
Citation: Sun, C.; Tong, F.; Luo, J.;

Wang, Y.; Ou, M.; Wu, Y.; Qiu, M.; Wu,

W.; Gong, Y.; Luo, Z.; et al. A Rapid

Head Organ Localization System

Based on Clinically Realistic Images:

A 3D Two Step Progressive

Registration Method with CVH

Anatomical Knowledge Mapping.

Bioengineering 2024, 11, 891. https://

doi.org/10.3390/bioengineering

11090891

Academic Editors: Richard Bayford

and Andrea Cataldo

Received: 24 June 2024

Revised: 21 August 2024

Accepted: 29 August 2024

Published: 1 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

bioengineering

Article

A Rapid Head Organ Localization System Based on Clinically
Realistic Images: A 3D Two Step Progressive Registration
Method with CVH Anatomical Knowledge Mapping
Changjin Sun 1, Fei Tong 2, Junjie Luo 1, Yuting Wang 1, Mingwen Ou 1, Yi Wu 3, Mingguo Qiu 1, Wenjing Wu 4,
Yan Gong 1, Zhongwen Luo 1 and Liang Qiao 1,*

1 Department of Medical Image, College of Biomedical Engineering and Imaging Medicine, Army Medical
University, Chongqing 400038, China; scj@tmmu.edu.cn (C.S.); qiumg_2002@sina.com (M.Q.)

2 Army Medical Center of PLA, Army Medical University, Chongqing 400010, China
3 Department of Digital Medicine, College of Biomedical Engineering and Imaging Medicine, Army Medical

University, Chongqing 400038, China
4 Department of Radiology, Southwest Hospital, Army Medical University, Chongqing 400038, China
* Correspondence: bobq310@tmmu.edu.cn

Abstract: Rapid localization of ROI (Region of Interest) for tomographic medical images (TMIs) is
an important foundation for efficient image reading, computer-aided education, and well-informed
rights of patients. However, due to the multimodality of clinical TMIs, the complexity of anatomy, and
the deformation of organs caused by diseases, it is difficult to have a universal and low-cost method
for ROI organ localization. This article focuses on actual concerns of TMIs from medical students,
engineers, interdisciplinary researchers, and patients, exploring a universal registration method
between the clinical CT/MRI dataset and CVH (Chinese Visible Human) to locate the organ ROI in
a low-cost and lightweight way. The proposed method is called Two-step Progressive Registration
(TSPR), where the first registration adopts “eye–nose triangle” features to determine the spatial
orientation, and the second registration adopts the circular contour to determine the spatial scale,
ultimately achieving CVH anatomical knowledge automated mapping. Through experimentation
with representative clinical TMIs, the registration results are capable of labeling the ROI in the images
well and can adapt to the deformation problem of ROI, as well as local extremum problems that
are prone to occur in inter-subject registration. Unlike the ideal requirements for TMIs’ data quality
in laboratory research, TSPR has good adaptability to incomplete and non-thin-layer quality in
real clinical data in a low-cost and lightweight way. This helps medical students, engineers, and
interdisciplinary researchers independently browse images, receive computer-aided education, and
provide patients with better access to well-informed services, highlighting the potential of digital
public health and medical education.

Keywords: inter-subject registration; 3D reconstruction; tomographic medical image with clinical
quality; organ localization; lightweight processing

1. Introduction

Clinical TMIs such as CT and MRI play an important role in the diagnosis and treat-
ment of diseases. However, due to the abstract nature of the imaging modality and the
complexity of the human anatomy, clinical medical images are too abstract for groups
lacking medical experiences, such as junior medical students, medical engineers, interdis-
ciplinary researchers, and patients. It is difficult to compare the TMIs with textbook-like
anatomical structures.

For example, for medical students, interdisciplinary researchers, medical engineers,
and even young physicians, it is difficult to quickly locate and identify some complex lesion
areas and subtle anatomical structures in TMIs and establish a direct understanding of
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the anatomy as senior experts do, especially for low-quality datasets in clinical practice
and deformed organs caused by trauma or lesions; for patients and their families, with
the increasing awareness of the active participation of the patients and their families in
the process of diagnosis and treatment of diseases, it is still necessary for professional
doctors to provide guidance or markings to help patients establish a direct understanding
of the lesions because ordinary people lack knowledge of anatomy. In addition, the above-
mentioned groups are not in the same closed-loop system; when they each obtain a set of
TMIs, their intelligent assisted tools should be run in a lightweight, universal, and open
scenario, for example, an ordinary personal computer that is readily available and has no
special hardware or software environment limitations.

Therefore, we need a technical approach to enable lightweight and rapid registration
of TMIs (e.g., CT, MRI) from any patient’s head region in the clinic with the CVH (Chinese
Visible Human) [1] dataset and quickly locate the area of interest and present it to “non-
professionals” by comparing the high-definition CVH map with the ROI organ location.
The crux of the problem is how to perform low-cost, rapid, and lightweight registration
of CVH datasets with clinical head TMIs from different modalities, which is unlike the
ideal requirements for TMI data quality in laboratory research. In this regard, we propose a
simple procedure that can be performed by “non-professionals” to enable fast registration
and spatial mapping of TMIs from any patient’s head region in the clinic to the anatomical
structure of the CVH.

2. Material and Methods
2.1. Data Preparation of CVH

The CVH (Chinese Visible Human) dataset is a complete, high-quality digital dataset
of the oriental human body developed by the research team of the Department of Digital
Medicine at the Army Medical University (Third Military Medical University) [1]. Among
them, CVH-2 is the second Chinese Visible Human dataset [2], which has no anatomical
structure loss, no obvious pathological changes, is representative of the normal Asian body
type and complies with the regulations of the Chinese Ethics Committee.

The resolution ratio of each image of CVH-2 head and neck datum is 3872 × 2048, and
the average size of each file is 36 MB [3], with a total of 1018 sequential images, and the
total data volume is 1.62 GB after PNG compression. The data spacing of the 1st~800th
slices is 0.25 mm, and the data spacing of the 801st~1018th slices is 0.5 mm. Due to the
huge amount of data and the data slice spacing being inconsistent, this paper performs
spatial size compression and normalization to adapt to the lightweight application on the
client side with a final total data amount of 39.8 MB. The detailed pre-processing procedure
is shown in Supplement File Section S.1.

At present, the head and neck region of CVH-2 has been annotated with 128 tissue
parts from the parietal bone, frontal bone, dura mater, optic nerve, brainstem, arteries,
median ligament of the thyroglossal bone to the esophagus, which can satisfy the universal
needs of ROI localization (mapping).

