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Simple Summary: Inula viscosa (synonymous of Dittrichia viscosa) is a plant used in traditional
Mediterranean and Middle Eastern medicine to manage various illnesses. While it has shown
anticancer effects against various cancer cell lines, its impact on lung cancer has not been under
extensive study. This research explored the potential of the methanolic and aqueous extracts and
a terpenoid-rich fraction of I. viscosa leaves and stems against human lung cancer cells. We found
that the methanolic extract of I. viscosa leaves was particularly effective in reducing the viability of
lung cancer cells in vitro, and other cancer cell types, without affecting normal cells. The terpenoid-
rich fraction demonstrated anticancer properties by attenuating the levels of proliferation marker
proteins, activating the intrinsic apoptosis pathway, and inhibiting cell migration. GC/MS analysis
revealed that the terpenoid-rich fraction encompasses several metabolites that can substantiate its
biological activities.

Abstract: Inula viscosa is a widely used plant in traditional Mediterranean and Middle Eastern
medicine for various illnesses. I. viscosa has been shown to have anticancer effects against various
cancers, but its effects against lung cancer have been under limited investigation. At the same time,
I. viscosa is rich in terpenoids whose anti-lung cancer effects have been poorly investigated. This
study aimed to examine the potential anticancer properties of methanolic and aqueous extracts of
stems and leaves of I. viscosa and its terpenoid-rich fraction against human lung cancer A549 cells.
Results showed that the methanolic extracts of I. viscosa had significantly higher polyphenol and
flavonoid content and radical scavenging capacity than the aqueous extracts. In addition, leaves
methanolic extracts (IVLM) caused the highest reduction in viability of A549 cells among all the
extracts. IVLM also reduced the viability of human ovarian SK-OV-3, breast MCF-7, liver HepG2,
and colorectal HCT116 cancer cells. A terpenoid-rich I. viscosa fraction (IVL DCM), prepared by
liquid-liquid separation of IVLM in dichloromethane (DCM), displayed a substantial reduction in
the viability of A549 cells (IC50 = 27.8 ± 1.5 µg/mL at 48 h) and the panel of tested cancerous cell
lines but was not cytotoxic to normal human embryonic fibroblasts (HDFn). The assessment of
IVL DCM phytochemical constituents using GC-MS analysis revealed 21 metabolites, highlighting
an enrichment in terpenoids, such as lupeol and its derivatives, caryophyllene oxide, betulin, and
isopulegol, known to exhibit proapoptotic and antimetastatic functions. IVL DCM also showed
robust antioxidant capacity and decent polyphenol and flavonoid contents. Furthermore, Western
blotting analysis indicated that IVL DCM reduced proliferation (reduction of proliferation marker
Ki67 and induction of proliferation inhibitor proteins P21 and P27), contaminant with P38 MAP
kinase activation, and induced the intrinsic apoptotic pathway (P53/BCL2/BAX/Caspase3/PARP) in
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A549 cells. IVL DCM also reduced the migration of A549 cells, potentially by reducing FAK activation.
Future identification of anticancer metabolites of IVL DCM, especially terpenoids, is recommended.
These data place I. viscosa as a new resource of herbal anticancer agents.

Keywords: Inula viscosa; Dittrichia viscosa; lung cancer; A549 cells; antioxidant capacity; cytotoxic
activity; terpenoids; dichloromethane

1. Introduction

Lung cancer is a leading cause of cancer incidence and death globally, with approxi-
mately two million new cases and 1.8 million estimated fatalities annually [1–3]. Therapies
for lung cancer include platinum-based chemotherapy, surgical resection, radiotherapy,
combination chemotherapy, and targeted immunotherapy, depending on the cancer stage,
progression, or the presence of metastasis. Despite significant advancements in cancer ther-
apies over recent years, platinum-based chemotherapy remains the mainstay of treatment
for patients with advanced non-small cell lung cancer (NSCLC) [4,5]. Response rates to
this chemotherapy range between 25 and 35%, the median survival lingers between 8 and
12 months, and only 30 to 40% of patients reach the one-year survival mark [6]. Notably,
the combination of platinum-based chemotherapy with other therapeutic modalities is
pivotal for the management of advanced lung cancer cases. Nevertheless, therapies for
lung cancer suffer from a spectrum of side effects and unsatisfactory success rates due to
inadequate response, thereby immensely impacting patients’ quality of life and limiting the
range of dosages that can be safely administered. Importantly, resistance to therapy and
the resulting tumor recurrence are the significant challenges facing existing lung cancer
therapeutic modalities [7]. All these limitations underscore the urgency to discover and
develop innovative anticancer therapies for lung cancer. In this context, herbal medicine
and plant-based therapies may provide promising alternatives.

Plant-derived natural products have varied chemical structures, low toxicity levels,
widespread availability, and cost-effective production and therefore present an encouraging
avenue for creating novel and potent anticancer treatments that target the hallmarks of
cancer. Furthermore, the use of plant-derived metabolites as an adjuvant therapy in
combination with conventional treatments will be a promising approach to enhance cancer
treatment practices in the near future [8].

Currently, there is a revived interest in drug discovery using plants, offering new
opportunities in the search for cancer therapies. Plant-derived therapeutic remedies usually
exhibit multifaceted therapeutic effects and act on multiple targets implicated in several
cellular mechanisms and molecular pathways driving cancer incidence or progression.
Plant extracts and their metabolites have been reported to act on the cell cycle and its
regulatory proteins [8–10], exhibit proapoptotic [8–10] and antimetastatic properties [8,9],
induce autophagy [8,9], scavenge reactive oxygen species (ROS) [8,9], impair angiogene-
sis [8–10], modify epithelial to mesenchymal transition (EMT) [8,9], target drug resistance
pathways [8,9,11], modulate the expression and activity of matrix metalloproteinases
(MMPs) [8], among other roles [8–11]. Considering the vast potential of plants as a source
of chemotherapeutic agents, this study focused on the anti-lung cancer effects of the plant
Inula viscosa (L.) Aiton.

Inula viscosa (L.) Aiton (Asteraceae family), now accepted as Dittrichia viscosa Greuter
and commonly known as Inula, is a perennial evergreen, highly branched herbaceous plant
with sticky leaves and yellow flowers [12,13]. I. viscosa is a native widespread plant in
Mediterranean and North African countries and an invasive plant in Australia and North
America [12,14]. I. viscosa has been a heavily indicated plant in traditional medicine for
decades to treat numerous ailments, including hypertension, gastrointestinal disorders,
microbial infections, skin diseases, diabetes, inflammatory diseases, cancer, and wound
healing [13,15]. Recent research confirms that I. viscosa extracts and essential oils have a
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variety of biological properties, including antipyretic [16], analgesic [15], antiviral [17], an-
tibacterial [18], antifungal [18], antiproliferative [13], antidiabetic [19], neuroprotective [12],
and antioxidant [13,15] qualities, aligning with the ethnomedicinal uses of the plant. Re-
latedly, I. viscosa has been reported to have antineoplastic properties against numerous
human cancer cell lines [20], including non-Hodgkin Burkitt lymphoma [21], breast [22,23],
colorectal [24–26], cervical [27], melanoma [28], and skin cancer cell lines [29], among oth-
ers [15]. Moreover, the plant has shown anticancer activity in vivo against colorectal [24]
and skin cancer [29] in mouse models. Nevertheless, the anti-lung cancer properties of
I. viscosa are understudied [30].

