic inflammation caused by vascular dysfunction in the
development of muscle atrophy and cognitive decline. Additionally, it investigates the
impact of sarcopenia on vascular and neurological health, exacerbating a detrimental cycle.
The review seeks to clarify these mechanisms in order to emphasize the importance of
integrated therapeutic strategies that focus on the triad. This approach aims to enhance the
diagnosis, treatment, and prevention of age-related health issues, ultimately improving the
quality of life and reducing illness and death rates among older individuals.
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2. Vascular Diseases

The vascular network is an intricate arrangement comprising three distinct layers:
intimate, medium, and adventitious. These layers possess various histological, biochemical,
and functional attributes that are crucial for maintaining vascular balance and regulat-
ing the vascular response to stress or injury [100,101]. Additionally, they play a role in
differentiating between different types of blood vessels [102]. Vascular diseases disrupt
the structural integrity and functional capacity of blood vessels, leading to damage to
the heart, brain, kidneys, muscles, and other organs [103,104]. The cells responsible for
maintaining vascular homeostasis, which is the balance of blood vessels, are negatively
affected by reactive oxygen species (ROS), chronic inflammation, alterations in blood flow,
and metabolic factors such as elevated blood sugar levels, insulin, and certain types of
lipids. On the other hand, compounds like polyphenols, amino acids, and omega-3 fatty
acids can slow down the process of aging [105,106].

2.1. Pathophysiology and Causes of Vascular Diseases

Vascular diseases can be seen as the underlying cause of the development of ionic
problems due to their promotion of a vasoconstrictor, pro-inflammatory, and pro-thrombotic
environment, which leads to impaired regulation of the endothelium [107–109]. Thus,
various anatomical regions may experience inadequate blood circulation, resulting in tissue
damage and impaired growth. One possible explanation for this situation is endothelial
senescence, which refers to the aging of the endothelial cells [110,111]. This aging process
plays a significant role in the development of various health issues, including stroke,
vascular dementia (VD), macular degeneration, obstructive sleep apnea, atherosclerosis,
myocardial infarction, pulmonary hypertension, diabetes, renal failure, peripheral arterial
disease, erectile dysfunction, and diabetic foot [112–115].

Cerebrovascular pathologies are strongly linked to neurological dysfunction [116,117].
Alterations in the blood–brain barrier (BBB) can contribute to or exacerbate the progression
of neurodegenerative disorders [118,119]. Dysfunction in ion transport within the BBB is
associated with acute brain damage and various neurological disorders, such as stroke,
epilepsy, multiple sclerosis, VD, AD, and PD [120–122]. However, in order for this scenario
to happen, certain conditions must be met. These conditions include the leakage of blood
components such as fibrinogen, thrombin, albumin, and immunoglobulin G (IgG) from
the cerebral capillaries, the accumulation of these components around the blood vessels,
the degeneration of pericytes and endothelial cells, the breakdown of the BBB and tight
junctions, and the leakage of red blood cells. All of these conditions are associated with
vascular dysfunctions, which further confirms the connection between the vascular and
nervous systems [123–125]

Coronary artery disease (CAD) is a form of vascular pathology. Atherosclerosis results
in the constriction of arteries, which diminishes the circulation of blood to the brain and
may as well result in transient ischemic attacks or strokes [126,127]. AAA is a vascular
disease characterized by the delicate balance in rupture risk, presence of comorbidities, and
intervention-related complications [128,129], which can lead to a potentially fatal rupture.
Although CAD and AAA are separate conditions, they both arise from the abnormal
remodeling of the blood vessel walls [130,131]. The vascular middle layer undergoes a
structural alteration, mainly consisting of vascular smooth muscle cells (VSMCs), which
leads to the formation of lesions and diseased blood vessels. Key features comprise
the absence of the intimal layer, persistent inflammation, and the degradation of elastic
fibers [132–134].

Vascular calcification (VC) is a type of vascular disease characterized by the accumula-
tion of calcium phosphate complexes in the walls of arteries [135]. While VC is commonly
associated with the natural aging process, it has also been linked to the development of
vascular diseases such as diabetes, atherosclerosis, and chronic kidney disease [136–138].
Nevertheless, the vascular system is intricately linked to all other systems within the body,
thereby rendering the brain and muscles susceptible to potential harm arising from this
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vascular condition. The pathogenic process can be caused by pro-inflammatory cytokines
such as interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor alpha, and transforming growth
factor beta (TGF-beta) [139]. These cytokines stimulate the differentiation of VSMCs into
bone-forming cells and the formation of calcifications [140]. In addition, IL-29 plays an
important role in immunomodulation as other interferons, via the activation of signaling
pathways inducing the generation of inflammatory components. The atypical expression
of IL-29 in VC-related disease hastened the process of VSMC osteogenic transformation
and calcification in the presence of calcification medium (cap) by activating Janus kinase 2
(JAK2)/signal transducer and activation of transcription signaling 3 (STAT3) [141–145].

2.2. Effects on Blood Flow and Nutrient Delivery

Vascular dysfunction profoundly affects blood circulation and nutrient transportation
through various intricate mechanisms. One key issue is the malfunction of the vascular en-
dothelium, which impairs the synthesis of nitric oxide, an essential vasodilator responsible
for regulating blood circulation and pressure. This dysfunction leads to increased vascular
resistance and reduced tissue perfusion [146,147]. Chronic inflammation and oxidative
stress exacerbate endothelial dysfunction, promoting the development of atherosclero-
sis [148,149]. Additionally, metabolic diseases like diabetes and obesity contribute to
vascular impairment by inducing insulin resistance, which disrupts normal vascular func-
tion and nutrient transport [150,151]. Impaired cerebral autoregulation, often caused by
metabolic and vascular disorders, reduces the brain’s ability to maintain consistent blood
flow, impacting cognitive function and increasing the risk of death [152,153]. Sarcopenia
results from decreased blood flow to the muscles, limiting oxygen and nutrient supply.
These interdependent mechanisms highlight the importance of preserving vascular health
to ensure adequate blood circulation and nutrient transportation, essential for preventing
and managing conditions like sarcopenia and cognitive decline.

Vascular diseases also significantly impact blood flow and nutrient delivery, leading
to a cascade of health problems. Atherosclerosis decreases blood flow and reduces the
supply of oxygen and vital nutrients to tissues and organs. This can cause ischemia, where
tissues experience a lack of blood supply, leading to pain and impaired function [154,155].
Reduced blood flow in the coronary arteries can result in angina or heart attacks, while in
the peripheral arteries, it can cause peripheral artery disease (PAD), leading to pain and
impaired mobility [156,157]. Hypertension, a prevalent vascular ailment, can gradually
damage blood vessels, reducing their effectiveness in carrying blood and essential nutrients.
This can affect the kidneys, leading to renal failure, or the brain, increasing the risk of
strokes [158,159].