2.2. Methods
2.2.1. Overall Process

Because the head and face of the human body will not undergo significant deformation
in the short term and are also less affected by physiological movements such as breathing
or heartbeat, the registration of the CVH with CT and MRI images in this study can be
regarded as a rigid structure registration problem [4,5]. Furthermore, considering that the
difference between the human body and air is more obvious in both CT and MRI, this
feature enables both CT and MRI to effectively highlight facial regions in surface rendering
through appropriate thresholds. Moreover, the face has obvious feature intervals for the
registration work [4–8], which is easy for non-professionals to understand. So in this paper,
we choose to take the face contour as the basis of the rigid structure. The total registration
idea and ROI localization flowchart are shown in Figure 1.
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Figure 1. Overall flowchart based on head and face registration and ROI localization. Figure 1 depicts
the overall computing logic. It mainly consists of three steps: (A) exterior contour extraction and
three-dimensional (3D) reconstruction; (B) the proposal of the TSPR and the adaptation enhancement
of the ICP algorithm; (C) the design of the TSPR interaction; and finally, the completion of the spatial
transformation of the volume data and the presentation of the ROI according to the registration
results. Among them, the registration technology itself adopts the classic ICP algorithm, but the
external contour extraction, 3D reconstruction, TSPR method, and adaptive improvement of the ICP
algorithm are all original methods independently developed by us.

It should be noted that, in order to ensure the authenticity of the clinical image data,
the clinical TMI data are usually used as the target data, and the CVH is used as the moving
data, which is converged to the TMIs by the CVH.

2.2.2. Exterior Contour Extraction and 3D Reconstruction

3D/3D registration is generally applied between two sets of TMI data or between a
set of TMIs and a set of spatial information (e.g., EEG data) [9–12]. This paper is based on
the registration of two sets of continuous tomographic images, TMIs and CVH, which is a
typical 3D/3D registration mode. To adapt to the extraction of exterior contours in clinical
diversified TMI imaging scanning patterns, it is designed to extract the exterior contour
lines by morphological methods (open and close operation, erosion operation, filling, etc.)
for each two-dimensional (2D) slice of the original TMIs before 3D reconstruction to remove
the impurities. The extraction process is as follows: 1. binarization based on the exterior
contour boundaries; 2. filling the closed region; 3. expanding the canvas; 4. filtering the
impurities by the opening operation; 5. reducing the canvas; and 6. erosion and subtraction.

The final stable exterior contour extraction effect obtained from TMIs is shown in
Figure 2. Among them, Figure 2A shows clinically diverse TMIs, Figure 2B shows the
exterior contour extraction effect and C–D shows the reconstruction effect of the exterior
contour of B using surface rendering technology. In this paper, the surface contours in
Figure 2C,D are used as feature sources for clinical TMIs and CVH data registration.
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Figure 2. Exterior contour extraction and visualization reconstruction of four representative clinical
head CT scan sites (Line (A) shows different TMIs used in clinical applications, while line (B) displays
the extraction results of exterior contours. The surface rendering technique was used to reconstruct the
external contour in lines (C) and (D) using line (B), and used as the feature source for the registration
of clinical TMI and CVH data in this paper).

2.2.3. Introduction to ICP Classic Algorithm

ICP (Iterative Closest Point algorithm) is an algorithm for registering surfaces by
iteratively calculating the sum of squares of the residuals of the points corresponding to
the surfaces based on the quaternion method [13–15]. The basic idea is that there are two
different coordinate point sets, P = {1, 2, . . . , k} and U = {Ui, i = 0, 1, 2, . . . , n} under the
world coordinate system. Set P as the target point set and U as the moving point set and
obtain a new point set U’ by continuously rotating and translating the point set U so that
the distance between the point set U’ and the homologous point of P is minimized (so that
U’ and P overlap as much as possible). U’ can be obtained by the rigid-body geometric
transformation Equation (1).

U
′
= RU + T (1)

where R represents the three-dimensional rotation matrix of the transformed point set U
and T represents the translation vector of the transformed point set U’.

The core of this process is to use the minimum root mean square method to calculate
the residual sum of squares of the corresponding points between the point sets U’ and P
iteratively by continuously correcting R and T to find the minimum error of the root mean
square between U’ and P. If the error is smaller than the preset limit value, the iteration is
finished, that is, the optimal solution of the registration is obtained.

In the point set transformation, R and T of Equation (1) can also be represented by the
chi-square transformation matrix to represent the coordinate transformation relationship.
As in Equation (2), we use a 4 × 4 chi-square transformation matrix to spatially transform
each eigenpoint (x, y, z) of the point set U, which produces a new point (x’, y’, z’) from
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which we compute the translation and rotation matrices between these two coordinate
systems. 

x
′

y
′

z
′

1

 =


M11 M12 M13 M14
M21 M22 M23 M24
M31 M32 M33 M34
M41 M42 M43 M44

 ·


x
y
z
1

 (2)

where (x, y, z) is the coordinates of a point in the set of moving points,

Mij =


M11 M12 M13 M14
M21 M22 M23 M24
M31 M32 M33 M34
M41 M42 M43 M44

 is the homogeneous transformation matrix, and (x′, y′, z′)

is the new coordinate point obtained from the transformation of the moving point set. For
the homogeneous transformation of 4 × 4 matrices, the fourth row is [0, 0, 0, 1], used to
maintain the homogeneous coordinates of points.

However, due to the complexity and irregularity of the spatial distribution of the
feature point sets, the ICP algorithm is easy to fall into the local extreme value problem.
For example, the exterior contours extracted from clinical TMIs and CVH are used as two
sets of feature point sets, the ICP algorithm is directly used to register from CVH to TMIs,
and the registration result is obtained as in Figure 3, where the nose of CVH is registered
with the ear of Data 2, completely losing directionality.
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This is due to the fact that protruding areas such as the nose and ears, as well as
similar gradient areas such as the forehead and occiput, tend to result in false “best”
matches during the registration process. This phenomenon is difficult to solve by setting a
higher number of iterations because the ICP algorithm stops iterating once it falls into local
extremes during the iteration process.

2.2.4. TSPR Method and the Adaptability Improvement of ICP Algorithm

To address this problem, this paper proposes the TSPR method, which solves the local
extreme value problem by selecting different feature regions and implementing two or
more times ICP registration.

(i) First ICP registration for spatial orientation

Figure 4 [16], so that the target point set P1 and the moving point set U1 converge in
direction and obtain the homogeneous transformation matrix M1ij for the motion indication
of the moving point set U1.
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Figure 4. First registration: Facial features for spatial orientation.