Numerous studies aiming to identify the bioactive phytochemicals responsible for the bi-
ological properties of the plant were performed and demonstrated that I. viscosa is indeed rich
in metabolites belonging to flavonoids, other polyphenols, and terpenoids [15,22,30–34]. The
plant also contains lignins, sesquiterpene lactones and acids, steroids, and alkaloids [31,32,35].
Extracts and essential oils of I. viscosa are especially rich in terpenoids, including monoter-
penes, oxygenated monoterpenes, sesquiterpenes, oxygenated sesquiterpenes, diterpenes,
and triterpenes [15,36,37].

Terpenoids/terpenes are greatly functionalized natural products derived from the
isoprenoid precursor isopentenyl diphosphate (IPP). With more than 70,000 terpenoids
identified so far, terpenoids are the most prevalent secondary metabolites in nature, being
synthesized by a vast range of plants, fungi, and bacteria [38,39]. They have diverse
functions in plants, including localization in the cell membrane, acting as pheromones to
attract pollinators, repelling herbivores, fighting parasites and pathogens, and many other
functions [38,39]. Terpenoids are utilized in many modern applications, including industrial
(synthesis of fuels, food flavorings, extraction solvents) and pharmaceutical products [38].
Terpenoids exhibit antiviral, antimicrobial, antifungal, cytotoxic, and anti-inflammatory
properties [38,40,41]. Of specific interest to this study, terpenoids have demonstrably
exhibited cytotoxic and anticancer effects against several human cancer cell lines, and some
terpenoids have demonstrated in vivo anticancer activity in mice models [41–44]. With
the urging quest for more novel drugs of botanical origin, there is a need to investigate
the anticancer effects of terpenoids of ethnobotanical plants widely used in traditional
medicine. In this regard, the anticancer effects of I. viscosa terpenoids are still understudied.

Considering the reported therapeutic potential of I. viscosa and the scarcity of studies
on the effects of its terpenoids against cancer, particularly lung cancer, here we have
prepared a terpenoid-rich fraction of I. viscosa and tested its anticancer properties against
human lung adenocarcinoma A549 cells.

2. Materials and Methods
2.1. Collection and Identification of Plant Material

Fresh aerial parts of I. viscosa were randomly collected in November 2022 from At-Tiri
village in the South of Lebanon (33◦08′02.3′′ N; 35◦23′34.4′′ E). Plant identification was
confirmed by Mohammad Al-Zein, a resident plant taxonomist at the American University
of Beirut Herbarium, according to index Kewensis as Kingdom: Plantae; Phylum: Tra-
cheophyta; Class: Magnoliopsida; Order: Asterales; Family: Asteraceae; Genus: Dittrichia
Greuter; Species: Dittrichia viscosa Greuter; Synonym: Inula viscosa (L.) Aiton (World flora
online record: https://www.worldfloraonline.org/taxon/wfo-0000059214; accessed on 9
September 2024).

2.2. Preparation of Methanolic and Aqueous Crude Extracts

The collected plant material was washed and dried in the dark at room temperature.
The dried aerial parts were separated into leaves and stems and finely ground into a
powder using a blender. Ten grams of the powdered leaves or stems were extracted by
maceration in 100 mL of 80% (v/v) aqueous methanol or 100% distilled water at room
temperature for two days, mixing at 150 rpm on a horizontal orbital shaker. Methanol was
evaporated to dryness under reduced pressure at 40 ◦C using a rotary evaporator. The
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resulting powder was reconstituted in DMSO to obtain crude methanol extract of stems
(IVSM) or leaves (IVLM). IVSM and IVLM were stored at −20 ◦C until use. Additionally,
the macerated aqueous extracts of leaves (IVLaq) or stems (IVSaq) were lyophilized into
a fine powder using a freeze dryer. Working stock solutions for in vitro cell culture work
were prepared by dissolving stock plant extracts (in DMSO) in cell culture media at a
10 mg/mL concentration, followed by filtration through a 0.22 µm syringe filter. The
working stock solutions were further diluted in cell culture media to achieve the desired
final experimental concentrations.

2.3. Preparation of Terpenoid-Rich Fraction (IVLM DCM)

Liquid-liquid extraction of a plant crude methanolic extract is an effective method
to obtain a terpenoid-rich fraction. The crude extract is extracted in a low-intermediate-
polarity solvent such as hexane, dichloromethane (DCM), or chloroform, among others,
to recover slightly polar terpenoids without polar functional groups [38,45]. Starting with
the IVLM methanolic extracts, liquid-liquid extraction of IVLM in DCM was performed
to obtain the terpenoid-rich fraction (IVL DCM). Following maceration, the IVLM extract
was filtered through Whatman No. 1 filter paper, and the organic solvent (methanol)
was evaporated at 45 ◦C under reduced pressure using a rotary evaporator. The crude
extract (mainly aqueous fraction) was then filtered and collected. The crude extract was
fractionated by liquid-liquid multi-stage extraction using 3 × 50 mL of DCM to obtain the
DCM fraction (IVL DCM). All three organic phases from the multi-stage extraction were
pooled, dried using a rotary evaporator, and stored at −20 ◦C until use.

2.4. Determination of Total Phenols and Flavonoids Contents

Total polyphenol content (TPC) was calorimetrically determined using the original
oxidation/reduction method described by Singleton and Ross [46], with modifications to
adapt to a 96-well plate format. Briefly, 12.5 µL of the diluted plant extracts or fractions
were added to 125 µL of a 10X diluted Folin–Ciocalteu reagent (ref 1090010100; Supelco-
Sigma-Aldrich, Bellefonte, PA, USA). The mixture was incubated for 3 min to accomplish
the oxidation reaction, and 500 µL of 2% saturated sodium carbonate solution were added
to neutralize the reaction. The products of the reduced metal oxide thus produced have a
blue color, which was quantified using a Cytation 5 reader (BioTek-Agilent Technologies,
Winooski, VT, USA) at a wavelength of 765 nm. All samples were analyzed in triplicate. A
standard curve was prepared using different concentrations of the reference polyphenol
gallic acid (GA). TPC of all plant extracts or fractions was expressed as µg GA equivalents
(GAE) per gram of the dry matter used to make the extract (µg GAE/g).

The total flavonoids content (TFC) of extracts and fractions was determined using the
spectrophotometric method of Chang et al. [47], with modifications to work in a 96-well
plate format. Briefly, 50 µL of the diluted plant extracts or fractions were mixed with
50 µL of 2% AlCl3 (ref 7784-13-6, Research Lab, Mumbai, India) in 80% methanol solution
and incubated for 20 min to allow for the formation of a flavonoid-aluminum complex.
This complex was identified by its characteristic maximum absorption at 415 nm using
the Cytation 5 reader. All samples were analyzed in triplicate. A calibration curve was
prepared using different concentrations of the reference flavonoid quercetin (QE). TFC
was expressed as µg QE equivalents (µg QE) per gram of the dry matter used to make the
extract (µg QE/g). TPC and TFC results are presented as mean values ± standard error of
the mean (SEM).