Moreover, diminished blood circulation caused by vascular disorders can impede
wound healing and heighten susceptibility to infections, as tissues are deprived of sufficient
nourishment and immune cells [160,161]. When the vascular system is compromised, the
body’s ability to transport white blood cells to areas of injury or infection is impaired,
leading to prolonged healing times and increased vulnerability to infections. Additionally,
the reduced supply of nutrients and oxygen hampers cellular repair and regeneration,
exacerbating tissue damage and dysfunction [162,163]. The overall impact on the body’s
systems can be profound, affecting everything from physical mobility to cognitive function,
underscoring the critical role of vascular health in maintaining overall well-being.

2.3. Consequences for Brain and Muscle Health

Vascular diseases have profound consequences for brain health, primarily through
conditions such as stroke and VD [164,165]. When blood flow to the brain is restricted, as
in the case of a stroke, brain cells are deprived of oxygen and essential nutrients, leading to
cell death and potential loss of function. This can result in a range of neurological deficits,
including paralysis, speech difficulties, and cognitive impairments, depending on the area
of the brain affected. Chronic conditions like hypertension can also lead to small vessel
disease in the brain, which is associated with cognitive decline and VD [20,166]. VD is the
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second most common form of dementia after AD and is characterized by problems with
reasoning, planning, judgment, and memory [167,168]. These impacts not only affect the
individual’s quality of life but also place a significant burden on caregivers and healthcare
systems [169,170]. Furthermore, reduced cerebral blood flow can cause chronic conditions
such as transient ischemic attacks (TIAs), which are temporary episodes of neurological
dysfunction that increase the risk of major stroke [171,172].

The consequences of vascular diseases on muscle health are equally significant. Poor
blood circulation due to conditions like PAD can lead to muscle pain, cramping, and weak-
ness, particularly during physical activity [173,174]. This condition, known as claudication,
results from inadequate oxygen delivery to the muscles, causing them to tire quickly and
function less effectively [175]. Over time, the reduced blood flow can lead to muscle at-
rophy and loss of strength, further impairing mobility and overall physical health [176].
Additionally, the impaired delivery of nutrients and removal of metabolic waste products
can exacerbate muscle fatigue and delay recovery from injuries. In severe cases, chronic
insufficient blood flow can lead to critical limb ischemia, which may necessitate surgical
intervention or even amputation. Poor vascular health can also result in chronic venous
insufficiency, where blood pools in the veins, causing swelling, pain, and skin changes in
the legs [177].

Moreover, diminished blood circulation caused by vascular disorders can impede
the healing process of wounds and heighten the susceptibility to infections, as tissues
are deprived of sufficient nourishment and immune cells [178,179]. When the vascular
system is compromised, the body’s ability to transport white blood cells to areas of injury
or infection is impaired, leading to prolonged healing times and increased vulnerability
to infections. Additionally, the reduced supply of nutrients and oxygen hampers cellular
repair and regeneration, exacerbating tissue damage and dysfunction [180,181]. The overall
impact on the body’s systems can be profound, affecting everything from physical mobility
to cognitive function, underscoring the critical role of vascular health in maintaining overall
well-being. Vascular diseases can also contribute to the development of conditions like
diabetic foot ulcers, which are difficult to heal and can lead to severe complications if not
properly managed [182].

2.4. Current Treatments and Management Strategies

Presently, the management of vascular diseases involves a blend of modifications in
lifestyle, pharmaceutical interventions, and surgical interventions. Implementing lifestyle
changes, such as adhering to a diet that promotes heart health, regularly participating in
physical activity, ceasing smoking, and effectively managing stress, are essential for prevent-
ing and controlling vascular diseases [183,184]. Pharmacological interventions encompass
the administration of antihypertensive medications such as Lisinopril to regulate blood
pressure, statins like Atorvastatin to reduce cholesterol levels, anticoagulants like Warfarin
to prevent the formation of blood clots, and antiplatelet drugs like Aspirin to enhance
blood circulation [185–188]. In more severe cases, surgical procedures such as angioplasty,
stenting, and bypass surgery are employed to restore sufficient blood circulation [189–191].
Angioplasty involves using a balloon to open narrowed arteries, stenting involves placing
a stent to keep arteries open, and bypass surgery creates a new pathway for blood to
flow around blocked arteries. These treatments, often used in combination, help manage
symptoms, improve quality of life, and reduce the risk of severe complications such as
heart attack and stroke.

Herbal compounds have demonstrated promise as adjunctive therapies for vascular
diseases [192–195]. For instance, garlic (Allium sativum), rich in allicin, has been proven ef-
fective in lowering blood pressure and improving arterial elasticity [196]. Ginkgo biloba, for
example, improves blood circulation and reduces oxidative stress thanks to its antioxidant
properties [197]. In addition, hawthorn (Crataegus species) is employed for the treatment
of cardiovascular conditions by expanding blood vessels and enhancing blood circula-
tion [198,199]. Terminalia arjuna is known for its cardioprotective properties, which help in



Biomedicines 2024, 12, 2096 8 of 37

the treatment of heart failure and ischemic conditions [200–202]. These herbal remedies
provide a comprehensive approach, improving the effectiveness of traditional treatments
while reducing adverse effects. Ongoing research and standardization are essential for
the complete integration of these natural compounds into conventional medical practice,
guaranteeing their safety and effectiveness.

3. Sarcopenia

Sarcopenia is a degenerative and widespread condition affecting the skeletal mus-
cles. It is characterized by a gradual decrease in muscle mass and strength, resulting
in diminished physical abilities, heightened vulnerability, increased likelihood of falling,
and potentially fatal consequences [203–205]. This condition predominantly affects older
adults and significantly impacts their quality of life and independence. Sarcopenia’s patho-
physiology encompasses various contributing factors. There is a rise in the apoptotic
activity of myofibrils, which are the essential contractile units of muscle fibers, resulting
in muscle degradation [206–208]. In addition, a decrease in the quantity of alpha-motor
neurons, which play a crucial role in muscle contraction, also contributes to muscle weak-
ness [209,210]. Reduced levels of anabolic hormones, such as testosterone and growth
hormone, worsen muscle loss in the body due to hormonal imbalances [207,211,212]. In
addition, increased concentrations of pro-inflammatory cytokines, which are molecules
that transmit signals to promote inflammation, are essential in the advancement of sar-
copenia [213–215]. The condition is primarily caused by vascular dysfunctions that hinder
blood flow and nutrient delivery to muscles, resulting in energy deficiency. Understanding
the various factors that contribute to sarcopenia is crucial for creating accurate diagnostic
methods and effective treatment approaches to reduce its effects on the aging popula-
tion [216,217].

