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Abstract: Regular exercise and physical activity are now considered lifestyle factors with positive
effects on human health. Physical activity reduces disease burden, protects against the onset of
pathologies, and improves the clinical course of disease. Unlike pharmacological therapies, the effects
mediated by exercise are not limited to a specific target organ but act in multiple biological systems
simultaneously. Despite the substantial health benefits of physical training, the precise molecular
signaling processes that lead to structural and functional tissue adaptation remain largely unknown.
Only recently, several bioactive molecules have been discovered that are produced following physical
exercise. These molecules are collectively called “exerkines”. Exerkines are released from various
tissues in response to exercise, and play a crucial role in mediating the beneficial effects of exercise
on the body. Major discoveries involving exerkines highlight their diverse functions and health
implications, particularly in metabolic regulation, neuroprotection, and muscle adaptation. These
molecules, including peptides, nucleic acids, lipids, and microRNAs, act through paracrine, endocrine,
and autocrine pathways to exert their effects on various organs and tissues. Exerkines represent a
complex network of signaling molecules that mediate the multiple benefits of exercise. Their roles in
metabolic regulation, neuroprotection, and muscle adaptation highlight the importance of physical
activity in maintaining health and preventing disease.

Keywords: exerkines; physical exercise; inflammation; omics; biomolecules

1. Introduction

There is no doubt that regular exercise brings benefits in terms of prolonging life,
improving overall health, and preventing disease [1]. Walking for 60 min every day,
about 400 min every week, has positive effects on longevity and reducing the risk of
cardiovascular disease, neurological disease, cancer, and type 2 diabetes [1,2]. Although
the terms ‘exercise’ and ‘physical activity’ are commonly used interchangeably, exercise
is typically regarded as intentional physical activity, such as aerobic training, resistance
training or high-intensity interval training [3,4]. By contrast, physical activity encompasses
exercise as well as usual occupational and/or domestic activity.

However, an important question remains: how does exercise produce positive biolog-
ical effects on human health? Over the past decade, researchers have begun to decipher
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different cellular and molecular pathways that are activated throughout the body during
exercise; some of these persist even after exercise. On a biochemical level, exercise triggers
the secretion of proteins known as myokines from skeletal muscles, such as interleukin-10
and irisin, which have beneficial effects on a host of tissues and reduce the concentration of
proinflammatory cytokines, contributing to overall improvements in health [5]. Skeletal
muscles represent ~30–40% of the total body’s weight and allow us to perform a wide
range of movements and functions. Skeletal muscles are voluntary, meaning you control
how and when they work. They are also a reservoir of amino acids stored as protein.
Skeletal muscle, with its marked plasticity, is capable of adaptation throughout life in
response to a variety of signals including neural activation, mechanical loading, growth
factors, and nutritional status [6]. Skeletal muscle proteins are constantly and simultane-
ously synthesized and degraded. Net protein balance is defined as the difference between
skeletal muscle protein synthesis and muscle protein breakdown [7]. The balance between
anabolism and catabolism is crucial for muscle mass and functions. Indeed, protein balance
does not function as a simplistic binary operation (e.g., synthesis or degradation) but in-
stead as a summation of multiple processes that dynamically operate in an interconnected
network [8].

Skeletal muscle exercise burns up energy, especially glucose that would otherwise be
stored as fat, which, in excess amounts, increases the risk of cardiovascular disease, type
2 diabetes, and some cancers. Opposite, even short periods of physical inactivity are asso-
ciated with impaired metabolic homeostasis, manifested as decreased insulin sensitivity
and reduced postprandial lipid clearance, loss of muscle mass, and an accumulation of
visceral adiposity [9,10]. Exercise impacts various bodily systems, such as the cardiovas-
cular system, improving insulin sensitivity, increasing muscle volume, decreasing body
fat, and increasing blood flow to trained muscles, all of which contribute to improved
health outcomes [11]. Furthermore, exercise has been shown to improve neurogenesis,
increase the expression of neurotrophins such as brain-derived neurotrophic factor (BDNF),
promote dendritic remodeling, and stabilize stress responses and inflammatory signaling
in the brain, highlighting its significant benefits for mental well-being [12]. However, only
in recent years has research been able to provide coherent biochemical and molecular data
through a multisystem and multiomics approach. The results of a comprehensive study,
the “Molecular Transducers of Physical Activity Consortium” (MoTrPAC), analyzed the
transcriptomic, proteomic, metabolomic, and lipidomic profiles of 18 solid tissues from a
sex-controlled group of rats (Rattus norvegicus) during 8 weeks of resistance training. The
investigators also analyzed the phosphoproteome, acetylproteome, ubiquitylproteome,
epigenome, and immunome in whole blood and plasma [13]. By mapping dynamic re-
sponses to exercise, MoTrPAC generated a molecular map of exercise, providing insight
into the intricate molecular transducers that mediate the effects of physical activity on
various tissues and organs [14]. By analyzing the molecular basis of physical activity
and resilience, the consortium aimed to identify and characterize molecular transducers,
including exerkines, actives in both humans and animal models [15].