2.5. Gas Chromatography/Mass Spectrometry (GC/MS) Analysis

The phytochemical composition of IVL DCM fraction was analyzed using GC/MS via
a Shimadzu GC/MS-TQ 8040 NX (Shimadzu, Tokyo, Japan) system attached to a triple
quadrupole mass spectrometer. Chromatography was conducted on a Restek RTxi-5 Sil MS
(30 m × 0.25 mm ID × 0.25 µm) GC capillary column using an injection volume of one µL.
A mixture of helium and argon gases was used as carrier gas at a flow rate of 1.5 mL/min, a
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pressure of 23.1 KPa, and an average velocity of 0.2 s. The source and interface temperatures
were 200 ◦C and 280 ◦C, respectively. The initial temperature was set at 80 ◦C for 2 min,
then increased to 250 ◦C at 20 ◦C/min, and raised to 280 ◦C at 15 ◦C/min (held for 12 min).
Identification of phytochemicals in IVL DCM was carried out by comparing the obtained
retention time and spectral masses with those of chemical compounds in the database of
the National Institute of Standards and Technology (NIST version 20).

2.6. DPPH Free Radical Scavenging Assay

The antioxidant capacity of I. viscosa extracts and fractions was performed following
the methodology outlined by Brand-Williams et al. [48]. Different concentrations (0.25, 50,
100, 150, 250, 350, 450, or 750 µg/mL) of I. viscosa extracts or fractions were mixed with an
equal volume of a 0.5 mM solution of 2,2-Diphenyl-1-picrylhydrazyl (DPPH; ref D9132,
Sigma-Aldrich, St. Louis, MO, USA) in methanol. The mixture was left to react in the
dark for 30 min at room temperature, and absorbance was measured at 517 nm using a
spectrophotometer. Methanol was used as a blank. The percentage of radical scavenging
activity was calculated according to the following formula:

% Radical scavenging activity =

[ODblank − ODplant extract at each concentration

ODblank

]
× 100

Percent radical scavenging activity was plotted versus the concentration of the plant
extracts or fractions, and the plotted curves were used to calculate the EC50 of inhibition of
DPPH free radical production. EC50 of the potent antioxidant L-ascorbic acid was measured
for comparison.

2.7. ABTS Radical Scavenging Assay

The ABTS cation scavenging assay was performed according to the method of Re
et al. [49], with modifications. ABTS radical cation (ABTS•) was produced by reacting
20 mL of 7 mM ABTS (ref GE7230, Glentham Life Sciences, Corsham, UK) stock solution
(dissolved in water) with 200 µL of 70 mM potassium persulfate aqueous solution. The
mixture was allowed to stand in the dark at room temperature for 12–16 h before use.
A fresh working solution was prepared by diluting 1 mL of ABTS• solution with the
proper amount of distilled water to obtain an absorbance of 0.700 ± 0.02 units at 745 nm.
Afterward, 100 µL of this solution were mixed with 10 µL of different concentrations of
the plant extracts or fractions and incubated for 15 min in the dark. Absorbance was
measured at 745 nm after 15 min. Distilled water and L-Ascorbic acid were used as blank
and reference control, respectively.

EC50 values of scavenging of ABTS• by the different plant extracts or fractions were
calculated by plotting the % radical scavenging activity versus concentration. Percent
cation-scavenging activity was calculated using the following formula.

% Cation scavenging activity =

[ODblank − ODplant extract at each concentration

ODblank

]
× 100

2.8. Cell Culture and MTT Cell Cytotoxicity Assay

A549 human lung adenocarcinoma cells, the most common subtype of NSCLC, which
accounts for approximately 85% of lung cancer cases [50], human normal neonatal fibrob-
lasts (HDFn), SK-OV-3 (human ovarian cancer), MCF-7 (human breast cancer), MDA-MB-
231 (human breast cancer), HepG2 (human liver cancer), and HCT116 (human colorectal
cancer) cells were obtained from ATCC and cultured at 37 ◦C and 5% CO2 in a humidi-
fied incubator. A549 and MCF7 cells were grown in RPMI media, while HDFn, SK-OV-3,
MDA-MB-231, HepG2, and HCT116 cells were grown in DMEM media. Media were supple-
mented with 10% fetal bovine serum (FBS; Sigma Aldrich) and 1% penicillin/streptomycin
(Corning, Bedford, MA, USA). Cells were passaged using Trypsin-EDTA (ref 3920459; VWR
International, Lutterworth, Leicestershire, UK). Cell viability was measured using the MTT
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assay (ref ab211091, Abcam, Cambridge, UK) according to the manufacturer’s instructions.
Briefly, cells (5.0 × 103 cells/well of a 96-well cell culture plate) were seeded for 24 h before
treatment. The culture medium was then replaced with fresh complete medium containing
various concentrations (20, 40, 50, 75, or 100 µg/mL) of I. viscosa extracts or fractions. At
24, 48, or 72 h post-treatment, the cells were washed with 1X PBS, and then 100 µL of MTT
reagent were added to each well, and the wells were incubated for three hours in the dark
at 37 ◦C and 5% CO2.

The formed formazan was dissolved by adding 100 µL DMSO, and the absorbance
of the dissolved formazan solution was measured at 540 nm using a Tecan microplate
reader (Tecan Group Ltd., Männedorf, Switzerland). Cell viability was calculated as the
percent cell viability of the treated cells in comparison with cells treated with an equal
concentration of DMSO as in the extract, vehicle-control treated cells, the viability of which
was set as 100% viability. Each concentration of the plant extracts or fractions was tested in
triplicate. Each experiment was repeated three times (n = 3).

2.9. DAPI Staining

A549 cells were seeded in separate wells of a 96-well cell culture plate as described
for the MTT assay and treated with 40 and 75 µg/mL IVL DCM fraction for 24 h. Cells
treated with an equal concentration of DMSO were used as vehicle controls. Cells were
washed with 1X PBS, fixed with 100 µL of 4% formaldehyde (v/v in 1X PBS) for 15min, and
washed with 1X PBS. The cells were then stained with 100 µL of 1 µg/mL of DAPI solution
(4′-6-diamidino-2-phenylindole; ref D1306, Invitrogen, Carlsbad, CA, USA) for 5 min in the
dark. Cells were washed using 1X PBS, and fluorescence was observed and imaged using a
BioTek Cytation 5 reader.

2.10. Crystal Violet Staining

Cells were seeded in a 6-well plate (2.0 × 105 cells/well) for 24 h and treated with
40 and 75 µg/mL IVL DCM fraction for another 24 h. Cells were washed with 1X PBS,
fixed using 4% formaldehyde (v/v in 1X PBS) for 15 min, and washed with 1X PBS. Cells
were then stained with a 1% crystal violet (v/v in methanol) solution for 15 min in the dark.
Finally, the cells were washed and imaged using the Invitrogen™ EVOS® FL Cell Imaging
System (Thermo Fisher Scientific, Waltham, MA, USA).