3.1. Pathophysiology and Contributing Factors

Sarcopenia’s pathophysiology encompasses a multitude of metabolic disorders.
Metabolic syndrome (MetS), which is defined by the accumulation of fat in the abdominal
area, high blood pressure, impaired ability to regulate blood sugar levels, and abnormal
levels of lipids in the blood, plays a major role [218,219]. This syndrome induces a state
of chronic inflammation characterized by continuous oxidative stress, release of inflam-
matory cytokines, malfunction of mitochondria, and resistance to insulin [220,221]. These
factors hinder the survival of cells, resulting in the death of myocytes and the loss of
muscle mass [218,222]. In addition, the malfunction of the renin–angiotensin–aldosterone
system worsens sarcopenia by hindering the circulation of blood and the supply of nu-
trients to muscles [223,224]. Cellular senescence pathways, which involve the aging and
deterioration of cells, also contribute to muscle degradation [225,226]. The reduction in
growth hormone diminishes anabolic processes that are crucial for the maintenance of mus-
cle [212,227]. High levels of myostatin, a growth factor that hinders muscle growth, also
have a crucial function [228,229]. Ultimately, denervation, which refers to the deprivation
of nerve supply to muscles, results in muscle atrophy and the subsequent decline in muscle
function [230,231]. The combination of these factors results in a complicated interaction of
metabolic disruptions and inflammatory reactions that contribute to the advancement of
sarcopenia [232,233]. This emphasizes the necessity for diverse therapeutic strategies to
reduce muscle loss and maintain physical function [234–236].

The cardiovascular system undergoes physiological changes as a result of vascular
aging and prolonged exposure to risk factors, such as hypertension and hyperglycemia.
These changes result in an elevation in arterial rigidity [237–240]. Arterial stiffening leads
to inadequate blood supply in different parts of the body, worsening hypertension and
establishing a vicious cycle of vascular decline and compromised blood circulation [241,242].
Arterial stiffness varies in different parts of the arterial tree. Central arteries, such as the
aorta, may undergo distinct stiffening mechanisms compared to peripheral arteries, because
of differences in their structure and function [243,244]. Consequently, this difference in
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rigidity can lead to different levels of damage in tissues, such as nervous and muscular
tissues. Arterial stiffening hampers the transportation of oxygen and nutrients, leading
to localized tissue underdevelopment or degeneration. These conditions are aggravated
by chronic inflammation and oxidative stress, resulting in cellular damage and a decrease
in functionality. The decrease in flexibility and functioning of blood vessels disturbs the
overall balance of the body, emphasizing the significance of addressing vascular health in
order to avoid systemic complications linked to aging [245,246].

Milk fat globule-EGF factor 8 protein (MFG-E8), also referred to as lactadine, is a pro-
tein found on the surface of epithelial cells that plays important roles in anti-inflammatory
mechanisms and the regeneration of tissues [247]. Nevertheless, the negative consequences
of this are associated with the process of arterial aging and the deterioration of neuro-
muscular junctions [248,249]. This protein is essential in the progression of sarcopenia,
specifically due to its influence on vascular functions [250]. MFG-E8 functions as a signal
provider that prompts the binding of dying cells to macrophages, serving as a crucial
mediator of inflammation in a range of conditions such as cardiovascular diseases, arterial
dysfunctions, sarcopenia, and the disruption of neuromuscular junctions [251,252]. As
sarcopenia progresses, the expression of MFG-E8 increases, which hinders the process of
mitophagy by reducing the levels of important components like Parkin, PTEN-induced
kinase 1 (PINK1), and microtubule-associated proteins 1A/1B light chain 3B (LC3B)-II/I
ratio. The suppression of mitophagy results in cellular harm and contributes to the dete-
rioration and feebleness of muscles. In addition, the buildup of MFG-E8 in the walls of
arteries and neuromuscular junctions worsens cardiovascular diseases and sarcopenia as
people age. This emphasizes its double function in both repairing tissues and contributing
to disease processes.

Furthermore, it is worth noting that specific medications can induce a decline in
muscle mass and strength due to adverse drug reactions. Statins not only help prevent
cardiovascular disease, but also cause a variety of skeletal muscle symptoms, ranging
from muscle pain to statin-induced myopathy, with or without elevated levels. The
mechanism of this condition is caused by mitochondrial dysfunction and reduced levels
of coenzyme Q10, which is a result of chloride antagonism at the muscle membrane.
Furthermore, they enhance the activation of programmed cell death and atrophin-1
through the attachment of a prenyl group to small guanosine triphosphate (GTP)ases
belonging to the Rho family. This leads to a reduction in the size of muscle fibers,
an increase in the breakdown of muscle proteins, and an upregulation of myostatin
expression in the muscle. The risk of developing sarcopenia, a condition characterized
by the loss of skeletal muscle mass, is increased by the induction of hypoglycemia
caused by diabetes control drugs. The closure of adenosine triphosphate (ATP)-sensitive
potassium channels in muscle is an additional pathway that can lead to muscle atrophy
through apoptosis and decrease muscle protein. Glucocorticoids ultimately hinder the
function of fast contraction muscles (type II fibers), which have a high concentration
of glucocorticoid receptors, as well as muscles that contain a combination of different
fiber types. These substances hinder the growth of muscle proteins and promote their
breakdown. Specifically, they prevent the absorption of amino acids needed for muscle
protein synthesis in muscle fibers and hinder the activation of protein 1 binding of the
eukaryotic translation initiation factor 4E and the ribosomal protein S6 kinase 1, which
are responsible for stimulating muscle protein growth [253–256] (Figure 2).
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can lead to reduced nutrition and minimal oxygen supply to cells. In this context, reactive oxygen
species (ROS) are formed due to energy problems in the cell, forming pro-inflammatory cytokines
such as IL-6 (interleukin-6), IL-8, tumor necrosis factor alpha (TNF-α), and transforming growth
factor beta (TGF-β). In addition, excess interleukin-29 (IL-29) exocytosis worsens vascular problems
by activating Janus kinase 2 (JAK2) and signal transducer and activation of transcription signal 3
(STAT3). This scenario, associated with impaired muscle synapses, may result in sarcopenia, impacts
on quality of life and usual activities, and increasing mortality.

3.2. Sarcopenic Obesity

Additionally, it is important to note the presence of sarcopenic obesity (SO) in the
context of sarcopenia. SO is characterized by the simultaneous occurrence and worsening of
sarcopenia as a result of increased adipose tissue [257,258]. This condition has recently been
acknowledged by the European Society for Clinical Nutrition and Metabolism (ESPEN) and
the European Association for the Study of Obesity (EASO) [259]. The clinical consequences
of SO are considerably more severe than those observed in cases of sarcopenia or obesity
occurring independently. This condition exhibits common underlying mechanisms with
other diseases, including cancer, cardiovascular diseases, and kidney diseases [260–262].
These mechanisms include inflammation, oxidative stress, and insulin resistance, which
are recognized as important factors in the development of this disease [263–265]. The
screening for SO is conducted by assessing the concurrent presence of a high body mass
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index (BMI) or increased abdominal circumference, along with a change in body muscle
composition [260,266,267].

Both obesity and sarcopenia are major contributors to the development of demen-
tia [268,269]. Obesity increases the levels of pro-inflammatory cytokine IL-6 and negatively
affects the ability of synapses to change and the formation of new neurons [270]. This
ultimately leads to a decline in cognitive function. Increased levels of IL-6 interfere with the
regular functioning of neurons and impede the formation of new neural connections, which
are crucial for preserving cognitive functions [271]. In addition, myokines, such as irisin,
which are released by muscles during physical activity, have a vital impact on neurological
well-being [272,273]. Irisin governs the polarization of microglia, stimulates astrocytes,
and adjusts insulin signaling and neuroinflammation in neurons, thus promoting brain
health and cognitive functions [274–276]. Sarcopenic obesity worsens neurodegeneration
and is associated with cardiovascular disease (CVD), cerebrovascular disease, diabetes,
and depression [277–279]. This condition results in decreased physical activity, which
further hampers muscle and cardiovascular health, all of which are crucial for sustaining
cognitive function. Moreover, sarcopenic obesity diminishes the brain’s neuroprotective
framework, increasing the risk of neurodegenerative diseases. Hence, it is imperative to
tackle both obesity and sarcopenia by implementing specific interventions, such as advo-
cating for physical activity and controlling inflammation [280]. This is essential in order to
reduce their collective influence on neurodegeneration and overall well-being, ultimately
improving the quality of life for those affected [269,281–283].