2. Exerkines: Mediators of Benefits of Physical Activity

Exerkines, also known as exercise-induced bioactive molecules, have emerged as key
mediators of the health benefits associated with physical activity (Table 1).

Table 1. Exerkines produced by human tissues.

Exerkine Tissue/Organs Molecule Type
Autocrine effects

12,13-diHOME (12,13-dihydroxy-9Z-octadecenoic acid) BAT (Brown Adipose Tissue) Lipid

Apelin Muscle Small Peptide

Adiponectin WAT (White Adipose Tissue) Protein
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Table 1. Cont.

Exerkine Tissue/Organs Molecule Type
Autocrine effects

BDNF (brain-derived neurotrophic factor) Brain, muscle Protein

BDNF (brain-derived neurotrophic factor) Brain, muscle Protein

FGF21 (Fibroblast growth factor 21) WAT Protein

HSP72 (heat shock protein 72) Muscle Protein

IL-6 (Interleukin 6) Muscle Protein

IL-7 Muscle Protein

IL-15 Muscle Protein

Irisin (FNDC5) Muscle Glycoprotein

Lactate Muscle Organic Molecule

LIF (leukaemia inhibitory factor) Muscle Protein

miRNAs Sperm RNA

Musclin/Ostreocrin Muscle, bone, brain Protein

Myostatin Muscle Protein

Nitric oxide Endothelium Inorganic Molecule

Reactive oxygen species Muscle Inorganic Molecules

SPARC (secreted protein acidic and rich in cysteine) Muscle Protein

SDC4 (syndecan 4) Muscle Protein

TGFβ1 (transforming growth factor β1) Muscle Protein

OXT (Oxytocin) Brain, adipose, systemic
metabolism Small Peptide

METEORIN-LIKE PROTEIN (METRNL) Muscle, adipose Protein
Paracrine effects

Adiponectin Muscle Protein

Angiopoietin 1 Vasculature Glycoprotein

Angiopoietin-like proteins (ANGPTL3, ANGPTL4, ANGPTL8) Liver, adipose Protein

BAIBA (β-aminoisobutyric acid) WAT, bone Organic Molecule

BDNF Nerves Protein

Fractalkine Leukocytes Protein

FGF21 BAT Protein

GDF15 Liver Protein

IL-6 WAT Protein

IL-7 Bone Protein

IL-8 Vasculature Protein

IL-13 Muscle Protein

IL-15 WAT Protein

Irisin Adipose tissue, liver Glycoprotein

LIF Muscle Protein

Musclin Cartilage Protein

Myostatin Bone Protein

SPARC Extracellular matrix Protein

SDC4 Muscle Protein
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Table 1. Cont.

Exerkine Tissue/Organs Molecule Type
Paracrine effects

TGFβ1 Extracellular matrix Protein

TGFβ2 (transforming growth factor β2) Muscle, BAT Protein

VEGF Endothelium Protein

OXT Brain, adipose, systemic
metabolism Small Peptide

METEORIN-LIKE PROTEIN (METRNL) Muscle, adipose Protein

The biological pathways of the exerkines reported in the table can be viewed and analyzed on Reactome (https:
//reactome.org/, accessed on 4 August 2024).

These molecules are released from various tissues in response to exercise and play a
critical role in promoting general well-being and regulating metabolic homeostasis, thus
preventing metabolic diseases [16]. Exerkines have been identified as signaling molecules
that exert influence on a wide range of intricate processes in a variety of tissues such as
muscle, adipose tissue, pancreas, liver, cardiovascular system, kidney, and bone [17].