2.11. Western Blotting Analysis

A549 cells were seeded in a 10 cm cell culture dish (5.0 × 105 cells/dish) and allowed
to grow for 24 h. The cells were then treated with 40 or 75 µg/mL of IVL DCM for
24 h. Subsequently, the cells were washed twice with 1X PBS, lysed using a 1X cell lysis
buffer [ref 9803S, Cell Signaling Technology, Inc. (CST), Danvers, MA, USA] containing
1X Roche Complete Protease inhibitor (ref 11697498001; Sigma-Aldrich) for 5 min on ice,
scraped, collected, and subjected to centrifugation at 1.4 × 104 rpm for 15 min at 4 ◦C.
Supernatants protein concentration was quantified using Pierce™ BCA Protein Assay
Kit (ref A53225; ThermoFisher Scientific, Rockford, IL, USA). An amount of 25 µg of
protein lysates was resolved using 10% SDS-PAGE and transferred to a PVDF membrane
(Immobilon PVDF; Biorad, Hercules, CA, USA). The membrane was then blocked with
1X blocking buffer (ref 37520, ThermoFisher Scientific) in 1X TBST (1X TBS, 0.1% Tween
20) for 1.5 h at room temperature. Immunodetection was performed by incubating the
membrane with specific primary antibodies, diluted in X blocking buffer, at 4 ◦C overnight.
Primary antibodies used were: anti-human poly-adenosine diphosphate (ADP) ribose
polymerase (PARP) 46D11 rabbit mAb which can detect the full-length and cleaved forms
of PARP (ref 9532 CST, dilution 1/1000), P53 rabbit mAb (ref 2527S CST, dilution 1/500),
Ki67 rabbit polyclonal antibody (ref 28074-1-AP, Proteintech, Rosemont, IL, USA, dilution
1/1000), mouse anti-human B-cell lymphoma 2 (BCL2) (ref 15071S CST, dilution 1/1000),
rabbit anti-Bcl-2 associated X protein (BAX) (D2E11 ref 5023 CST; dilution 1/1000), P38
MAPK polyclonal antibody (14064-1-AP, Proteintech, dilution 1/1000), phospho-p38 MAPK
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(Thr180/Tyr182) antibody(ref 9211 CST, dilution 1/1000), Caspase3 antibody (ref 9662 CST,
1/1000 dilution), cleaved Caspase3 (c-Caspase 3; Asp175) 5A1E rabbit mAb (ref 9664
CST, dilution 1/1000), β-actin 8H10D10 mouse mAb (ref 3760 CST, dilution 1/1000), P21
Waf1/Cip1 12D1 rabbit mAb (ref 2947 CST, 1/1000), P27 (CST, 1/1000), phospho-FAK
(p-Fak Tyr 397) D20B1 rabbit mAb (ref 8556 CST, dilution 1/1000), FAK D2R2E rabbit
mAb (ref 13009 CST, dilution 1/1000). Membranes were then washed with 1X TBST and
incubated with a horseradish peroxidase (HRP)-conjugated goat anti-rabbit (ref 7074 CST,
dilution 1/1000) or anti-mouse IgG secondary antibody (ref 7076 CST, dilution 1/1000)
for 1.5 h at room temperature followed by washing in 1X TBST. Immunoreactive bands
were detected using the SuperSignal™ West Pico PLUS Chemiluminescent Substrate kit
(ref 34577 ThermoFisher Scientific) and scanned using the Invitrogen™ iBright Imaging
System (Thermo Fisher Scientific, Waltham, MA, USA). The intensity of the obtained
bands was quantified using ImageJ software version 1.54g (NIH, Bethesda, MD, USA;
https://imagej.net/ij, accessed on 31 August 2024). All bands were normalized to β-actin,
which was used as a loading control, except for p-P38 and p-FAK, which were normalized
to their non-phosphorylated protein forms (Supplementary Materials).

2.12. Scratch/Wound-Healing Assay

A549 cells were cultured until confluence to create a monolayer in 6-well plates,
then treated with 40 and 75 µg/mL of IVL DCM fraction for 24 h. A scrape was made
through the confluent monolayer using a sterile 1000 µL micropipette blue tip. The culture
medium was removed, and the cells were washed twice with 1 XPBS to remove cellular
debris and incubated at 37 ◦C in fresh medium in the presence or absence of the indicated
concentrations of IVL DCM. Photomicrographs of the scratch were taken using light
microscopy at baseline (0 h) and 24 and 48 h later, using Invitrogen EVOS® FL. The cellular
migration rate was calculated as the average (in µm) ± SEM of the difference between the
wound width at time zero and the corresponding time points.

2.13. Statistical Analysis

Results were evaluated for statistical difference by one-way ANOVA followed by
Tukey’s post hoc multiple comparisons test to calculate p values using GraphPad Prism 9
software (GraphPad Software Inc., San Diego, CA, USA). Half maximal inhibitory concen-
tration (IC50) of cell growth was determined by plotting the MTT data as dose-response
curves of percent growth inhibition versus the log of extract concentration using GraphPad
Prism 9. GraphPad Prism performed curve fitting of the data by non-linear regression to
obtain the IC50 values. Data are presented as mean ± SEM, and a p-value of p < 0.05 was
considered statistically significant.

3. Results
3.1. Extraction Yield, Total Phenolic Content (TPC), Total Flavonoid Content (TFC), and
Antioxidant Capacity of Inula viscosa Leaves and Stems Extracts

Table 1 shows the extraction yield, TPC, TFC, and antioxidant capacity of methanolic
and aqueous extracts of leaves and stems of I. viscosa. Methanol exhibited better extraction
yields than water (Table 1). I. viscosa leaves had better extraction yields than stems in
both the methanolic and water solvents. Interestingly, methanol was consistently a better
extraction solvent of I. viscosa polyphenols and flavonoids than water. Methanolic extracts
of both stems and leaves showed markedly higher TPC and TFC contents than their
aqueous counterparts (Table 1). Leaves had higher TFC and TPC contents than stems in
each solvent (Table 1). Importantly, the methanolic extract of I. viscosa leaves (IVLM) had
the highest TPC and TFC contents, recording the mean values of 726.4 ± 1.1 and 303.3 ± 8.8,
respectively (Table 1).

https://imagej.net/ij
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Table 1. Extraction yield, total phenolic content (TPC), total flavonoid content (TFC), and antioxidant
capacity of I. viscosa leaves and stems methanolic or aqueous extracts. DPPH and ABTS EC50

of L-ascorbic acid are shown for comparison. IVLM: I. viscosa leaves methanolic extract; IVSM:
I. viscosa stems methanolic extract; IVLaq: I. viscosa leaves aqueous extract; IVSaq: I. viscosa stems
aqueous extract.