3.3. Relationship between Vascular Disease and Sarcopenia

Sarcopenia is frequently linked to CVDs. Studies indicate that there is a higher occur-
rence of sarcopenia in individuals with CVDs, suggesting a direct relationship between
the two conditions [284,285]. Vascular diseases exacerbate sarcopenia by obstructing blood
flow and impeding the supply of nutrients to muscle tissues, resulting in muscle atrophy
and weakness [286,287]. The inadequate perfusion of muscles deprives them of essen-
tial oxygen and nutrients, leading to muscle cell apoptosis and reduced regenerative
capacity [288,289]. This is particularly evident in conditions such as PAD, where reduced
blood flow to the limbs accelerates muscle degradation [286]. Moreover, the inflamma-
tory mechanisms and oxidative stress linked to vascular disorders further worsen muscle
breakdown [290]. Chronic inflammation, a common feature of vascular diseases, elevates
levels of pro-inflammatory cytokines such as TNF-α and IL-6, which promote muscle
catabolism [214]. Oxidative stress, caused by an imbalance between the production of ROS
and the body’s ability to detoxify these reactive intermediates, causes cellular damage and
apoptosis in muscle cells [291,292]. Metabolic diseases like diabetes and obesity exacer-
bate these processes by causing insulin resistance [218,265,293]. Insulin resistance impairs
muscle protein synthesis and increases protein degradation, further contributing to sarcope-
nia [294,295]. Thus, the interplay between vascular dysfunction, inflammation, oxidative
stress, and metabolic disorders creates a vicious cycle that accelerates muscle deterioration.

Conversely, sarcopenia can accelerate the progression of CVDs by reducing levels
of physical activity, which are crucial for preserving cardiovascular well-being [284,296].
Muscle weakness and fatigue associated with sarcopenia limit the ability to engage in
regular physical exercise, leading to a sedentary lifestyle. This reduction in physical activity
contributes to worsening cardiovascular risk factors, including obesity, hypertension, and
dyslipidemia [297]. The connection between sarcopenia and vascular dysfunction is further
affected by insulin resistance and chronic inflammation, resulting in the development of
metabolic syndromes [218,298]. Insulin resistance not only affects glucose metabolism
but also impacts lipid metabolism, leading to an increased risk of atherosclerosis and
other cardiovascular conditions [299,300]. Therefore, it is essential to simultaneously
address sarcopenia and vascular diseases through integrated therapeutic approaches that
specifically focus on improving vascular health and muscle function [301]. This approach
has the potential to improve overall well-being and decrease the mortality rate among
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elderly individuals. Early detection and comprehensive treatment strategies are crucial for
managing both sarcopenia and vascular diseases [284,302]. Therapeutic interventions may
include resistance training, nutritional supplementation, and pharmacological treatments
aimed at reducing inflammation and oxidative stress [303–305]. Implementing lifestyle
modifications, such as regular physical activity and a balanced diet, can also help mitigate
the adverse effects of these conditions [306,307]. By addressing the interconnected pathways
that contribute to both sarcopenia and vascular dysfunction, healthcare providers can
enhance patient outcomes and quality of life, particularly in the aging population.

3.4. Impact on Physical Function and Quality of Life

Sarcopenia profoundly affects physical function and quality of life, particularly among
the elderly [308,309]. As muscle mass diminishes, individuals experience a decrease in
physical performance, which can manifest as reduced walking speed, impaired balance, and
difficulty performing daily activities. This decline in physical capabilities increases the risk
of falls and fractures, leading to a cycle of further inactivity and muscle deterioration. The
reduction in muscle strength, a hallmark of sarcopenia, directly impacts the ability to carry
out essential tasks such as climbing stairs, rising from a chair, or carrying groceries. Studies
indicate that sarcopenia is significantly associated with lower physical performance, which in
turn limits the ability to live independently and increases dependency on caregivers [310,311].
This loss of independence significantly impacts daily living, as older adults may struggle with
personal care activities, household chores, and mobility, increasing their reliance on others
and diminishing their sense of autonomy.

The decline in muscle health due to sarcopenia also has substantial implications
for quality of life. Quality of life encompasses not just physical well-being, but also
emotional, social, and psychological health. Sarcopenia-related impairments can lead to a
sedentary lifestyle, contributing to obesity and metabolic disorders, which further degrade
health status [312]. The inability to engage in social activities and hobbies due to physical
limitations can result in social isolation, depression, and anxiety [313]. Additionally, the
fear of falling or getting injured often prevents sarcopenic individuals from participating
in physical exercise or outdoor activities, exacerbating their condition [314,315]. Research
shows that health-related quality of life is significantly reduced in sarcopenic patients, with
notable declines in physical functioning, vitality, and general health perception [308,316].
These psychological and social factors create a feedback loop that further diminishes the
overall quality of life, as individuals may withdraw from social interactions and lose
confidence in their physical abilities.

Furthermore, the economic and social burdens of sarcopenia are substantial [317,318].
Increased healthcare costs due to frequent hospitalizations, long-term care needs, and
rehabilitation services place a significant financial strain on both individuals and healthcare
systems. Families and caregivers also bear the emotional and physical stress of caring for
sarcopenic individuals. The added responsibilities can lead to caregiver burnout, emotional
distress, and reduced quality of life for the caregivers themselves. Comprehensive man-
agement strategies focusing on resistance training, nutritional interventions, and medical
treatments are crucial in mitigating the impact of sarcopenia [319,320]. Early detection and
targeted therapies can help maintain muscle mass and function, thereby improving physical
performance and enhancing the quality of life for those affected [321]. Studies suggest
that regular physical activity and strength training can help preserve muscle mass and
strength, potentially delaying the onset of sarcopenia and its associated complications [322].
Ultimately, addressing sarcopenia holistically can lead to better health outcomes and reduce
the societal and economic burdens associated with this condition, emphasizing the need
for integrated care approaches that consider the physical, emotional, and social dimensions
of health.
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3.5. Strategies for Prevention and Treatment

Effective prevention and treatment strategies are crucial to mitigate the impact of
sarcopenia. Among these strategies, exercise, nutrition, lifestyle modifications, and herbal
compounds are paramount [323]. Exercise, particularly resistance training, plays a vital
role in maintaining and enhancing muscle mass and strength. Resistance training, involv-
ing exercises that cause muscles to contract against an external resistance, is shown to be
effective in combating sarcopenia [324]. This type of exercise stimulates muscle protein
synthesis, improves neuromuscular function, and enhances muscle hypertrophy. Addition-
ally, aerobic exercise complements resistance training by improving cardiovascular health
and endurance, which can help maintain overall physical function [325,326].