Several exerkines, including FGF21, IL-6, adiponectin, irisin, apelin, and myonectin,
have been identified and studied for their therapeutic potential in the treatment of metabolic
and cardiovascular diseases [18,19]. These molecules have been shown to promote cross-
talk between organs, mediate endocrine effects that attenuate aspects of metabolic syn-
drome, such as fatty liver, dysglycemia, insulin resistance, increased adiposity, and exercise
intolerance [20]. Exerkines play a crucial role in various physiological processes, including
skeletal muscle development and growth, tissue regeneration, and cognitive improve-
ment [21–23]. They can be secreted by a variety of cells, acting as autocrine, paracrine,
or circulating regulators in response to exercise, and contribute to the systemic effects
of physical activity. Furthermore, exercise-induced extracellular vesicles enriched with
exerkines have been identified as a new class of molecules that promote systemic beneficial
effects [24].

However, the question remains as to the number of exerkines, their source, and the
regulation of their expression. Biochemically, exerkines can be hormones, metabolites,
peptides, proteins, and nucleic acids; their pleiotropic nature determines the response of
various physiological systems to physical exercise (Table 1).

The first exerkine identified was IL-6 as a myokine in 2000 [25]. Since then, numerous
exerkines have been characterized in the cardiovascular system, endocrine system, nervous
system, immune system, adipose tissue, skeletal muscle, liver, and intestine [4]. IL-6 is a
multifunctional cytokine that plays a crucial role in various physiological and pathologi-
cal conditions across different systems. IL-6 is produced in response to infections, tissue
injuries, and stress, contributing to host defense mechanisms through the stimulation of
acute-phase responses, haematopoiesis, and immune reactions [26]. IL-6 exerts its effects
through binding to its receptor, which is present in various tissues, including the central
nervous system [27]. The cytokine IL-6 has pleiotropic effects in different cell types and
plays a crucial role in various physiological processes, including inflammation, immune
response, and metabolic regulation [28]. Some other major exerkines include Oxylipin 12,
13 diHOME;—this exerkine is involved in metabolic health and systemic metabolism [29];
adiponectin, a lipid hormone that influences metabolic health and insulin sensitivity [16];
brain-derived neurotrophic factor (BDNF), known for its role in promoting neuroprotection
and cognitive function [16]; lactate, considered a major myokine and exerkine, promot-
ing beneficial metabolic and anti-inflammatory effects of exercise [30]; irisin, an exerkine
produced during muscle contraction that contributes to anti-inflammatory effects and
homeostasis [31]; Fibroblast growth factor 21 (FGF21), implicated in obesity, insulin resis-
tance, and type 2 diabetes; fibronectins, exerkines like irisin that have anti-inflammatory
properties and play a role in aging and redox-mediated comorbidities [31]. Exerkines

https://reactome.org/
https://reactome.org/
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have been identified as important regulators of processes such as adipose tissue browning,
with specific exerkines like irisin, meteorin-like (METRNL), and FGF-21 playing key roles
in systemic metabolic adaptations [20]. Apelin is an exerkine relevant to the metabolic
control of type 2 diabetes mellitus [3]. These exerkines, through paracrine, endocrine,
and autocrine pathways, mediate the molecular effects of exercise on the entire organism,
highlighting their significance in promoting metabolic health and overall well-being [32].
Exerkines have been associated with various health benefits, including promoting angiogen-
esis, enhancing endothelial cell function, and potentially rescuing cognitive decline [33,34].
These molecules have been linked to the regulation of neurodegenerative diseases and have
shown promise in the treatment of conditions like Alzheimer’s disease [35,36]. Interestingly,
Mohammad et al. [37] described how voluntary running increased the concentration of
an enzyme (BACE1) that limits the overproduction of beta-amyloid precursor protein in
ovariectomized mice. Exercise has been shown to have positive effects on various diseases,
with specific exercise prescriptions recommended for conditions such as cancer, Parkin-
son’s disease, and cardiovascular diseases [38,39]. The European Association of Preventive
Cardiology has developed tools like the EXPERT system to optimize exercise prescriptions
for cardiovascular disease patients, considering factors like exercise tolerance, medications,
and adverse events during testing [40]. Exercise therapy is considered an active interven-
tion for the rehabilitation of various diseases [41]. In this context, exerkines constitute a
mechanistic link between exercise and its beneficial effects. For example, exerkines have
recently been shown to improve neurogenesis and neuroprotection, thereby promoting
brain health [42]. In elderly individuals with mild cognitive impairment, acute aerobic or
strength exercise have been shown to alter circulating exerkine levels, affecting neurocogni-
tive functions [43]. Furthermore, platelet-derived exerkines like CXCL4/platelet factor 4
have been found to enhance hippocampal neurogenesis and restore cognitive function in
aged mice [44]. These findings highlight the potential of exerkines in promoting cognitive
health and neurogenesis.