Plant Extract Extraction
Yield (%)

TPC
(µg GAE/g)

TFC
(µg QE/g)

DPPH EC50
(µg/mL)

ABTS EC50
(µg/mL)

IVLM 16.5 726.4 ± 1.1 303.3 ± 8.8 145.7 ± 2.6 236.9 ± 22.2
IVSM 4.4 532.0 ± 10.3 114.0 ± 4.4 229.7 ± 3.1 239.0 ± 5.5
IVLaq 3.5 212.0 ± 1.5 79.8 ± 2.9 155.8 ± 6.1 268.9 ± 3.7
IVSaq 2 174.3 ± 0.7 45.2 ± 0.1 693.8 ± 3.4 791.0 ± 14.5

L-Ascorbic acid – – – 27.5 ± 1.3 93.4 ± 0.9

The antioxidant capacity of I. viscosa extracts was measured using DPPH and ABTS an-
tioxidant assays. The antioxidant activity varied substantially depending on the extraction
solvent and plant part. IVLM antioxidant capacity in DPPH and ABTS assays was superior
to all other extracts regardless of solvent or plant part (Table 1 and Figure 1). IVLM DPPH
antioxidant capacity EC50 value was 145.7 ± 2.6 µg/mL, followed by the leaves aqueous
extract (IVLaq) with an EC50 of 155.8 ± 6.0 µg/mL (Table 1 and Figure 1A). The plant part
was a determining factor of the DPPH antioxidant scavenging capacity. The leaves showed
consistently better radical scavenging capacity than stems in both solvents. Indeed, IVLM
and IVLaq showed lower radical scavenging EC50 values than IVSM and IVSaq (Table 1
and Figure 1A). Furthermore, methanol was a better extraction solvent than water for each
plant part in relation to free radical antioxidant capacity. For stems, the methanolic extract
IVSM had a higher antioxidant capacity (EC50 = 229.7 ± 3.1 µg/mL) than that of aqueous
stems extract IVSaq (EC50 = 693.8 ± 3.4 µg/mL), which had the lowest antioxidant capacity
of all extracts. For the leaves extract, the methanol extract IVLM antioxidant capacity was
slightly higher than the leaves aqueous extract IVLaq (Table 1 and Figure 1A).
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Figure 1. Antioxidant capacities of methanolic and aqueous extracts of I. viscosa leaves and stems using
the DPPH antioxidant free radical scavenging assay (A) and ABTS antioxidant cation scavenging
assay (B). The graphs were used to calculate EC50 values, as displayed in Table 1.

The results of the ABTS cation antioxidant assay showed that methanol was a better
solvent irrespective of the plant part. IVLM and IVSM (Table 1 and Figure 1B). IVLM had
the best ABTS antioxidant capacity (EC50 = 236.9 ± 22.2), while IVSM had a comparable
capacity (EC50 = 239 ± 5.5). IVSaq exhibited the lowest antioxidant capacity of all extracts
(EC50 = 791 ± 14.5), similar to the results of the DPPH antioxidant capacity (Table 1 and
Figure 1B). Moreover, the leaves extracts showed better ABTS antioxidant capacity than
stems extracts in both solvents (Table 1 and Figure 1B).

3.2. Inula viscosa Methanolic Extracts Reduced the Viability of A549 Lung Cancer Cells

Aqueous and methanolic extracts of I. viscosa stems and leaves were evaluated for
their cytotoxic effects against A549 lung cancer cells by the MTT assay. Results revealed
that methanolic extracts of both the stems and leaves had noticeably superior cytotoxic
effects against A549 cells than their aqueous counterparts. Both VLM and IVSM extracts



Biology 2024, 13, 687 9 of 25

significantly reduced the viability of A549 cells, while IVLaq and IVSaq did not affect A549
cell viability (Figure 2). Furthermore, IVLM reduced the viability of A549 cells to a higher
extent than IVSM (IVLM IC50 = 68.7 ± 1.4 µg/mL while IVSM IC50 = 97.3 ± 1.3 µg/mL)
(Figure 2). IVLM reduced the viability of A549 cells concentration-dependently starting
at 20 µg/mL, but the effect was significant (p < 0.001) beginning at 40 µg/mL. IVSM also
significantly reduced A549 cell viability dose-dependently, starting at the lowest tested
concentration of 20 µg/mL (Figure 2).
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Figure 2. I. viscosa leaves and stems methanolic extracts reduced viability of A549 lung cancer cells.
A549 cells were treated with I. viscosa leaves or stems extracts at the indicated concentrations for
24 h. Cell viability was determined using the MTT assay, and results were expressed as viability
percentages compared to control vehicle-treated cells. Data represent the mean ± SEM (n = 3).
* denotes p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.

IVLM also reduced the viability of other human cancer cell lines, including SK-OV-3
(ovarian cancer), MCF-7 (breast cancer), HepG2 (liver cancer), and HCT116 (colorectal
cancer) cells (Table 2).

Table 2. IC50 values of IVLM-induced reduction in viability of SK-OV-3, MCF-7, HepG2, and HCT116
human cancer cell lines at 24 h. MTT assay was performed as described for A549 cells.

Cell Line IC50 (µg/mL)

SK-OV-3 80.0 ± 5.7
MCF-7 54.0 ± 4.9
HepG2 59.9 ± 7.5
HCT116 39.2 ± 6.1

3.3. Dichloromethane Fraction of Inula viscosa Leaves Methanolic Extract (IVL DCM) Reduced the
Viability of A549 Lung Cancer Cells

Building upon the insights derived from the above findings, IVLM, which demon-
strated the best antioxidant capacity, highest TPC and TFC contents, and the most significant
cytotoxic properties against A549 cells, was further purified by liquid-liquid separation in
DCM to obtain a terpenoid-enriched fraction of I. viscosa leaves (IVL DCM).

The cytotoxic effects of IVL DCM fraction were examined in a panel of human can-
cerous cell lines. Indeed, IVL DCM reduced the viability of several human cancer cell
lines, including SK-OV-3, MCF-7, MDA-MB-231 (breast cancer), HepG2, and HCT116 cells
(Table 3).

Moreover, a detailed analysis of the cytotoxic effects of the treatment of A549 lung
cancer cells with increasing concentrations (20, 40, 75, and 100 µg/mL) of IVL DCM at 24,
48, and 72 h revealed that IVL DCM significantly attenuated A549 cell viability in a time-
and concentration-dependent manner (Figure 3). For instance, cell viability upon treatment
with 20, 40, 75, and 100 µg/mL of IVL DCM for 48 h decreased to 72% ± 0.27, 46% ± 0.29,
24% ± 0.09, and 12% ± 0.64 that of vehicle-treated cells, respectively (Figure 3A). IVL DCM
IC50 values were 70.8 ± 3.7, 27.8 ± 1.44, and 32.1 ± 3.8 µg/mL in A549 cells at 24, 48,
and 72 h, respectively (Figure 3A). Interestingly, IVL DCM did not reduce the viability of
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normal human neonatal fibroblasts (HdFn cells), hinting that IVL DCM may have selectivity
towards cancerous cells. In fact, HDFn cells survived at the highest tested treatment of
100 µg/mL of IVL DCM, a concentration that substantially reduced the viability of A549
cells (Figure 3A, lower panel).