(ii) Second ICP registration for spatial scaling

After obtaining consistency in the direction of two sets of point sets, select feature
points with better spatial correlation between the two sets of data and determine the target
point set P2 and the moving point set U2. To prevent the occurrence of local extremum
problems, firstly, restore U2 to the motion state of the first ICP registration, and obtain
U2’. Then, let U2’ perform a convergence operation towards P2 according to the ICP
algorithm to obtain a homogeneous transformation matrix M2ij for the motion indication
of the moving point set U2’.

The registration of the spatial orientation is needed only once, while the registration
of spatial scale can be progressive multiple times on the basis of the previous registration
until a satisfactory spatial registration effect is achieved. Because the purpose of spatial ori-
entation registration is for rough spatial registration between the U2 and the P2 object, once
completed, subsequent fine registration (such as deformation registration) usually does not
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significantly change the overall spatial orientation. Repeating multiple spatial orientation
registrations can easily lead to over registration and increase computational costs. And the
final homogeneous transformation matrix is the product of the transformation matrices of
the previous multiple registration, as shown in Equation (3).

Mij = M1ij ·
n−1

∏
x=1

M2ij, x (3)

where M1ij is the homogeneous matrix obtained after the first registration, M2ij,x is the
newly obtained homogeneous matrix after the registration of the moving point set based
on the previous transformed orientation, and n represents the number of times that the
progressive registration is performed. Mij is the final homogeneous matrix result of the
transformed relationship between the moving point set and the target point set, and each
voxel point of the CVH dataset will be spatially transformed via M1ij to achieve the final
spatial mapping with the clinical image data.

2.2.5. Design of TSPR Interaction

Compared with voxel-based 3D/3D spatial registration, the registration of facial
contour in Section 2.2.2 has the advantages of intuitive feature point selection and small
data computation. Further combining the theory in Section 2.2.3, the TSPR method can be
standardized as “Facial features registration determine spatial direction—facial circular
contours registration determine spatial scale”.

First Step: facial features registration
The “eye–nose triangle” facial feature rigid transformation is used to determine the

spatial orientation and complete the coarse registration. In order to simplify the operation,
the vertical mapping of the face is adopted, as shown in Figure 4. At A, the operator selects
the corresponding 2D rectangular region on the clinical image and the 3D reconstructed
image of the CVH, respectively. At B, the system uniformly collects 28 feature points on
the respective surface contour according to a discrete sampling frequency of 4 × 7 and
then performs the rigid registration according to the ICP algorithm in C-D to obtain the
homogeneous matrix equation M1ij, a detailed interpretation of the ICP algorithm can be
found in Supplement File Section S.2.

In this example, M1ij =


0.1533 −0.9604 0.2326 207.9560
0.9635 0.0930 −0.2511 5.6186
0.2195 0.2626 0.9396 −56.8884
0.0000 0.0000 0.0000 1.0000


M1ij can directly guide the CVH to perform the spatial transformation to obtain the

registration effect of E, where the MRI image is superimposed with the same scene image
of the transformed CVH. As seen in Figure 4E, the spatial positions of the two datasets
have converged.

Second Step: facial circular contours registration
On the basis of the first rigid registration, similarity registration was performed using

circular contour features to determine the spatial scale to accommodate the size difference of
different people’s heads. Since similarity registration increases the risk of local extremes, the
second registration needs to select two sets of circular feature contours with approximately
the same data. As shown in Figure 5, the eye–nose triangle is recommended as the circular
base point in Figure 5B to obtain the image features that require secondary registration (the
circular structure of the face).

The similarity registration is performed at C according to the ICP algorithm to obtain
the homogeneous matrix equation M2ij. The conversion from Equation (1) to Equation (2)
refers to Supplementary Section S.2.
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In this example, M2ij =


0.9059 −0.0172 −0.2012 30.4818
0.0630 0.9026 0.2068 −30.5599
0.1919 −0.2155 0.8821 38.3209
0.0000 0.0000 0.0000 1.0000
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M2ij can guide the CVH to be further transformed on the basis of the previous spa-
tial transformation M1ij to obtain the registration effect of D, where the MRI image is
superimposed with the same scene image of the transformed CVH. Figure 5D shows that,
compared with the first registration result, the effect after the second registration has been
more satisfactory.

According to Equation (3), the homogeneous matrix obtained from the first registration
is multiplied by the homogeneous matrix obtained from the second registration, from which
the final homogeneous transformation matrix of the whole registration process is obtained
as follows:

Final homogeneous transformation matrix result,

Mij =


0.0782 −0.9245 0.0259 230.2195
0.9247 0.0777 −0.0177 −24.1410
0.0155 0.0273 0.9276 26.8280
0.0000 0.0000 0.0000 1.0000


The final homogeneous transformation matrix Mij obtained will be used to guide

the subsequent visual representation of the mapping of gross anatomical structures (for
details about the CVH anatomical knowledge database, please refer to Section S.1.4 in
Supplementary).

The software interaction interface(ver 1.0.0) is shown in Figure 6 and the demonstration
video from Supplementary Material.
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Operational Steps Overview:
Step 1: Data Loading
When the user opens this application, the software enters Figure 6A, where the CVH

template automatically loads the head contour image of CVH on the left side. After the
user selects the data to be projected in Clinical Data (CT/MRI) as prompted, the system will
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automatically complete the external contour extraction and reconstruct the head contour
image.

Step 2: Selection of Facial Feature Points and First Registration
In Figure 6A, the user adjusts the position of the projected contour image using the

mouse, then selects the “Select” function key to draw symmetric eye-nose triangle areas
on both CVH and Clinical Data. The system will automatically complete the collection of
feature points (see blue and red points in Figure 6A). Then, as prompted, click the “First
registration” function key in Figure 6A. The “Registration situation” area on the right
will display the spatial relationship after the first registration (blue points represent the
original facial feature positions of CVH, red points represent the original facial feature
positions of Clinical Data, and green points show the spatial relationship of blue points
after registration).

Step 3: Selection of Circular Contour Area and Second Registration
In Figure 6B, the user uses the trackbar to select the circular contour areas for both

CVH and Clinical Data. Then, as prompted, click the “Second registration” function key
in Figure 6B. The “Registration situation” area on the right will display the result of the
complete 3D image of CVH converging towards the spatial position of the complete 3D
image of Clinical Data after the second registration.

Step 4: Spatial Mapping
Click the “Mapping” button on the right side of Figure 6B to pop up dialog boxes

as shown in Figure 6C,D. Users can input organ names in the ROI mapping text box and
check them in the organ list for quick mapping in the image area (as shown by the red areas
in Figure 6C,D. Users can adjust the image perspective in 3D view using the mouse in the
image areas of Figure 6C,D, or view the transverse, coronal, and sagittal planes separately
through the trackbar in the upper right corner.