Barres et al., shown that a long time that exercise alters epigenetics and causes short-
term changes in DNA methylation and gene expression in muscle tissue that may have
implications for type 2 diabetes [45]. In 2022, Kurz and Colleagues [46] found that mice
with pancreatic tumors expressed higher levels of CD8 T cells, which are capable of killing
cancer cells and/or virus-infected cells, after 30 min of aerobic exercise five days a week.
These killer cells express a receptor for IL-15, which is released from muscles during
exercise. When CD8 T cells bind to IL-15, they unleash a more potent immune response
on pancreatic tumors. This effect prolonged the survival of mice with tumors by about
40 percent, compared to control mice. The findings were confirmed when Kurz et al. [46]
analyzed tumor tissue from people with pancreatic cancer. Subjects who performed at least
60 min of aerobic exercise each week produced more CD8 T cells and were twice as likely
to survive up to 5 years compared to people in the control group.

The diverse array of exerkines underscores the intricate mechanisms through which
exercise influences various physiological processes and provides potential targets for thera-
peutic interventions in metabolic diseases and other health conditions. Tissue sensitivity
and response to exercise vary according to time of day and the alignment of circadian clocks,
but the optimal exercise time to elicit a desired metabolic outcome is not fully defined [47].
Exerkines confer adaptive processes between different tissue types, and therefore mediate
the preventive and therapeutic effects of physical activity [48]. Exerkines play a critical
role in mediating the therapeutic effects of exercise by transmitting molecular signals that
promote adaptation, tissue repair, and overall improved health. Understanding the role
of exerkines in the response to physical exercise is therefore essential to clarifying the
mechanisms through which physical activity benefits health and well-being. It will be
necessary and appropriate to study the interindividual variability in exerkines secretion
in response to physical exercise. In fact, it is known that some subjects respond with
significant changes to the effects of physical exercise [49]. Others, however, do not respond
in the same way when subjected to the same exercise (“non-responders”). It is evident
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that these differences are due to different cellular actions. For example, at the cardiac level,
it is the cardiomyocyte that plays a central role both as a target and as an effector of the
benefits of physical exercise, but it is certain that other non-cardiomyocyte lineages’ path-
ways are activated at a systemic level (metabolism, inflammation, microbiome, and aging),
resulting in a pleiotropic but personalized effect [50]. Exerkines are known to modulate
various physiological processes, including neurocognitive functions, tissue metabolism,
and systemic inflammation [43,51]. It has also been shown that exerkines promote neuronal
survival, development, and growth, as well as inducing changes in tissue metabolism and
signaling [43]. Additionally, exerkines have been associated with anti-inflammatory effects,
contributing to the treatment of conditions such as atherosclerosis [51]. The therapeutic
potential of anti-inflammatory exerkines in the context of atherosclerosis highlights the di-
verse roles these molecules play in health and disease [51]. Exerkines are exercise-induced
molecules that mediate tissue communication and drive adaptations. Understanding ex-
erkine kinetics and dynamics is crucial for optimizing exercise prescription for disease
prevention and treatment and developing exercise-mimicking pharmaceuticals [48].