Table 3. IC50 values of IVL DCM-induced reduction in viability of SK-OV-3, MCF-7, MDA-MB-231,
HepG2, and HCT116 human cancer cell lines at 24, 48, and 72 h. MTT assay was performed as
described for A549 cells. NT: not tested.

IC50 (µg/mL)

Cell Line 24 h 48 h 72 h

SK-OV-3 110.2 ± 6.9 96.5 ± 4.0 52.95 ± 6.7
MCF-7 84.4 ± 6.1 42.5 ± 2.9 29.32 ± 1.2
MDA-MB-231 86.8 ± 4.8 69.3 ± 3.3 49.09 ± 1.8
HepG2 NT 20.2 ± 5.2 NT
HCT116 NT 19.7 ± 3.7 NT
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Figure 3. IVL DCM decreased the viability of A549 cells. (A) MTT assay was used to measure
the viability of A549 and HDFn cells treated with the indicated concentrations of IVL DCM for 24,
48, or 72 h. Data represents the mean ± SEM of the percent viability of treated cells compared to
vehicle-treated cells. Data are the mean of three independent experiments (n = 3). *** p < 0.001,
**** p < 0.0001. (B) A549 cells treated with the indicated concentrations of IVL DCM for 24 h were
stained with DAPI nuclear stain. DAPI fluorescence was imaged at 20X magnification using a BioTek
Cytation 5 reader. (C) A549 cells were treated with the indicated concentrations of IVL DCM for
24 h and then stained with crystal violet. The micrographs represent stained cells imaged at 20X
magnification by light microscopy using the Invitrogen EVOS® FL Cell Imaging System.
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The MTT assay is essentially a metabolic assay that indirectly measures cell viability;
therefore, cell viability was evaluated using DAPI and crystal violet staining methods,
which directly assess cell viability. A549 cells treated with varying concentrations of IVL
DCM were stained with DAPI nuclear stain (Figure 3B) and crystal violet (Figure 3C),
which labels adherent cells. Both crystal violet and DAPI staining confirmed that IVL
DCM potently reduced the viability of A549 lung cancer cells in a concentration-dependent
manner (Figure 3B,C).

3.4. Antioxidant Capacity and Total Phenolic and Flavonoid Contents of Dichloromethane Fraction
of Inula viscosa Leaves Methanolic Extract (IVL DCM)

Table 2 shows TPC, TFC, and the antioxidant capacity of IVL DCM fraction. IVL DCM
showed high TPC and TFC contents and a robust antioxidant capacity similar to that of
IVLM (Figure 4 and Table 4).
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fraction (25–250 µg/mL). (B) ABTS• cation scavenging activity of IVL DCM fraction (25–250 µg/mL).
Ascorbic acid was used as a reference. Values are expressed as means ± SEM (n = 3). These graphs
were used to calculate EC50, as shown in Table 2.

Table 4. Total phenolic content (TPC), total flavonoid content (TFC), and antioxidant capacity of I.
viscosa leaves methanolic crude extract extracted with dichloromethane (IVL DCM).

TPC
(µg GAE/g)

TFC
(µg QE/g)

DPPH EC50
(µg/mL)

ABTS EC50
(µg/mL)

IVL DCM 724.4 ± 12.1 235.4 ± 5.1 143.0 ± 1.4 241.6 ± 9.7

3.5. Gas Chromatography-Mass Spectroscopy (GC-MS) of Dichloromethane Fraction of Inula
viscosa Leaves Methanolic Extract (IVL DCM)

To elucidate the chemical composition of the IVL DCM fraction and determine the
cause of its cytotoxic and antioxidant properties, GC-MS analysis was performed. Figure 5
shows the GC chromatogram of IVL DCM. Table 5 lists 21 of the major metabolites (phyto-
chemicals) of IVL DCM identified by comparing their mass spectral fragmentation patterns
to known compounds in the NIST library. Indeed, most of the metabolites identified in the
IVL DCM fraction are terpenoids, indicating the enrichment of terpenoids in this fraction.
Among the 21 identified metabolites, 11 were terpenoids, which included monoterpenes
(isopulegol, linalyl propionate, and citronellal), oxygenated sesquiterpenes (caryophyllene
oxide), and triterpenoids (betulin, 9,19-cyclolanostan-3-ol acetate, and lupeol and its deriva-
tives) (Table 5). The identified terpenoids could contribute to the medicinal qualities of the
plant. Notably, some of the metabolites, such as ammodendrine, isopulegol, lupeol and its
derivatives, betulin, phytonadione, norcodeine, and hexadecyl oxirane, are described in
I. viscosa for the first time (Table 5).
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Figure 5. Chromatogram of GC-MS analysis of IVL DCM fraction representing the elution profile of
metabolites listed in Table 5.

Table 5. GC-MS analysis of IVL DCM fraction. The identified metabolites’ names, chemical nature,
retention time (RT), molecular formula, and weight are presented. The listed phytochemicals were
identified using the NIST database. The last column shows reference publications that previously
identified these phytochemicals in I. viscosa. NR: not reported in I. viscosa before.

No. Compound Name Chemical Nature RT (min) Molecular Formula Molecular
Weight Reference

1 2-Hexyldecan-1-ol Alcohol 8.995 C16H34O 242 NR

2 Pyridine, 1-acetyl-1,2,3,4-tetrahydro-
5-(2-piperidinyl)-(Ammodendrine) Pyridine alkaloid 10.77 C12H20N2O 208 NR

3 Isopulegol Monoterpene 10.95 C10H18O 154 NR

4 Linoleic acid ethyl ester Fatty acid
derivative 11.06 C20H36O2 308 [51–53]

5 Caryophyllene oxide Oxygenated
sesquiterpene 11.10 C15H24O 220 [53–62]

6 3,25-bis(acetyloxy)-5-
hydroxyergostan-6-one Steroid 13.90 C32H52O6 532 NR

7 Citronellal Monoterpene 14.60 C10H18O 154 [63]

8 Lup-20(29)-en-3-one (Lupenone) Triterpenoid 14.85 C30H48O 424 NR

9 δ-Tocopherol Vitamin E 15.23 C27H46O2 402 [64,65]

10 Lupeol, trifluoroacetate Triterpene 15.69 C32H49F3O2 522 NR

11 Linalyl propionate Monoterpene 17.73 C13H22O2 210 [53,60]

12 Betulin Triterpenoid 18.01 C30H50O2 442 NR

13 Phytyl palmitate
Fatty
acid/diterpene
derivative

18.20 C36H70O2 534 NR

14 Campesterol Phytosterol 19.41 C28H48O 400 [65]

15 6-Octadecenoic acid derivative Fatty acid
derivative 19.83 C22H41NO 335 NR

16 Norcodeine Alkaloid 21.10 C17H19NO3 285 NR

17 Phytonadione (Phylloquinone) Vitamin K 21.50 C31H46O2 450 NR
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Table 5. Cont.