For more operational details, please refer to the video from Supplementary Material.

3. Results
3.1. Selection of Test Data

In this paper, six sets of real, representative clinical head serial TMI data were selected
from the PACS system of Southwest Hospital of AMU to validate the effectiveness of the
methodology. To protect patient privacy, this article erases the label information of DICOM
images, and their main parameters and characteristics are shown in Table 1.

Table 1. Parameters of the test dataset.

Modality Parameter MPR of Scan Range

Data 1 CT

Slice Spatial Resolution: 512 × 512
Slice Quantity: 121
Pixel Spacing: 0.4336 mm\0.4336 mm
Thickness: 1.0 mm
ROI from radiological description: An oval-shaped nodular
shadow can be seen on the inner side of the left optic nerve
behind the orbital ball, suspected to be a hemangioma
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Table 1. Cont.

Modality Parameter MPR of Scan Range

Data 3 MRI

Slice Spatial Resolution: 512 × 512
Slice Quantity: 15
Pixel Spacing: 0.4296875 mm\0.4296875 mm
Thickness: 3.5 mm
ROI from radiological description: Nodular shadow on the
left side of the saddle area, considering the possibility of
pituitary adenoma

Bioengineering 2024, 11, x FOR PEER REVIEW 11 of 24 
 

Data 2 MRI 

Slice Spatial Resolution: 288 × 384 

Slice Quantity: 18 

Pixel Spacing: 0.625 mm\0.625 mm 

Thickness: 3.0 mm 

ROI from radiological description: An oval-shaped 

nodular shadow can be seen on the inner side of the 

left optic nerve behind the orbital ball, suspected to be 

a hemangioma 
  

Data 3 MRI 

Slice Spatial Resolution: 512 × 512 

Slice Quantity: 15 

Pixel Spacing: 0.4296875 mm\0.4296875 mm 

Thickness: 3.5 mm 

ROI from radiological description: Nodular shadow on 

the left side of the saddle area, considering the 

possibility of pituitary adenoma   

Data 4 CT 

Slice Spatial Resolution: 512 × 512 

Slice Quantity: 25 

Pixel Spacing: 0.430 mm\0.430 mm 

Thickness: 5 mm 

ROI from radiological description: postoperative 

cerebellar changes, abnormal structural disturbances 

in the cerebellar region, occipital bone showing 

postoperative changes 
  

Data 5 CT 

Slice Spatial Resolution: 512 × 512 

Slice Quantity: 177 

Pixel Spacing: 0.401 mm\0.401 mm 

Thickness: 1 mm 

ROI from radiological description: cerebral softening 

foci in the left part of the brainstem, demyelinating 

changes in the cerebral white matter   

Data 6 CT 

Slice Spatial Resolution: 512 × 512 

Slice Quantity: 30 

Pixel Spacing: 0.46289 mm\0.46289 mm 

Thickness: 5 mm 

ROI from radiological description: large area of bone 

defect in the left temporoparietal bone adjacent to the 

left temporalis muscle, edema in the left 

temporoparietal lobe of the brain, formation of 

softening lesions, and slight swelling of the temporalis 

muscle. 

  

  

Data 4 CT

Slice Spatial Resolution: 512 × 512
Slice Quantity: 25
Pixel Spacing: 0.430 mm\0.430 mm
Thickness: 5 mm
ROI from radiological description: postoperative cerebellar
changes, abnormal structural disturbances in the cerebellar
region, occipital bone showing postoperative changes

Bioengineering 2024, 11, x FOR PEER REVIEW 11 of 24 
 

Data 2 MRI 

Slice Spatial Resolution: 288 × 384 

Slice Quantity: 18 

Pixel Spacing: 0.625 mm\0.625 mm 

Thickness: 3.0 mm 

ROI from radiological description: An oval-shaped 

nodular shadow can be seen on the inner side of the 

left optic nerve behind the orbital ball, suspected to be 

a hemangioma 
  

Data 3 MRI 

Slice Spatial Resolution: 512 × 512 

Slice Quantity: 15 

Pixel Spacing: 0.4296875 mm\0.4296875 mm 

Thickness: 3.5 mm 

ROI from radiological description: Nodular shadow on 

the left side of the saddle area, considering the 

possibility of pituitary adenoma   

Data 4 CT 

Slice Spatial Resolution: 512 × 512 

Slice Quantity: 25 

Pixel Spacing: 0.430 mm\0.430 mm 

Thickness: 5 mm 

ROI from radiological description: postoperative 

cerebellar changes, abnormal structural disturbances 

in the cerebellar region, occipital bone showing 

postoperative changes 
  

Data 5 CT 

Slice Spatial Resolution: 512 × 512 

Slice Quantity: 177 

Pixel Spacing: 0.401 mm\0.401 mm 

Thickness: 1 mm 

ROI from radiological description: cerebral softening 

foci in the left part of the brainstem, demyelinating 

changes in the cerebral white matter   

Data 6 CT 

Slice Spatial Resolution: 512 × 512 

Slice Quantity: 30 

Pixel Spacing: 0.46289 mm\0.46289 mm 

Thickness: 5 mm 

ROI from radiological description: large area of bone 

defect in the left temporoparietal bone adjacent to the 

left temporalis muscle, edema in the left 

temporoparietal lobe of the brain, formation of 

softening lesions, and slight swelling of the temporalis 

muscle. 

  

  

Data 5 CT

Slice Spatial Resolution: 512 × 512
Slice Quantity: 177
Pixel Spacing: 0.401 mm\0.401 mm
Thickness: 1 mm
ROI from radiological description: cerebral softening foci in
the left part of the brainstem, demyelinating changes in the
cerebral white matter
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  Table 1 shows that Data 1, 2, 3, 4, 5, and 6 have different head positioning, scanning
intervals, scanning range, and slice quantity, have different ROI organs with their respective
diagnostic reports, and come from five patients with different face shapes, so the applica-
bility of the method of this paper can be evaluated to a certain extent, and each group of
data was processed three times by different people so that a more objective evaluation of
reproducibility can be obtained.

3.2. Registration Effect of Clinical Data and CVH

Currently, there is no unified evaluation scale or gold standard to evaluate the regis-
tration between heterogeneous multimodal images [17]. We performed a 3D reconstruction
of the two datasets in the same scene to evaluate the effectiveness of registration based on
the fit between the two datasets. Since CVH is a 24-bit true-color bitmap dataset, which
is completely different from the imaging features of CT and MRI, we designed the two
volume rendering schemes of coloring ranges and transparency to clearly separate them.