MicroRNAs (miRNAs), small non-coding RNAs secreted in response to exercise, act
as exerkines that regulate gene expression levels [52]. Recent research has highlighted the
potential of certain miRNAs to act as exerkines, which are molecules that are released in
response to exercise and mediate systemic adaptations and benefits [20]. These exercise-
induced circulating miRNAs, termed c-miRNAs, have been proposed to contribute to the
multisystemic adaptive effects of physical activity [20]. Specific miRNAs delivered via
circulating exosomes can exert protective effects on distal organs, such as the heart, against
conditions like myocardial ischemia/reperfusion injury [53]. A recent case–control study
of 16 young sedentary men, 16 Olympic endurance athletes, and 16 Olympic endurance
athletes, analyzing the miRNA profiles of extracellular vesicles, showed that endurance and
resistance athletes had significantly lower levels of miR-16-5p, miR-19a-3p, and miR-451a
compared to sedentary people. Interestingly, the miRNA profile observed in extracellular
vesicles provided a differential signature of athletes regardless of the type of exercise com-
pared to sedentary people. In fact, miR-25-3p levels were specifically lower in endurance
athletes, suggesting an individual and specific response in this group of athletes [54].

miRNAs have been implicated in various biological processes, including angiogen-
esis, inflammation, and mitochondrial metabolism, making them essential mediators of
exercise-induced adaptations [55]. The dynamic regulation of circulating miRNAs during
exercise and training underscores their importance in physiological responses to physical
activity [55].

There are differences in the secretion of exerkines in response to acute exercise and
chronic exercise. Exposure to acute physical exercise is generally associated with responses
focused on maintaining metabolic homeostasis, with elevated inflammatory phenomena,
while exposure to long-term physical exercise is associated with responses focused on
long-term metabolic adaptations and with a decrease in inflammation [56]. In addition,
aerobic and anaerobic exercises induce the release of various exerkines. Aerobic exercise is
associated with the release of several myokines and exerkines that play significant roles
in metabolic regulation (e.g., IL-6, GDF15, FGF21, BDNF, apelin, METRNL), promoting
lipolysis and contributing to metabolic regulation and insulin sensitivity [57–59]. In contrast,
anaerobic exercise primarily stimulates the production of different exerkines, notably
lactate, which serves as both an energy substrate and a signaling molecule. Lactate, in
fact, can cross the blood–brain barrier and is involved in increasing BDNF expression,
thereby promoting neuroplasticity [59–61]. Additionally, anaerobic exercise has been
linked to the secretion of myokines such as IL-7 and IL-8, which are involved in muscle
hypertrophy and anti-inflammatory responses [62]. The combination of anaerobic and
aerobic exercises can also enhance the expression of various myokines, indicating that both
types of exercise can synergistically improve metabolic health [3]. Notably, the secretion
of exerkines such as irisin, which is associated with both aerobic and resistance training,
underscores the complex interplay between different exercise modalities in promoting
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health benefits [63]. Interestingly, a recent study demonstrated that postprandial aerobic
exercise regulates tissue-specific triglyceride uptake through angiopoietin-like proteins
(ANGPTL3, ANGPTL4, ANGPTL8) [64].

However, there are many other questions: how is this complex network regulated? Is
there a lead player? Is it organ-related? There are not many answers to these questions yet,
but the MoTrPAC study is beginning to provide some interesting answers. For example,
in the small intestine, exercise reduced the expression of some genes associated with in-
flammatory bowel disease. In the liver, however, it stimulated tissue regeneration. In male
rats, eight weeks of resistance training was observed to reduce the amount of specific body
fat called subcutaneous white adipose tissue (scWAT). Interestingly, the same amount of
exercise did not reduce the amount of scWAT in female rats [14]. Studies have identified
specific genes and genetic pathways that are responsive to exercise stimuli and play a role
in the production and regulation of exerkines. For instance, research has highlighted the
role of myokines, which are induced by exercise and include muscle-derived exerkines, in
mediating the beneficial effects of physical activity [58]. Additionally, the identification of
genes like NR4A3, which respond to exercise-like stimuli and mediate metabolic responses,
underscores the genetic basis of the molecular adaptations to exercise [65]. Exercise in-
tensity significantly influences the profile of exerkines secreted by various organs, with
distinct patterns emerging based on whether the exercise is low, moderate, or high intensity.
High-intensity exercise has been shown to result in the robust release of specific exerkines.
For example, the release of IL-6 has been linked to increased glucose uptake and fatty acid
oxidation, indicating its role in metabolic regulation during intense exercise [53]. Endurance
resistance training induces a different set of exerkines than resistance training, with some
studies suggesting that aerobic exercise may lead to greater increases in certain myokines
such as irisin and FGF21, which are associated with fat metabolism and energy expendi-
ture [3]. Therefore, understanding secretory dynamics based on exercise intensity may help
design exercise programs that maximize the health benefits of physical activity. Hopefully,
we will soon understand the molecular basis of these differences, and this will be the first
step towards achieving the goal of developing personalized exercise prescription [66].