Nutritional interventions are equally important in the prevention and management of
sarcopenia [327,328]. Adequate protein intake is critical for muscle maintenance and repair.
Older adults are often advised to consume higher levels of protein compared to younger
individuals to counteract the anabolic resistance that occurs with aging [329]. Protein
sources rich in essential amino acids, particularly leucine, are beneficial in promoting
muscle protein synthesis. In addition to protein, other nutrients such as vitamin D, omega-
3 fatty acids, and antioxidants play a role in muscle health. Vitamin D is crucial for muscle
function, and its deficiency is linked to muscle weakness and falls [324,330]. Omega-3
fatty acids have anti-inflammatory properties that can help reduce muscle loss, while
antioxidants combat oxidative stress, a factor contributing to muscle degeneration [331].

Lifestyle modifications, including maintaining a positive or neutral energy balance
and reducing chronic inflammation, are essential for preventing sarcopenia [332]. Ensuring
adequate caloric intake to meet energy demands without leading to obesity is crucial [333].
Obesity can exacerbate sarcopenia, creating a condition known as sarcopenic obesity, where
excess fat mass further impairs physical function. Controlling inflammation through
diet, physical activity, and possibly anti-inflammatory medications can help mitigate
muscle breakdown. Maintaining intestinal diversity through a balanced diet that includes
probiotics and prebiotics can also support overall health and muscle function [334,335].

Emerging therapeutic strategies offer additional avenues for managing sarcopenia.
Research is exploring pharmaceutical interventions targeting the molecular pathways
involved in muscle degradation and synthesis. For instance, myostatin inhibitors, which
block a protein that inhibits muscle growth, are being investigated for their potential to
enhance muscle mass and strength [228,336]. Hormone replacement therapies, particularly
testosterone and growth hormone, are also under study for their anabolic effects on muscle
tissue [337]. However, these treatments must be approached with caution due to potential
side effects and the need for long-term safety data. Combining these pharmacological
approaches with established exercise and nutritional strategies holds promise for a more
comprehensive management of sarcopenia.

Additionally, herbal compounds have shown potential in the management of sar-
copenia [338,339]. For example, ginseng and ashwagandha are known for their anti-
inflammatory and muscle-strengthening properties [340,341]. Ginseng has been shown to
improve muscle strength and physical performance, while ashwagandha can enhance mus-
cle mass and reduce muscle damage [342,343]. Curcumin, the active compound in turmeric,
has strong anti-inflammatory and antioxidant properties, which can help reduce muscle
degradation and improve muscle health [344]. These herbal supplements can be integrated
into dietary regimens to support muscle function and mitigate the effects of sarcopenia.

In summary, the prevention and treatment of sarcopenia require a multifaceted ap-
proach that includes exercise, nutrition, lifestyle modifications, and emerging therapies,
including herbal compounds. Resistance training and aerobic exercise are foundational in
maintaining muscle mass and strength, while adequate protein intake and other nutrients
support muscle health. Lifestyle changes to manage energy balance and inflammation are
also critical. Emerging pharmaceutical treatments and herbal compounds may offer addi-
tional benefits, though they require careful consideration [345–347]. A holistic approach to
managing sarcopenia can significantly improve the physical function and quality of life
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of older adults, ultimately reducing the societal and economic burdens associated with
this condition.

4. Neurodegeneration

Neurodegeneration refers to pathological conditions that primarily impact neurons. It
refers to a collection of neurological disorders that have distinct clinical and pathological
features, and specifically impact certain subgroups of neurons in specific regions of the
central nervous system (CNS). Notable examples comprise AD, PD, amyotrophic lateral
sclerosis (ALS), frontotemporal dementia (FTLD), and Huntington’s disease [348,349].
Furthermore, the vascular system plays a crucial role in numerous physiological processes
within the human body. Problematic vascular mechanisms play a role in the development
and advancement of diseases, confirming the inherent connection between vascular health
and homeostasis [350,351]. Malfunctions in the vascular system can present as neurological
disorders, for instance. Within this framework, it is feasible to ascertain that vascular health
is intricately linked to neurodegenerative disorders. Reduced blood flow to the brain,
commonly caused by conditions like high blood pressure and the buildup of fatty deposits
in the arteries, can lead to a decline in cognitive function and the degeneration of nerve
cells [352,353].

4.1. Pathophysiology and Risk Factors

PD is known by the loss of or reduction in dopaminergic neurons in the substantia
nigra (SN) and progressive and irreversible aggregation of α-Sinuclein poorly folded in mul-
tiple brain regions [354,355]. Wild protein (WT) or mutant α-Sinuclein (a-syn) accumulates
in PD to form oligomers that disrupt central cell systems causing neurodegeneration [356].
Notwithstanding, vascular Parkinsonism (VP) is a Parkinsonian syndrome that can be
caused by cerebrovascular disease, and this pathology represents 4% of all patients with
Parkinsonism [357,358]. Patients with VP are usually older, with worse cognitive ability
and pseudobulbar incontinence or paralysis. In the development of VP, vascular disor-
ders induce disruption of the cortical connections of the basal ganglion, which may cause
dysfunctions of the cortex–striate–pallid–thalamus–cortical [359].

Regarding the relation between vascular disease and PD, both the severity and pro-
gression of cerebral SVD have been associated with incident Parkinsonism [358,360]. When
SVD is present in PD, it negatively affects the clinical symptoms of PD. This includes a
worsening of gait, cognition, and mood and may well be associated with an additional
acceleration of the already progressive course of PD [361]. Regarding the pathological
mechanisms in the interaction between SVD and PD, one of the options is the structural
lesions of SVD located in strategic brain regions, for example, the basal ganglia [362]. Hy-
poperfusion can also occur in small brain vessels [362]. The two mechanisms mentioned
above cause the generalized dysfunction of multiple brain pathways, including the disrup-
tion of dopaminergic and nondopaminergic pathways involved in the pathophysiology
of motor and non-motor symptoms in Parkinsonism. In addition, it is suspected that the
permeability of the BBB is increased in SVD, and with its dysfunction astrocytes can be dam-
aged by impairing the exchange of interstitial fluids and neuronal energy supply [363,364].
In addition, the maturation of oligodendrocyte precursor cells can also cause problems
that hinder the formation and repair of myelin and energy support to axons [365]. Finally,
cerebral hypoperfusion can also promote the aggregation of alpha-synuclein, leading to the
pathology of PD with subsequent depletion of soluble alpha-synuclein [361,366,367].

AD is characterized by slowly progressive neurodegeneration and cognitive decline,
and symptoms tend to appear many years later. Contributions to vascular cognitive impair-
ment and decline have remarkable importance. In this scenario, cerebrovascular disease
occurs in almost all individuals with dementia, and vascular problems such as atheroscle-
rosis, arteriolosclerosis, microinfarction, and amyloid angiopathy are prominent alongside
markers of neurodegeneration, that is, vascular pathology has become an important risk
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factor for AD dementia. In addition, cerebrovascular diseases contribute to neuronal loss
in the pathology of AD and amyloid protein-β (Aβ) and tau related to AD [368,369].