No. Compound Name Chemical Nature RT (min) Molecular Formula Molecular
Weight Reference

18 Lup-20(29)-en-3beta-ol, acetate
(20(29)-(Lupenol acetate) Triterpenoid 21.67 C32H52O2 468 NR

19 Lupeol Triterpenoid 22.63 C30H50O 426 NR

20 9,19-Cyclolanostan-3-ol acetate Triterpenoid 23.77 C32H54O2 470 NR

21 2-Hexadecyloxirane Oxirane 24.16 C18H36O 268 NR

3.6. Inula viscosa Leaves Terpenoid-Rich Fraction (IVL DCM) Inhibited the Proliferation of A549
Lung Cancer Cells

Western blotting of the cell proliferation markers Ki67, P21, and P27 confirmed that
IVL DCM-mediated reduction of cell viability takes place at least partly through inhibition
of cellular proliferation of A459 cells (Figure 6). Treatment of A549 cells with IVL DCM sig-
nificantly (p < 0.05) reduced Ki67 protein levels in a concentration-dependent manner. IVL
DCM concentrations of 40 µg/mL and 75 µg/mL caused 0.78 ± 0.05 and 0.40 ± 0.05-fold
reduction in Ki67 protein levels.
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Figure 6. IVL DCM fraction inhibited the proliferation of A549 cells. A549 cells were treated with the
indicated concentrations of IVL DCM for 48 h. (A) Ki67, P21, P27, p-P38, and P38 protein levels as
detected by immunoblotting of A549 cell lysates. (B) Quantification of the bands in (A). Bar graphs of
band intensity of target proteins normalized to the intensity of the loading control β-actin expressed
as fold change of the vehicle-control and represented as the mean ± SEM of three independent
experiments (n = 3). p-P38 protein levels were normalized to P38 protein. * p < 0.05 and ** p < 0.01.

Figure 6 also shows that treatment of A549 cells with IVL DCM activated the mitogen-
activated protein kinase (MAPK) P38, an essential regulator of cell proliferation [66]. Treat-
ments of A549 cells with 75 µg/mL IVL DCM significantly (p < 0.05) increased the phospho-
rylation of P38 at Thr180/Tyr182 by 2.33 ± 0.70 folds (Figure 6B). Consistently, activation
of P38 manifested in elevated levels of downstream effectors, specifically CDK inhibitor
proteins P21 and P27, as depicted in Figure 6. IVL DCM concentrations of 40 and 75 µg/mL
increased P21 protein levels at the treatment concentrations of 40 and 75 µg/mL of IVL
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DCM (1.41 ± 0.01 and 2.21 ± 0.05-fold change, respectively), but the increase was signifi-
cant (p < 0.01) only at 75 µg/mL of IVL DCM. P27 protein levels also increased significantly
at the treatment concentrations of 40 µg/mL (p < 0.05) and 75 µg/mL (p < 0.01) of IVL
DCM (1.91 ± 0.6 and 2.31 ± 0.35-fold change, respectively).

3.7. I. viscosa Leaves Terpenoid-Rich Fraction (IVL DCM) Induced Apoptosis of A549 Cells

In addition to inhibiting cell proliferation, IVL DCM could reduce cell viability by
inducing apoptosis. To detect the effects of IVL DCM fraction on the apoptosis pathway,
protein levels of Caspase3, c-Caspase3, BCL2, BAX, PARP, c-PARP, and P53 were evaluated
by immunoblotting of A549 cells treated with 40 and 75 µg/mL of IVL DCM. P53 protein
levels gradually and significantly increased when increasing the concentration of IVL DCM
from 40 (p < 0.05) to 75 µg/mL (p < 0.001) by 1.49 ± 0.13 and 1.81 ± 0.10 folds, respectively
(Figure 7), indicating the activation of the apoptotic pathway. Protein levels of activated
apoptosis effector enzyme c-Caspase3 were significantly (p < 0.0001) elevated by 75 µg/mL
of IVL DCM (2.17 ± 0.44-fold change) (Figure 7). Similar to P53, the protein levels of the
active PARP enzyme, c-PARP, increased dose-dependently at 40 and 75 µg/mL of IVL
DCM. However, the increase was significant (p < 0.0001) only at 75 µg/mL of IVL DCM
(2.01 ± 0.16-fold change) (Figure 7). The levels of the anti-apoptotic protein BCL2 decreased
significantly (p < 0.0001) by 0.38± 0.05 folds at 75 µg/mL of IVL DCM (Figure 7). In contrast,
the levels of the proapoptotic protein BAX increased significantly (p < 0.001) by 1.61 ± 0.33
and 1.64 ± 0.34 folds at 40 and 75 µg/mL of IVL DCM, respectively (Figure 7). The ratio of
BAX/BCL2, which is indicative of induction of apoptosis, increased significantly (p < 0.001)
at 40 and 75 µg/mL of IVL DCM by 2.26 ± 0.34 and 5.25 ± 1.26 folds, respectively.
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Figure 7. IVL DCM induces the apoptosis of A549 cells. A549 cells were treated with the indicated
concentrations of IVL DCM for 48 h. (A) P53, BCL2, BAX, Caspase 3, c-Caspase 3, PARP, c-PARP
protein levels as detected by immunoblotting of A549 cell lysates. β-actin was immunoblotted as
a loading control (B). Quantification of the bands in (A). Bar graphs of band intensity of target
proteins normalized to the intensity of the loading control β-actin expressed as fold change of
the vehicle control and represented as the mean ± SEM of three independent experiments (n = 3).
The right panel of (B) shows the ratio of BAX/BCL2 (n = 3). * p < 0.05, ** p < 0.01, *** p < 0.001,
and **** p < 0.0001.
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These results indicate that IVL DCM-triggered reduction in cell viability was mediated
at least partly by the intrinsic apoptotic pathway.

3.8. Inula viscosa Leaves Terpenoid Enriched Fraction (IVL DCM) Reduced the Migration of A549
Lung Cancer Cells through Reduction of FAK Activation

The impact of the IVL DCM terpenoid-rich fraction on A549 cell migration was
assessed using a wound healing/scratch assay. Results of the wound healing assays
revealed a remarkable reduction in cell migration at the concentrations of 40 and 75 µg/mL,
demonstrating a 65% and 73% decrease in cell migration after 24 h, respectively, and a
51% and 67% decrease in cell migration after 48 h, respectively (Figure 8A). This suggests
that IVL DCM has a considerable inhibitory effect on A549 cell migration, highlighting its
potential antimetastatic properties.
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Figure 8. IVL DCM fraction inhibited the migration of A549 cells. (A) a confluent monolayer of A549
cells was wounded by scratching. The cells were then incubated with the indicated concentrations
of IVL DCM fraction. The wound was imaged 24 and 48 h after treatment, and the images were
analyzed to quantify cell migration using Image J software. Values represent the fold change in
migration compared to the vehicle-untreated cells. Bar graphs in the lower panel in (A) represent the
migration rate of the cells after 24 and 48 h of treatment. (B) Western blotting using anti-pFAK and
anti-FAK antibodies. Values represent the average of three independent experiments (n = 3) and are
expressed as mean ± SEM. ** p < 0.01, *** p < 0.001, and **** p < 0.0001.