Overall, the emerging field of exerkines research highlights the importance of these
exercise-induced signaling molecules in promoting health, resilience, and disease man-
agement. It is precisely this multifaceted role that makes them promising targets for
therapeutic interventions. Understanding the molecular mechanisms by which exerkines
exert their effects may provide valuable insights into the therapeutic potential of exercise
as a non-pharmacological intervention in various health conditions.

3. Male Infertility, Physical Exercise, and Exerkines

In recent years, much attention has been paid to bias and how the environment is
influencing not only somatic cells but also germ cells due to the importance of epigenetic
inheritance across generations also.

Many studies look at factors related to lifestyle and sperm quality. The literature on
physical activity and sperm quality is scarce in humans, while it is abundant in research on
animal models. In fact, in studies on animals and mice in particular, the positive effect of
physical activity on sperm has been widely demonstrated. For example, in mice, paternal
preconceptional physical activity induces changes in the expression of sperm miRNAs
and DNA methylation associated with obesity and metabolic dysfunction induced by a
high-fat diet. Specifically, a preconceptional swimming exercise or dietary intervention
(8 weeks) normalized body weight, glucose intolerance, plasma leptin, and C-reactive
protein concentrations in obese bulls initially fed a high-fat diet [67]. The researchers also
found that a high-fat diet leads to the production of aberrantly expressed X-associated
sperm miRNAs involved in cell cycle regulation, apoptosis, and embryo development
pathways (miR-503, miR-542-3p, and miR-465b-5p, respectively), which were also restored
to control levels by an 8-week diet or exercise intervention. Moderate and regular exercise
can be beneficial in male fertility by modulating anti-inflammatory and antioxidative
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mechanisms. Specific types of exercise, such as resistance training, have been shown to
positively affect male factor infertility [67]. Lifestyle interventions, including diet and
exercise, can also improve metabolic health and reverse perturbed sperm function in
obese individuals, highlighting the importance of a holistic approach to male fertility
management [67]. Exercise is important in epigenetic inheritance through generations. In
2015, Denham [68] demonstrated DNA methylation in human sperm following exercise
training. Moreover, methylation changes occurred in paternally imprinted genes that
are exempt from DNA methylation erasure after fertilization [69,70]. Global sperm DNA
methylation was reduced after 3 months of training exercise, thus suggesting that some
exercise-responsive genes (CpG sites) are regulated by DNA methylation in somatic and
germinal cells.

In an RCT, a high-intensity training group reported significantly attenuated inflamma-
tory exerkines (IL-6 and TNF-α), oxidative stress (reactive oxygen species and malondialde-
hyde), and antioxidants (superoxide dismutase, catalase, and total antioxidant capacity)
compared to the control (p < 0.05), and these changes coincided with favorable improve-
ments in semen parameters, sperm DNA integrity, and pregnancy rate (p < 0.05) [71]. A
recent systematic review and network meta-analysis, with the aim to evaluate the effective-
ness of exercise training on male infertility and seminal markers of inflammation, reported
on 2641 fertile and infertile men in seven controlled randomized trials. It appears that
moderate-intensity aerobic exercise alone, strength training alone, and the combination of
the two significantly improve male infertility [72]. Interestingly, repeated high-intensity
interval exercise (HIIE) was found to increase plasma oxytocin (OT) levels in healthy
men [73]. Since oxytocin plays a possible role in male reproductive function and infertil-
ity [74] through the oxytocin/oxytocin receptor (OT/OTR) system, it is conceivable that
this exerkine could have positive effects on the treatment of male infertility.

Recently, mitochondrial tRNAs (mt-tRNAs) and their fragments (mt-tsRNAs) have
been identified in human sperm and are therefore susceptible to transmission. mt-tsRNAs
in sperm are correlated with body mass index, and paternal overweight at conception
doubles the risk of obesity in the offspring as an epigenetic mechanism [75]. Moreover, epi-
didymal spermatozoa, but not developing germ cells, are sensitive to the environment. This
study supports the importance of paternal health at conception for offspring metabolism,
but, from an evolutionary perspective, these results present a fully reversible mechanism
by which male parents influence offspring metabolic risk by transferring mitochondrial
signals and thus overcome the mechanisms by which fertilized oocytes eliminate sperm
mitochondria. This opens new pathophysiological horizons on the role of paternal offspring
transfer of mitochondrial RNAs at fertilization [76]. Even though this was demonstrated
regarding metabolic programming, it is highly possible that paternal physical exercise may
positively influence sperm-borne mitochondrial RNAs at fertilization.