Some nerve changes in AD include irregular activated microglia and astrocytes, el-
evated levels of inflammation and oxidative stress within the regions of the lesion, as
well as compromised vascular functionality. Blood vessels work as transporter centers
and perform various stages in the maintenance of physiological homeostasis, including
helping to regulate immune responses. In this sense, vascular dysfunction, especially
problems in cerebral microcirculation, can help in the pathophysiology of AD. For example,
microangiopathy, rupture, and hemorrhage cause chronic hypoperfusion and a reduction in
cerebrospinal fluid (CSF), thus affecting normal blood circulation in the brain and neuronal
function. In addition, they can assist in entering harmful substances, such as inflammatory
factors in the nervous region, and impair the efflux of Aβ. Thus, the deposition of toxic
proteins in the brain and subsequent neuronal damage occurs [370–372]. In addition, due to
vascular dysfunction, individuals with AD have a higher susceptibility to hypoxia, leading
to oxidative stress and resulting in various complications, including neuronal impairment
and brain cell death. Therefore, the abnormal alterations in the blood vessels of AD disrupt
the normal functioning of the brain and contribute to the progression of AD pathology
(Figure 3) [373].
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of muscle fibers impairs synapses in the muscle, decreasing neuromotor sensitivity. Through this
innervation loss, oxygen species occur in the cell, which can cause mitochondrial dysfunctions. This
dysfunction, associated with a decreased concentration of coenzyme Q10, can impair the energy sup-
ply of the muscle fibers. In addition, cell dysfunction can promote aberrant expression of the MFG-E8
(milk fat globule-EGF factor 8 protein) cell membrane protein, increasing problems of neuromuscular
junctions, mitochondrial dysfunction, and problems in the vascular system. SIRT-1 (Sirtuin-1) is a
protein that promotes cellular health and longevity, and the concentration of this chemical mediator
is also reduced during the sarcopenia. Finally, vascular problems can promote Parkinson’s disease by
reducing nutrients from the formation of substantia nigra and α-Sinuclein, and Alzheimer’s disease
by reducing nutrients for the formation of β-amyloid protein. LC3B-II/I ratio: microtubule-associated
proteins 1A/1B light chain 3B-phosphatidylethanolamine conjugate/microtubule-associated proteins
1A/1B light chain 3B ratio; PINK-1: PTEN-induced kinase 1.

4.2. Link between Vascular Health and Neurodegeneration

Vascular health plays a crucial role in maintaining cognitive function and preventing
neurodegenerative diseases. Emerging evidence suggests that cerebrovascular dysfunction
is not only a contributing factor to vascular cognitive impairment but also has significant
implications for primary neurodegenerative conditions such as AD, PD, and VD. Elevated
blood pressure, a common vascular risk factor, has been consistently linked to age-related
cognitive decline and the progression of neurodegenerative pathology underlying condi-
tions like AD. Cerebrovascular disease can lead to cognitive impairment through multiple
pathways. Chronic hypertension, for example, can cause damage to the blood–brain barrier,
increase oxidative stress, and induce inflammation, all of which contribute to neuronal
injury and cognitive decline. This vascular damage often precedes and accompanies the
amyloid-beta plaques and tau tangles that are hallmarks of AD. Moreover, the compromised
blood flow associated with vascular health issues can exacerbate neurodegeneration by
depriving neurons of essential nutrients and oxygen, thereby accelerating the progression
of cognitive deficits.

PD is another neurodegenerative disorder closely linked to vascular health. Vascular
factors, including hypertension and diabetes, are known to exacerbate PD progression by
promoting neuroinflammation and oxidative stress. These factors can further compromise
the integrity of the blood–brain barrier, allowing neurotoxic substances to infiltrate the brain
and accelerate neuronal damage. Consequently, improving vascular health through lifestyle
modifications and medical management can have a protective effect against PD progression.

The interplay between vascular health and neurodegeneration is further illustrated
by the overlapping risk factors and mechanisms underlying both conditions. Shared risk
factors such as hypertension, diabetes, obesity, and smoking contribute to both vascular
damage and neurodegenerative processes. Inflammation and oxidative stress, common in
vascular diseases, also play significant roles in neurodegeneration. These shared pathways
suggest that improving vascular health could potentially mitigate the risk of developing
neurodegenerative diseases. For instance, managing blood pressure and blood sugar
levels, adopting a healthy diet, and engaging in regular physical activity are strategies
that can benefit both vascular and cognitive health. In addition to these risk factors, the
relationship between cardiovascular risk trajectories and cognitive outcomes highlights the
importance of early and sustained management of vascular health. Longitudinal studies
have shown that individuals with a history of cardiovascular risk factors, such as elevated
blood pressure and cholesterol levels, are more likely to experience cognitive decline and
develop dementia. These findings underscore the need for proactive cardiovascular care
as a means of preserving cognitive function and preventing neurodegenerative diseases.
Interventions aimed at improving vascular health could delay or even prevent the onset of
conditions like VD and AD, offering a dual benefit of enhancing both cardiovascular and
brain health.
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In summary, the link between vascular health and neurodegeneration is well-established,
with vascular dysfunction contributing to the development and progression of cognitive
impairment and neurodegenerative diseases. By addressing shared risk factors and imple-
menting strategies to improve vascular health, it is possible to reduce the burden of neurode-
generative diseases and enhance overall brain health. This integrative approach highlights
the importance of a holistic view in managing health, considering the interconnectedness of
the body’s vascular and nervous systems. Strategies such as regular exercise, a balanced diet
rich in antioxidants, and effective management of cardiovascular risk factors can significantly
improve vascular and cognitive health, ultimately reducing the societal and economic burdens
associated with neurodegenerative diseases [374].

4.3. Impact on Cognitive and Motor Functions

Neurodegenerative diseases have a profound impact on both cognitive and motor
functions, leading to a wide range of disabilities that significantly affect the quality of
life. These diseases, including AD, PD, ALS, and FTLD, result from the progressive
loss of neurons in specific regions of the brain and nervous system. This neuronal loss
disrupts essential neural pathways and processes, causing cognitive decline and motor
impairments that often overlap and exacerbate each other. Cognitive impairments in
neurodegenerative diseases are characterized by deficits in memory, executive function,
language, and visuospatial skills [375,376].

In AD, the most common neurodegenerative disorder, cognitive decline begins with
subtle memory lapses and progresses to severe impairments in thinking, reasoning, and the
ability to perform daily activities. The accumulation of amyloid-beta plaques and tau tan-
gles disrupts neural communication and leads to the death of neurons, particularly in the
hippocampus and cortex, areas critical for memory and cognition. In PD, cognitive decline
can manifest as difficulties with executive functions, such as planning and multitasking,
alongside the hallmark motor symptoms of tremors, rigidity, and bradykinesia. Motor
function impairments are another significant aspect of neurodegenerative diseases. In PD,
the loss of dopaminergic neurons in the substantia nigra leads to motor symptoms such as
tremors, muscle rigidity, bradykinesia (slowness of movement), and postural instability.
These motor deficits severely limit mobility and increase the risk of falls and fractures. In
ALS, the degeneration of motor neurons in the brain and spinal cord causes muscle weak-
ness, atrophy, and eventually paralysis, affecting voluntary movements and respiratory
function. FTLD and Huntington’s disease also involve motor dysfunctions, although these
are often overshadowed by the prominent cognitive and behavioral symptoms.