The results of the same scene after Data 1, 2, 3, 4, 5, and 6 were registered using the
methods of this paper are shown in Figure 7. The left column in Figure 7 represents the
original positioning, while the two columns on the right show different perspectives of
the results after registration using the method proposed in this paper. It can be seen that
from Data 1 to Data 6, our method can successfully overcome the influence of local extreme
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values. Among them, the clinical data selected in Data 5, unfortunately, has missing teeth,
and Data 6 has a large area of bone defect near the location of the left temporalis muscle,
but our method still performs good registration on the areas above the “eye–nose triangle”.
If we focus our observation on the tooth area, we can choose the “oral–nasal triangle
area” instead of the “eye–nose triangle area” so that we can obtain a registration result
that pays more attention to the “oral–nasal triangle area”. In a word, Through different
perspectives, it is subjectively believed that the registration results reach the basis of the
final ROI targeting aim of this paper.
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3.3. Five-Point Scale Method Based on the Mapping Effect of Typical Anatomical Structures

The anatomical structures of the optic nerve, pituitary gland, cerebellum, brainstem,
and temporalis muscle were selected as ROI organs for projection with respect to the
location of the lesion seen on imaging for each of the six datasets, and representative results
are shown in the first and second columns of Figure 8.
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In Figure 8, different colors in the first and second columns are used to represent the
positions of different ROI regions in Data 1–6; all six sets of data have lesion areas related
to ROI, which poses a challenge to traditional image registration methods. However, as
shown in Figure 8, the method proposed in this paper can effectively adapt to these changes,
demonstrating enhanced adaptability in processing image data affected by lesions.

Furthermore, we invited one adult with a non-medical background (role of patients)
and two third-year biomedical engineering students (role of medical students and engi-
neers) to use their respective computers to perform a total of 18 ROI localization operations
on the six sets of data to obtain the localization of the organs as shown in Figure 8, and
then a radiologist was invited to confirm the localization position. Finally, a five-point scale
for subjective evaluation results from the 18 operations was designed and collected. See
Table 2.

Table 2. Statistical results of subjective evaluation scale based on CVH gross anatomical structure
mapping.

Theme
Five-Point Scale Design

A B C D E

Accuracy of TSPR interaction behavior (A smooth operation,
one-time success, B relatively smooth operation, some steps need
to be repeated, C achieve mapping objectives, D not very useful,
E ineffective)

15 2 1

Efficiency of TSPR interaction behavior (A can be completed in 1
min, B can be completed in 2 min, C can be completed in 3 min,
D is cumbersome, E cannot complete the operation)

17 1

Degree of match between the mapped region of the ROI of the
CVH and datasets (A perfect match, B mostly match, C half
match, D less than half, E not valid at all)

15 3

The application of the five point scale provides key insights into the usage experience
of participants. For the accuracy of interaction behavior, Table 2 shows that out of a total of
18 operations, 15 operations are smooth operations with one-time success; the other three
operations were due to the initial impression for the first time operating without training,
but at least all achieved the mapping goal. For the efficiency of interaction behavior, there
are 17 operations that can be completed in 1 min; only one operation was completed in 2
min because the operator wanted to perform more observations the first time using it. For
the matching degree of organ mapping, the total number of operations that perfectly match
Data 1 to 6 is 15; the rest are option B (mostly match), which can meet the universal needs of
medical students, medical engineers, interdisciplinary researchers, and other groups. The
results show that the TSPR method proposed in this paper has accurate registration results,
is simple to operate, takes no more than 1 min on average for each operation, and has
good adaptability and repeatability to clinical imaging data, which can satisfy the research
purpose of this paper.

3.4. The Quantitative Analysis Method Based on ROI Area Coverage, the Mapping Effect of
Typical Anatomical Structures

For the six sets of data in Figure 8, we invited a doctor with 12 years of work experience
from the Radiology Department of Southwest Hospital to annotate the optic nerve of Data
1 (CT) and Data 2 (MRI), pituitary gland of Data 3, the cerebellum of Data 4, and brainstem
of Data 5, and temporalis muscle of Data 6 slice by slice according to the cross-section. The
annotation effect is shown in the third column of Figure 8. At the same time, another doctor
with 15 years of work experience was invited to confirm and ensure the accuracy of the
ROI area division and further design Equation (4) for quantitative calculation.

Recalli =
ROIc,i ∩ ROIm,i

ROIm,i
(4)
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Among them,
ROIc,i refers to the area of the ROI region automatically mapped by the system on the

i-th slice;
ROIm,i refers to the area of the ROI region marked by the doctor on the i-th slice.
Recalli represents the proportion of the intersection between the ROI area mapped

by the system on the i-th slice and the ROI area annotated by the doctor in the ROI area
annotated by the doctor. The higher the recall value, the better the directionality.

We use the ROI data annotated by doctors as a benchmark, select the range of layers in
the tomographic images with ROI, and automatically calibrate the ROI area by comparing
and extracting the corresponding layer of the first operation data of adult subjects obtained
in Section 3.3, and jointly input it into Equation (4) for calculation to obtain the results
shown in Table 3.

Table 3. Statistical results of Recall calculation based on CVH gross anatomical structure mapping.

Data 1
Layer 57 58 59 60 61 62 63 64 65

Recall 0.8894 0.8366 0.8277 0.8601 0.8302 0.8637 0.8949 0.9350 0.9384

Data 2
Layer 10

Recall 0.8838

Data 3
Layer 8

Recall 1.0

Data 4

Layer 2 3 4 5 6 7 8 9 10

Recall 0.7320 0.8894 0.9369 0.9533 0.9640 0.9115 0.8795 0.9447 0.9503

Layer 11 12

Recall 0.9711 0.4417

Data 5

Layer 67 68 69 70 71 72 73 74 75

Recall 1.0 1.0 1.0 1.0 1.0 0.9965 0.9203 0.9937 0.9976

Layer 76 77 78 79 80 81 82 83 84

Recall 0.9879 0.8713 0.8813 0.9934 0.9882 1.0 1.0 1.0 0.9784

Layer 85 86 87 88 89 90 91 92 93

Recall 0.9876 0.9485 0.9229 0.9497 0.8786 0.8096 0.7717 0.5987 0.6247

Layer 94 95 96 97 98 99 100 101 102

Recall 0.6731 0.5881 0.5374 0.6125 0.6908 0.7283 0.6901 0.6126 0.6586

Layer 103 104 105 106 107 108 109 110 111

Recall 0.6325 0.6547 0.5833 0.5724 0.6558 0.7003 0.7737 0.7672 0.7104

Layer 112 113 114 115 116 117 118

Recall 0.6720 0.7466 0.7578 0.7619 0.7796 0.8255 0.6970

Data 6

Layer 2 3 4 5 6 7 8 9 10

Recall 0.8026 0.7408 0.6842 0.6884 0.7196 0.7558 0.7716 0.8242 0.8353

Layer 11 12 13 14 15 16 17 18

Recall 0.8367 0.7917 0.7782 0.7313 0.7641 0.7797 0.7882 0.8368

In Table 3, Data 1 to Data 6 cover data of different modalities, such as incomplete-scan,
thin-layer CT or non-thin-layer CT, MRI, etc., for different individuals, and the organ ROI
has significant differences in body shape (detailed in Table 1). Therefore, the coverage layer
range of ROI varies greatly, but the recall values are very satisfactory.
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According to the data in Table 3, the maximum, minimum, median, and average
values of the recall with prominent correlation for each group of data are obtained, as
shown in Table 4, and further calculate the 95% confidence interval using Equation (5).