4. Conclusions

Physical exercise has played and plays a fundamental role in human evolutionary
history. Humans have lived a hunter–gatherer lifestyle for tens of thousands of years,
hunting and foraging for food, building and maintaining shelter, gathering water, and
protecting themselves from predators [77]. This has required walking long distances,
and occasionally fighting and escaping from threats. Those with better athletic ability
were better equipped to live longer, which favored a selection for exercise as a positive
developmental factor [78]. On this basis, the Greeks thought of a competitive quadrennial
athletic event called the Olympic Games, which was held in Olympia, Greece, from 776 bce
to about 393 ce. It was part of a religious festival that honored Zeus, and the name Olympics
was derived from Mount Olympus, home of the Greek gods [79].

The shift to a more active lifestyle has led to changes in the human body: exercise
burns energy that would otherwise be stored as fat, which, in excessive quantities, increases
the risk of cardiovascular disease, type 2 diabetes, and some tumors. A reduction in adipose
tissue is one of the ways to reduce weight in individuals with obesity and is necessary
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to mitigate negative cardio-metabolic comorbidities in obesity. There are two methods
that can effectively reduce adipose tissue, and these include (a) change in diet; (b) change
in energy expenditure (e.g., exercise). Both aspects have a positive effect on the health
of human beings. But the biological basis of these effects was only hypothesized until
1999, when Klarlund Pedersen and his colleagues analyzed blood samples from runners
before and after a marathon and discovered that several cytokines, such as IL-6, were
secreted immediately after exercise and remained at elevated levels up to 4 h later [9,10,80].
Only later, Safdar et al. [20] coined the term “exerkine” to identify molecules produced in
response to acute and chronic exercise and mediate systemic adaptations to exercise. The
recent explosion of multiomics—an approach that combines various biological datasets,
such as genomics, transcriptomics, epigenomics, proteomics, and metabolomics—has
finally allowed researchers to extend their characterization and thus their spatial and
temporal classification. The application of multiomics technologies has provided valuable
insights into the molecular mechanisms underlying the effects of exercise on the body.
Today, it is possible to analyze hundreds of thousands of biologically active molecules
and correlate them to form a molecular pathway that is harmoniously activated during
exercise [14]. Interestingly, a recent study demonstrated that microbiome transplants from
trained donors can improve skeletal muscle disuse atrophy [81]. The results of this study
provide compelling evidence to support the use of an exercise-trained microbiome to treat
complex, multifactorial diseases. In this context, the bill 287, signed by Senator Daniela
Sbrollini, entitled “Provisions for measures to introduce physical activity as a tool for
prevention and therapy within the National Health Service”, signed by all parties in the
Italian Senate, appears interesting. The bill, at the center of an important battle to promote
the role of physical activity as a driver of health, aims to make physical activity prescribable
like a drug by general practitioners, pediatricians, and specialists to encourage its use as a
tool for prevention and treatment. Although no country has yet explicitly defined exercise
as a drug in the legal sense, many are adopting policies that promote its use as a therapeutic
intervention, reflecting a paradigm shift in how physical activity is perceived within health
care settings.

5. Future Directions

Blood biomarker profiling will be increasingly important in the coming years. Michael
Snyder at Stanford [82] recently demonstrated that the analysis of thousands of metabolites,
lipids, cytokines, and proteins obtained from 10 µL of blood together with physiological
information from wearable sensors is able to provide a real-time dynamic evaluation
of reactions to a complex mixture of dietary interventions allowing for the discovery
of individualized inflammatory and metabolic responses. The combination of wearable
devices and multi-omics microsampling during physical exercise will facilitate the dynamic
profiling of sports-related health status. This approach has shown promise in predicting
individual responses to exercise with respect to metabolic and cardiorespiratory health [19].
By integrating data from different omics levels, researchers have been able to elucidate
the complex interplay between exercise-induced molecules and physiological outcomes,
paving the way for personalized exercise interventions and targeted therapies.
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