The interaction between cognitive and motor impairments in neurodegenerative
diseases is complex and multifaceted. Cognitive–motor interference, where cognitive tasks
negatively impact motor performance and vice versa, is a common challenge for patients.
This dual task interference can exacerbate functional limitations and increase the risk of
accidents. For instance, individuals with PD may experience “freezing” episodes, where
they temporarily lose the ability to move despite the intention to do so, often triggered by
cognitive stressors or environmental changes. Similarly, gait disturbances in AD patients are
linked to declines in cognitive function, particularly in attention and executive processing.

The co-occurrence of cognitive and motor symptoms in neurodegenerative diseases un-
derscores the need for comprehensive management approaches that address both domains.
Interventions such as cognitive rehabilitation, physical therapy, and pharmacological treat-
ments aim to slow the progression of symptoms and improve quality of life. For example,
cognitive training exercises can enhance executive function and memory, while resistance
training and aerobic exercise can improve motor function and overall physical health.
Pharmacological treatments, including cholinesterase inhibitors for AD and dopamine
agonists for PD, provide symptomatic relief but do not halt disease progression. Emerging
research into neuroprotective strategies and disease-modifying therapies offers hope for
more effective treatments in the future.
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4.4. Current Therapeutic Approaches

Pharmacological treatments remain a cornerstone of managing neurodegenerative
diseases. In AD, cholinesterase inhibitors (e.g., donepezil and rivastigmine) and NMDA
(N-methyl-D-aspartate) receptor antagonists (e.g., memantine) are used to alleviate cogni-
tive symptoms by enhancing cholinergic function and modulating glutamatergic transmis-
sion. For PD, dopamine replacement therapy, primarily through levodopa combined with
carbidopa, remains the gold standard, aiming to replenish dopamine levels in the brain.
Additional medications, such as MAO-B inhibitors (e.g., selegiline) and dopamine agonists
(e.g., pramipexole), help manage motor symptoms. ALS treatment often includes riluzole
and edaravone, which are thought to reduce neuronal damage and oxidative stress, albeit
with limited efficacy. Furthermore, extensive research is being conducted on novel targets
and drug discoveries for neurological diseases [377–379].

Lifestyle modifications and supportive therapies also play critical roles in the man-
agement of neurodegenerative conditions. Physical therapy and exercise are particularly
beneficial in maintaining motor function and mobility in PD and ALS patients. Occupa-
tional therapy helps individuals adapt to their environment and maintain independence in
daily activities. Cognitive therapies and mental exercises can aid in slowing cognitive de-
cline in AD patients. Speech therapy is essential for addressing communication difficulties
in various neurodegenerative diseases, improving the quality of life and social interaction
for patients.

Emerging therapeutic approaches are exploring the potential of herbal compounds in
managing neurodegenerative diseases [380]. Herbal compounds, derived from medicinal
plants, offer a rich source of bioactive molecules with neuroprotective properties [381–385].
Curcumin, a compound found in turmeric, has garnered attention for its anti-inflammatory
and antioxidant properties, which are beneficial in combating neuroinflammation and
oxidative stress in AD [220,386–388]. Studies have shown that curcumin can inhibit the ag-
gregation of amyloid-beta plaques and tau tangles, key pathological features of AD, thereby
potentially slowing disease progression. Another promising herbal compound is resvera-
trol, found in grapes and red wine. Resveratrol is known for its ability to activate sirtuin-1
(SIRT1), a protein that promotes cellular health and longevity. In the context of neurodegen-
eration, resveratrol’s neuroprotective effects are linked to its capacity to reduce oxidative
damage, enhance mitochondrial function, and modulate neuroinflammation [389–391].
Preclinical studies suggest that resveratrol can improve cognitive function and delay the
progression of neurodegenerative diseases. Ginkgo biloba, an herbal extract used tradi-
tionally in Chinese medicine, is another example of a natural compound with potential
neuroprotective benefits [197,392]. Ginkgo biloba extracts are rich in flavonoids and ter-
penoids, which have antioxidant properties. Clinical trials have indicated that Ginkgo
biloba can improve cognitive function and reduce symptoms in AD patients, possibly by
enhancing cerebral blood flow and reducing oxidative stress.

In summary, the current therapeutic approaches to neurodegeneration involve a com-
bination of pharmacological treatments, lifestyle modifications, and supportive therapies.
The integration of herbal compounds into these strategies offers additional benefits, lever-
aging their natural bioactive properties to provide neuroprotection. Curcumin, resveratrol,
and Ginkgo biloba are concrete examples of herbal compounds that show promise in
managing neurodegenerative diseases. Continued research and clinical trials are essential
to further understand their mechanisms and optimize their use in comprehensive treatment
regimens, potentially improving outcomes for patients with neurodegenerative conditions.

5. Discussion

Vascular disease, sarcopenia, and neurodegeneration are intricately linked, forming a
triad of interrelated conditions that significantly impact overall health. Figure 4 shows the
main molecules involved in these processes. Vascular diseases impair blood circulation,
reducing the delivery of essential nutrients and oxygen to tissues such as muscles and the
brain. This nutrient deficiency leads to sarcopenia, characterized by the progressive loss of
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muscle mass and function, resulting in frailty, falls, and decreased physical performance.
The impaired blood flow also affects the brain, contributing to neurodegenerative diseases
such as AD and PD. Oxidative stress, chronic inflammation, and insulin resistance are com-
mon pathophysiological mechanisms underlying these conditions. For instance, oxidative
stress and inflammation caused by vascular dysfunction can damage neurons, leading
to cognitive decline and motor impairments [393]. Similarly, reduced muscle perfusion
exacerbates sarcopenia, while neurodegenerative processes can further impair muscular
function through disrupted neural innervation. Therefore, addressing these interconnected
conditions through integrated therapeutic strategies is crucial for improving the diagnosis,
treatment, and prevention of age-related health issues, ultimately enhancing the quality of
life for affected individuals.
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Vascular disease contributes to sarcopenia and neurodegeneration through multiple
interconnected mechanisms. Vascular diseases impair blood flow, reducing the delivery
of oxygen and essential nutrients to muscles and the brain. This leads to muscle atrophy,
a hallmark of sarcopenia, as muscles require a consistent supply of nutrients to maintain
mass and function. Vascular dysfunctions, such as atherosclerosis and arterial stiffness,
promote chronic inflammation and oxidative stress, exacerbating muscle degradation and
contributing to sarcopenia. In the brain, reduced blood flow and nutrient supply can
lead to neuronal death and impaired synaptic function, key features of neurodegenerative
diseases like AD and PD. Additionally, vascular diseases can disrupt the blood–brain barrier,
allowing harmful substances to enter the brain and further damage neural tissues. Insulin
resistance and MetSs associated with vascular diseases also impair muscle protein synthesis
and increase muscle degradation, worsening sarcopenia. The interaction among vascular
dysfunction, inflammation, oxidative stress, and metabolic disturbances emphasizes the
intricate connection between vascular disease, sarcopenia, and neurodegeneration. This
underscores the need for integrated therapeutic strategies to alleviate these conditions and
enhance patient outcomes.