CI95% = X ± 1.96 × s√
n

(5)

Table 4. Distribution of Recall values for each set of data obtained from Table 3.

Maximum
Recall Rate

Minimum
Recall Rate

Median
Recall Rate

Average
Recall Rate

95% Confidence
Interval

Data 1 93.84% 82.77% 86.37% 87.46% [84.716%, 90.204%]
Data 2 88.38% 88.38% 88.38% 88.38%
Data 3 100% 100% 100% 100%
Data 4 97.11% 44.17% 93.69% 87.04% [78.392%, 95.688%]
Data 5 100% 53.74% 90.08% 82.79% [75.234%, 90.346%]
Data 6 83.68% 68.42% 77.97% 78.88% [75.418%, 78.942%]

Among them,
X refers to the average recall rate;
s refers to the standard deviation of the recall rate;
n refers to the sample size.
From Table 4, it can be seen that the TSPR fast localization proposed in this article

can always cover the ROI areas that need to be indicated and achieve the goal of fast
localization.

4. Discussion
4.1. Adaptability Requirements for Test Data

The multimodal tomographic images in this paper mainly include clinical TMIs (CT
and MRI) and CVH datasets.

The ROI of Data 1 and 2 showed an oval-shaped nodule lesion on the inner side
of the left optic nerve behind the orbital ball, both of which were radiological findings.
However, there are essential differences in the imaging modality between the two sets of
data: Data 1 is a CT dataset, which clearly displays rigid structures such as bones; Data 2,
on the other hand, was obtained through MRI scanning, which is a better display of soft
tissues. Although everyone is concerned about the optic nerve and adjacent oval-shaped
nodule lesion, the performance of the two modal data poses challenges in universal image
recognition. In addition, Data 1 has a higher number of slices (121 slices) and more detailed
slice intervals (1 mm), while Data 2 has the opposite, with only 18 slices and a 3 mm interval.
In order to evaluate the robustness of the proposed method in processing non-thin layer
scanning and low-resolution image data, the two challenging image data mentioned above
were selected as validation objects.

The ROI of Data 3 was clinically diagnosed as a nodular lesion on the left side of the
sellar region, characterized by distinct nodular images in the imaging data. And the ROI of
Data 4 was clinically diagnosed as structural abnormalities and disorders in the cerebellar
region. Due to the potential impact of atypical structures on conventional image registration
methods, the analysis of these two datasets is particularly important for verifying whether
the proposed method can maintain the correct ROI mapping ability in different clinical
disease scenarios. This comparative analysis will help demonstrate the robustness and
effectiveness of our method in handling TMI data with deformities or abnormal structures.
Ensuring the accuracy of registration methods under various pathological conditions is
crucial for further analysis and diagnosis.

In addition, Data 5 contains a set of high-quality clinical CT images, but it must be
pointed out that in actual clinical environments, the majority of imaging data often fail
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to meet such high-quality standards in the PACS system. It means that CT or MRI with
limited scanning area, 3–5 mm thick tomographic images actually stored in PACS, ROI
localization target for deformed lesions, is the common form of clinical TMI data.

Data 6 shows significant external deformation, as the patient has suffered from brain
trauma. Imaging shows large areas of bone loss in the left temporal parietal bone adjacent to
the left temporal muscle, edema and softening of the left temporal parietal lobe, and slight
swelling of the temporal muscle. After 3D reconstruction, there is a significant protrusion
on the left external part of the brain, increasing the diversity of localization targets.

The selection of the above data could enable this study to evaluate the performance
stability of the proposed method when facing clinical imaging materials below the ideal
quality of laboratory research. By verifying the processing ability of this method for images
of different quality, we can further understand its potential application and adaptability in
practical clinical scenarios.

4.2. Discussion on the Generalization Performance of Diversified Images with Significant
Pathological Changes

The focus of this article is on the rapid localization of organs or lesions within the
head. From the experimental results, it can be seen that using a two-stage registration
method of facial features and circular features can effectively capture the area of concern
for the operator. But, testing their method on a diverse set of images, especially those with
significant pathological changes, is the focus of verifying clinical robustness. Therefore, in
the selection of cases from Data 1 to Data 6, we strive to find representativeness in terms
of the diversity of imaging modalities, the diversity of imaging quality, and the impact of
lesion changes on ROI interval occupancy (detailed in Section 4.1 and Table 1).

From the 58th slice of the radiologist’s annotation in Data 1 (CT) of Figure 8, it can be
seen that compared to the right optic nerve (marked in red), the left optic nerve (marked
in green) is severely deformed due to tumor compression. From the TSPR mapping of
optical nerves in Figure 8, the right optic nerve (red projection) covers the optic nerve area
very well, almost consistent with the doctor’s standard, while the left optic nerve (blue
projection), although deviating, points out the correct orientation and lesion of the optic
nerve, which is beneficial for non-professionals to compare and observe, and achieve the
goal of rapid positioning for navigation.

As the same patient, Data 2 (MRI) also achieved navigation effects consistent with
Data 1.

There is a nodular shadow on the left side of the saddle area in the ROI region of
Data 3, considering the possibility of pituitary adenoma. Data 4 has postoperative cervical
changes and abnormal structural disturbances in the cervical region, and Data 5 has cerebral
softening foci in the left part of the brain, demyelinating changes in the cerebral white
matter. Therefore, the above cases all have a certain degree of deformation, and even Data
5 shows complete tooth loss and external facial features. However, the experimental results
all showed the ability to quickly locate issues.

Furthermore, we introduced Data 6, which involves a patient with brain trauma.
Taking the 10th slice of the original image in Data 6 of Figure 8 as an example, the radio-
logical findings show a large bone defect in the left temporoparietal bone adjacent to the
left temporalis muscle, left temporoparietal lobe cerebral edema, formation of a softening
focus, and slight swelling of the temporalis muscle. From the 10th slice of the radiologist’s
annotation in Data 6 of Figure 8, it can be seen that compared to the right temporalis muscle
(marked in red) and the left temporalis muscle (marked in green) is significantly deformed
due to trauma. After 3D reconstruction, there is a noticeable bulge on the external left
side of the brain. After completing the registration and positioning of the left and right
temporalis muscles using the method proposed in this paper, from the TSPR mapping of
the temporalis muscle in Figure 8, both the right (yellow projection) and left (red projection)
temporalis muscle covers the temporalis muscle area very well, almost completely covering
the area outlined by the doctor. The area adjacent to the left temporalis muscle shows
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significant deformation, which is beneficial for non-professionals to compare and observe
and achieve the goal of rapid positioning for navigation. The recall value for positioning in
this slice reached 83.53%. According to the statistics in Tables 3 and 4, the positioning of
other slices is also good.

The above case, as evidenced by the results shown in Figure 8 and the statistical data
presented in Tables 2 and 4, demonstrates that this method possesses strong robustness
and versatility.

4.3. Advantages of the Method Proposed in This Study

(i) Two-step strategy for image registration

In the field of medical image registration, a two-step registration process (including
coarse registration and fine registration) is a commonly used and effective strategy. This
method can balance the accuracy and computational efficiency of registration. This strategy
is widely used in medical image registration; for example, Liu et al. [18] used Mimics
20.0 software to perform two-step registration of CBCT dental arch and optical scanning
dental models in non-bite and bite states using global registration and local registration,
respectively. Chen et al. [19] proposed an improved registration method based on the
internationally renowned brain functional imaging software package SPM 12, which also
follows the concept of course to fine registration and effectively improves the accuracy of
registration. Therefore, we can see that in the field of medical image registration, the two-
step registration process of using one coarse registration followed by one fine registration
has become a widely recognized theoretical framework. This method not only balances the
accuracy and computational efficiency of registration but also effectively handles complex
medical image registration problems. The TSPR method proposed in this article is based
on this theoretical framework, which achieves coarse registration through facial feature
registration and fine registration through facial circular contour registration, thus achieving
efficient and accurate registration results. Therefore, the TSPR method proposed in this
article also adopts a similar two-step strategy but focuses more on the registration of
different human heads with the CVH template and provides a templated registration
scheme: the first step is to determine the spatial direction through coarse registration; the
second step is to achieve precise registration and determine the spatial scale.

(ii) Selection of feature points

In the selection of feature points, they are usually divided into anatomical landmarks
and artificial landmarks [20]. Anatomical landmarks refer to naturally existing reference
points in the human anatomical structure. These points are typically based on easily
identifiable and locatable features in biological anatomy, such as eye corners, the tip of the
nose, earlobes, etc. These landmarks are commonly used as reference points in medical
imaging, anatomical studies, and surgical navigation because they have relative consistency
and reproducibility across populations. Artificial landmarks refer to manually defined
and set reference points. These points may not naturally exist but are added to the body
or images through certain methods or devices (such as markers, sensors, etc.) to assist in
localization or registration in medical imaging. The use of these landmarks may introduce
some bias due to their subjective nature. However, in situations requiring high-precision
localization, they can provide valuable information. Due to the subjectivity of artificial
landmarks, natural anatomical landmarks such as the inner and outer corners of the eyes
and nose have become commonly used features in neurosurgery [4,20,21]. The “eye–nose
triangle” we chose is based on these stable facial features. These features are easy to
identify and provide a stable registration basis. On the basis of facial feature registration,
we introduce circular contour registration to solve the problems that may arise from using
only facial features. Lindseth et al.’s [20] study suggests that using only facial and ear
features may affect the registration accuracy of other parts of the head. By adding circular
contour registration, we have expanded the registration range and improved the accuracy
of overall head registration. We recognize that the accuracy of using anatomical landmarks
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or surface registration alone may be lower than registration based on artificial markers.
Therefore, our TSPR method combines anatomical landmarks (eye–nose triangle) and
surface registration (circular contour), aiming to improve the accuracy and robustness of
registration.

(iii) Comparison of Registration Methods

Although the current popular machine learning-based organ localization has the
advantage of high recognition accuracy, it is difficult to have a complete model to cover the
complex and diverse or pathological organs in the human body part, such as meeting the
localization needs from Data 1 to Data 6. Moreover, this large model training approach is
quite demanding on data modality, data quality, and application scenarios [22–28], and has
some stability and interpretability issues when facing complex clinical data environments.
For example, the incomplete head data in Data 1 (the radiologist only scanned some areas
because the actual ophthalmic examination only focused on the eye region) and the non-
thin-layer data in Data 4 (which is stored on-demand under the limited storage space of
PACS), all put high challenges on the robustness and generalization ability of the model.

In terms of registration, machine learning based registration methods also have similar
issues with organ localization. By contrast, the marking points-based registration methods
have greater practicality in clinical practice. Literature mainly focuses on studying the
local features auxiliary extraction of a certain anatomical region [29] or interior features
manual marking of organs by radiologists with the help of professional software [30–32].
The former improves performance rapidly with the help of machine learning but struggles
to adapt to the diverse clinical data modality and data content; the latter requires users to
have specialized anatomical knowledge, clinical experience, and software training, which
makes it difficult to support the lightweight application scenario of this paper.

As a specialized area of machine learning, deep learning technology focuses on neural
network models, making it suitable for solving more complex tasks and problems. Zhang
et al. [33] proposed a two-step registration method based on deep convolutional neural
networks for the registration of multimodal retinal images. This method also includes two
steps: coarse registration and fine registration. However, our method is based on traditional
surface anatomical features for registration, while Zhang et al.’s method [33] relies entirely
on deep learning techniques and solves the problems of inconsistent multimodal images
and lack of labeled data through an unsupervised learning framework. Yang et al. [34]
proposed a deep learning brain image registration method based on open–close operation
morphology, which has achieved significant results in improving the accuracy of brain
MRI registration, especially in complex boundary areas and small, narrow brain regions.
Although these methods perform well on specific tasks, they still face some challenges.
These challenges include the need for large datasets, which may not always be easily
achievable in real clinical environments; it is difficult to apply the demand for computing
resources to lightweight application scenarios; the generalization performance is limited,
and in fact, these literature are only applicable to specific tasks. Zhang et al.’s work [33] only
has good performance in the field of retinal images, but the cross-domain generalization
ability is limited. Yang et al.’s work [34] achieved good results on public datasets, but it
cannot be applied to registration between different individuals, and deep learning models
struggle to achieve lightweighting. Although Zhao et al. [35] proposed a medical image
registration model called PPCTNet based on CNN and Transformer in parallel, which
reduced the model parameters by 22 M and computational complexity by 500 G in MRI
registration of the same brain, striving to improve lightweight performance, the issue of
lightweight models remains a long-term research process when facing brains of different
individuals.