Sarcopenia and neurodegenerative processes are intricately linked, forming a detri-
mental cycle that exacerbates both conditions. Sarcopenia, characterized by the progressive
loss of muscle mass and function, leads to physical frailty and increased fall risk, which
can precipitate or worsen neurodegenerative conditions such as AD and PD. The muscle
loss associated with sarcopenia reduces the production of myokines, which are crucial
for maintaining neuroplasticity and cognitive function. This decrease in myokines can
impair brain function and accelerate neurodegeneration. Conversely, neurodegenerative
diseases contribute to sarcopenia by disrupting the neural pathways responsible for muscle
innervation and function. For instance, PD, which affects motor neurons, directly im-
pairs muscle control and contributes to muscle atrophy. AD, through mechanisms such
as oxidative stress and chronic inflammation, can similarly lead to muscle deterioration.
Both conditions share common pathological features such as mitochondrial dysfunction,
increased oxidative stress, and chronic inflammation, creating a feedback loop that worsens
both muscle and cognitive health. Addressing this bidirectional relationship is crucial
for developing therapeutic strategies that target both sarcopenia and neurodegeneration
simultaneously to improve outcomes for affected individuals

Significant correlations between vascular disease, sarcopenia, and neurodegeneration
can be identified by examining common risk factors and physiological mechanisms. Com-
mon risk factors include the natural aging process, hypertension, diabetes, and chronic
inflammation. These factors contribute to the dysfunction of the endothelium, which
obstructs the circulation of blood and the transportation of nutrients to both muscles and
the brain, exacerbating the conditions of sarcopenia and neurodegeneration. Vascular
dysfunction leads to oxidative stress and chronic inflammation, which in turn cause cellular
damage in muscles and neurons. Insulin resistance, a common feature of MetS, impedes
the process of muscle protein synthesis and accelerates muscle wasting, thus contributing
to sarcopenia. Simultaneously, the coexistence of impaired glucose metabolism and oxida-
tive damage plays a role in the progression of neurodegeneration, leading to a decline in
cognitive functions and motor skills. The interrelated physiological mechanisms emphasize
the importance of a comprehensive approach in treating these conditions, with a specific
focus on integrated therapeutic strategies that aim to improve vascular health, preserve
muscle mass, and protect the nervous system. Acquiring a thorough comprehension of
these interconnected mechanisms is crucial for developing effective interventions that
improve quality of life and reduce the incidence of illness and mortality associated with
these age-related conditions.

The interrelated nature of vascular disease, sarcopenia, and neurodegeneration has
profound implications for their diagnosis, treatment, and prevention. From a diagnostic
perspective, having a clear understanding of the shared pathophysiological mechanisms
such as chronic inflammation, oxidative stress, and insulin resistance can improve the ability
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to detect and differentiate these conditions at an early stage. By employing biomarkers and
advanced imaging techniques, one can obtain a thorough understanding of the degree of
vascular damage, muscle atrophy, and neurodegenerative alterations. An essential aspect
of treatment is the implementation of an integrated approach that specifically focuses on the
triad. This includes pharmacological interventions like anti-inflammatory and antioxidant
therapies, alongside lifestyle modifications such as exercise and nutritional strategies
to improve vascular health, muscle mass, and cognitive function. Preventive measures
concentrate on reducing common risk factors such as hypertension, diabetes, and sedentary
lifestyles through public health campaigns that encourage physical activity, healthy eating,
and regular medical check-ups. By addressing these interconnected conditions holistically,
it is possible to slow their progression, reduce morbidity, and improve the overall quality
of life for affected individuals

Future research should prioritize several key areas in order to better understand
the triad of vascular disease, sarcopenia, and neurodegeneration. Initially, conducting
research on the molecular and cellular mechanisms that underlie these interconnected
conditions will offer a more profound understanding of their shared pathophysiological
pathways. Oxidative stress, chronic inflammation, and insulin resistance should all be
investigated as potential links between these diseases. In addition, the advancement
of sophisticated biomarkers and imaging techniques can improve the early detection of
diseases and provide more accurate monitoring of their progression. Longitudinal studies
are crucial for comprehending the temporal connections and causal associations between
vascular dysfunction, muscle atrophy, and cognitive decline. Furthermore, examining
the impact of lifestyle interventions, such as engaging in physical activity and making
dietary modifications, on mitigating the intensity of these conditions can offer pragmatic,
non-pharmaceutical strategies for both preventing and managing them. The integration of
multidisciplinary approaches encompassing neurology, cardiology, and gerontology will
play a pivotal role in the development of comprehensive treatment plans. Exploring the
possibilities of new therapeutic agents, such as anti-inflammatory drugs and antioxidants,
has the potential to create new opportunities for treatment. The translation of these findings
into effective clinical practices that enhance patient outcomes and quality of life will heavily
rely on collaborative endeavors among research institutions and clinical settings [394–400].

6. Conclusions

This review highlights the complex interrelationships among vascular disease, sar-
copenia, and neurodegeneration. These conditions share similar underlying causes, such as
oxidative stress, chronic inflammation, and impaired blood flow, which collectively lead to
muscle atrophy and cognitive decline. Vascular impairments are related to reduced nutri-
tion and oxygen supply to cells. This imbalance can increase the production pf free radicals
such as ROS and augment the release of pro-inflammatory cytokines such as IL-6, IL-8, TNF-
α, and TGF-β. Moreover, the excessive production of IL-29 deliberately worsens vascular
conditions due to the activation of JAK2 and STAT3. This scenario, associated with systemic
inflammation and oxidative stress impairs muscle synapses, resulting in sarcopenia, and
increasing morbidity and mortality. Understanding this triad is essential as it emphasizes
the significance of a comprehensive approach to managing these interrelated conditions.
Healthcare providers can develop holistic diagnostic, therapeutic, and preventive strategies
by identifying the common risk factors and pathways involved. To effectively address
these complexities, it is crucial to use integrated approaches that combine pharmacological
interventions, lifestyle modifications, and advanced diagnostic techniques. For instance,
resistance training and aerobic exercise are foundational in maintaining muscle mass and
strength, while adequate protein intake and other nutrients support muscle health. In
addition to traditional treatments, herbal compounds have shown potential benefits in
managing these conditions. Curcumin, for example, is known for its anti-inflammatory and
antioxidant properties, which can help reduce muscle degradation and improve muscle
health. Similarly, Ginkgo biloba has been used to improve cognitive function and blood
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circulation, demonstrating potential neuroprotective benefits. Ultimately, enhancing our
understanding of the connections among vascular health, muscle function, and cogni-
tive performance will lead to improved patient outcomes, heightened quality of life, and
decreased morbidity and mortality rates in older populations.
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