In comparison, the TSPR method adopts a two-step registration method in terms of
strategy and combines anatomical landmarks of external contours and artificial markers
in feature point selection. It is not only suitable for multimodal images (such as CT, MRI,
and CVH datasets) and different individuals but also for handling incomplete scans and
non-thin-layer data (such as Data 1 and Data 4). Meanwhile, TSPR has a spatial reduction.
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Occupying less than 10 M and with an average user operation time of less than 1 min,
both in terms of space occupation and computational complexity, it is far smaller than
deep learning methods. In addition, the TSPR method is easy to operate, with an average
operation time of no more than 1 min, and has good flexibility to adapt to ROI tissue/organ
deformation caused by trauma, lesions, etc. Compared to “black box” deep learning
models, the working principle of the TSPR method is clearer and easier to understand
and accept. These characteristics make the TSPR method significantly advantageous in
practical clinical applications. The results of Tables 2 and 4 show that the TSPR interaction
method based on the rigid structure of exterior contours proposed in this paper has the
characteristics of simple and intuitive operation, no professional requirements for the user,
no need for training, and better meets the low-cost and universal requirements of junior
medical students, medical engineers, interdisciplinary researchers, and general patients.

Meanwhile, facing the deformation of ROI tissues/organs due to trauma, lesions, etc.,
in real clinical data, the method in this paper has stronger data adaptability through feature
registration of the overall external contour with templatized head registration and ROI
organ mapping. Moreover, compared to traditional ICP algorithms, the TSPR method
proposed in this paper demonstrates significant advantages in avoiding getting stuck in
local extremum problems. For the other parts of the body, our method provides users
with a more flexible interaction space for feature selection. For example, when the user is
interested in the oral cavity and related parts of Data 5, the user can re-register the features
according to the oral-nasal triangle. In fact, it has become an effective auxiliary tool for
Junior medical students and interdisciplinary researchers in our college.

Of course, there are still some areas that can be improved. For example, this work
mainly focuses on clinical TMIs, which are composed of cross-sectional data, but there
are a large number of sagittal or coronal scanning results in MRI scans. To incomplete or
non-thin-layer sagittal/coronal scan data in clinical environments, the applicability of this
method is planned to be studied in the next work. In addition, the interaction of TSPR
currently requires manual operation, and although the operation steps are simple. But for
some patterned operations, facial recognition technology can be studied to automatically
extract facial features and facial exterior features from the 3D facial reconstruction results of
TMI without manually selecting feature regions, achieving complete automated interaction
and further simplifying the operation process.

Although the TSPR method demonstrates excellent performance and adaptability in
processing various clinical data, its true value still needs to be validated in actual clinical
environments. Therefore, it is necessary for us to further explore the clinical application
prospects of this system to fully understand its potential impact and practical value.

4.4. Clinical Application Prospects of the Software

Through experiments and applications in the digital anatomy classroom at the Army
Medical University, the rapid head organ localization system developed in this study
shows potential for clinical application. This software is based on the TSPR method
proposed in this article and has the following characteristics closely integrated with the
core contributions of the TSPR method:

(i) Applicability and Data Processing Capability:

As described in Section 4.3, the TSPR method is capable of handling incomplete scans
(such as Data 1) and non-thin-layer data (such as Data 4). This feature is particularly
important in clinical environments as it enables the system to adapt to various practical
medical scenarios, including images of different modalities such as CT and MRI.

(ii) Adaptability:

Unlike most studies that focus on segmentation for specific organs or diseases, our
work has better environmental adaptability and resilience. For instance, in the presence
of shape-abnormal lesions, it can swiftly locate the target ROI organs (as seen in Data 1,
2, and 6). This includes accurately identifying the normal right optic nerve and rapidly
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pinpointing the left optic nerve compressed by a tumor. It also includes the ability to locate
injury areas via the temporal muscle in cases of external trauma.

(iii) Usability and operational efficiency:

The design of the TSPR method simplifies the operation steps and makes the system
interface intuitive and easy to use. This enables non-professionals to quickly and effectively
perform registration tasks without the need for extensive training or specialized anatomical
knowledge. This characteristic is consistent with the fast and lightweight goals pursued by
the TSPR method.

(iv) Potential educational value and interdisciplinary applications:

Although further research and clinical validation are needed, this system can provide
valuable support for medical students and non-professionals (such as patients, medical en-
gineers, and interdisciplinary researchers) to more effectively interpret and utilize medical
imaging data. By comparing the patient’s TMI data with high-definition CVH maps, users
can quickly locate areas of interest, which is consistent with the original intention of the
TSPR method to provide a more intuitive understanding.

(v) Potential of Digital Public Health and Medical Education:

The rapid processing capability of the TSPR method (as mentioned in Section 3.3, with
an average operating time of no more than 1 min) has demonstrated enormous potential
for the system in the fields of digital public health and medical education. It provides
patients with better channels for informed services while also offering new possibilities for
computer-assisted education.

5. Conclusions

In this paper, from the perspective of protecting patients’ right to know and facilitating
the browsing of clinical TMIs by junior medical students, engineers, and interdisciplinary
researchers, a universal TSPR method is proposed. This method enables the tomographic
data (e.g., CT, MRI) from the head region of any patient in the clinic to be rapidly regionally
registered and spatially mapped with the CVH so that the abstract clinical TMIs can
be compared with the high-definition maps of the CVH, and to achieve the purpose of
rapidly locating the organs in the ROI. Compared to most studies that have requirements
on the quality of image data in laboratory environments, this TSPR method can adapt
to incomplete and non-thin-layer quality in real clinical data (such as Data 1–6 in the
article, including CT or MRI with limited scanning area, 3–5 mm thick tomographic images
actually stored in PACS). Moreover, Data 1–5 represent most disease scenarios for observing
internal organs or lesions in the head and can also adapt to the deformation problem of
ROI caused by trauma and lesions to a certain extent, and Data 6 represents the localization
requirements when head trauma has a certain impact on the external contour structure.
The experimental results confirmed its practicality and effectiveness from both subjective
and objective perspectives. Also, if there are significant facial deformities, the TSPR method
proposed in this paper allows users to avoid severely deformed positions between TMIs
and CVH. Users can freely choose feature points for determining spatial orientation and
circular structures for determining spatial scale. In summary, this method can run on
ordinary personal computers without any special software and hardware configuration
in a low-cost way, enabling efficient image reading, computer-aided education, and well-
informed rights of patients, highlighting the potential of digital public health and medical
education.
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