IVL DCM-induced reduction in cell migration appears to be FAK-mediated. Treat-
ment of A549 cells with 40 and 75 µg/mL of IVL DCM for 48 h reduced the activation
of FAK (Figure 8B), which plays a crucial role in cellular adhesion and migration, fur-
ther supporting the antimigratory effects of IVL DCM. Treatment with 40 µg/mL and
75 µg/mL IVL DCM reduced the phosphorylation of FAK at Tyrosine 397 by 0.75 ± 0.21
and 0.35 ± 0.18 folds, respectively, underscoring the involvement of FAK in IVL DCM-
induced inhibition of migration.

4. Discussion
4.1. Phenolic and Flavonoid Contents and Antioxidant Capacity of I. viscosa Parts

In this study, the different extraction solvents (methanol vs. water) demonstrated a
significant variation in the extraction yield, total phenolic (TPC) and flavonoid contents
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(TFC), as well as antioxidant capacity. Study findings revealed that the methanolic solvent
had higher extraction yields for both I. viscosa plant parts under study (i.e., leaves and
stems) than the water solvent. Of note, the extraction yields, TPC, and TFC of the I. viscosa
aqueous extracts in this study are lower than those reported by other studies [34]; this
could be due to differences in extraction and storage conditions as well as the time of
collection and geographical location of the plant material. Methanolic extracts also had
greater TPC and TFC than their aqueous counterparts. These findings are in alignment
with previous studies on I. viscosa methanolic and aqueous extracts [34,67,68]. Relatedly,
the high polarity of the water and methanol solvents is considered essential in improving
TPC and the antioxidant capacity of corresponding plant extracts [69–71].

Furthermore, I. viscosa leaves had higher extraction yield, TPC, and TFC than stems,
irrespective of the solvent used, indicating the richness of leaves in phenolic and flavonoid
secondary metabolites. This is also in agreement with the literature, where leaves frequently
have a higher TPC and TFC than stems [72–76]. The higher TPC and TFC in leaves than
stems may be related to the abundance of epidermal tissue, mesophyll, parenchyma, and
secretory glands, which usually store secondary metabolites in plant leaves rather than
stems, which are mainly made of transport tissues, such as the xylem and phloem [77]. In
addition, higher TPC is also correlated with higher activity of phenylalanine ammonia-
lyase (PAL), a major enzyme in the biosynthesis of phenolic acids. PAL activity levels vary
in different parts of a plant depending on harvest time, light intensity, and geographical
location, among other factors [73]. Future studies should investigate PAL activity between
I. viscosa leaves and stems. On the other hand, plants may have higher TPC or TFC in
stems rather than leaves because the concentration and distribution of phytochemicals in
plant parts are not only influenced by genetics but are also affected by many environmental
factors, including light, humidity, and soil [72].

Similarly, the antioxidant activity varied substantially depending on the extraction
solvent and plant part. The observed higher DPPH and ABTS antioxidant capacity of
leaves extracts in both solvents (IVLM and IVLaq), as compared to those of the stems, can
be related to differences in the chemical composition of these plant parts and the chemical
properties of the phytochemical compounds potentially responsible for the antioxidant ac-
tivity, such as phenolic and flavonoid compounds. These antioxidant phytochemicals could
have a higher solubility in methanol than water, hence their higher antioxidant capacity in
the methanol extract [11,69–71,78–80]. Moreover, the higher yields and antioxidant activity
in the methanol solvent could be related to its polar constituents [81].

Plant phytochemicals exhibit their antioxidant activity through different mechanisms
of action associated with their structural specificities [82]. Phenolic and flavonoid antiox-
idant phytochemicals scavenge reactive species of oxygen, nitrogen, and chlorine and
chelate metal ions at both the initiation step and during the progress of the oxidative pro-
cess [82]. Our findings indicated that the antioxidant capacity of I. viscosa extracts generally
correlated with higher TFC and TPC contents, aligning with the literature underscoring that
phenolic and flavonoid metabolites are the main contributors to a plant extract’s antioxidant
capacity [82]. Interestingly, the DPPH and ABTS antioxidant capacity positively correlated
with TFC and TPC in the case of I. viscosa stems but not leaves, despite the solvent used.
This may suggest a difference in the chemical nature and solubility of compounds responsi-
ble for the antioxidant properties between the stems and leaves [82]. In addition, similar
to the TFC and TPC, I. viscosa leaves had higher antioxidant activity than stems, which is
in line with reports in the literature [72–76]. The high phenolic content and antioxidant
properties of Inula viscosa in this study are substantiated by previous studies [31,83–85],
highlighting the relevance of the capacity of a plant extract to modulate oxidative stress
with its therapeutic properties, including anticancer effects [83].

4.2. Inula viscosa Leaves Extracts Reduced the Viability of A549 Lung Cancer Cells

In this study, I. viscosa leaves and stems methanolic extract demonstrated a significant
reduction in cancer cell viability, confirming the findings of previous studies illustrating



Biology 2024, 13, 687 17 of 25

the cytotoxic potential of I. viscosa extracts against various cancer cell lines [21,24,25,34].
For instance, the recent research by Kheyar et al. (2022) [25] revealed a high effectiveness
of I. viscosa leaves ethanolic extract in reducing the proliferation of a human colorectal
adenocarcinoma cell line (HT29) with an IC50 value of 62.39 ± 0.34 µg/mL.

Similar to this study, Rechek et al. [30] reported that I. viscosa reduced the viability
of A549 lung cancer cells. However, Rechek et al. tested I. viscosa leaves extracts [30],
while we tested a methanolic extract of I. viscosa leaves. Moreover, we found that I. viscosa
leaves methanolic extracts reduced the viability of human breast, ovary, colorectal, and
liver cancer cells, which is also consistent with previous reports [15,26,28].

Unlike the Inula viscosa methanolic extracts, the aqueous extracts of leaves and stems
did not reduce the viability of A549 lung cancer cells in this study. These findings are in
agreement with the findings of Anglana et al., who found that the aqueous extracts of
I. viscosa aerial parts have variable cytotoxicity against different colorectal cancer cells, being
moderately cytotoxic to SW620 cells and noncytotoxic to DLD-1 and HT-29 cells. In contrast,
the methanolic extracts, prepared under the same conditions, were overall more cytotoxic
to all the tested colorectal cancer cell lines [26], and the results by Kheyar-Kraouche et al.,
who showed that I. viscosa ethanolic extracts reduced the viability of HepG2 liver cells
more efficiently than the aqueous extract [34]. Likewise, Colak et al. showed that I. viscosa
methanolic extracts were cytotoxic to several cancer cells, while I. viscosa aqueous extracts
did not cause significant cell death in most of the tested cell lines [28]. This contrasts the
results of Hepokur et al., who reported that I. viscosa aqueous extracts are cytotoxic to
several cancer cell lines [86]. However, Hepokur et al. prepared the aqueous extract by
boiling I. viscosa powder at 100 ◦C while we prepared the aqueous extract by maceration at
room temperature.

The variation in the cytotoxic effects between methanolic vs. aqueous extracts could be
related to the higher extraction yield and, subsequently, higher TPC, TFC, and antioxidant
capacity of the methanol solvent vs. water solvent. In confirmation, many studies have
demonstrated that the TPC, TFC, and antioxidant capacity of a plant extract are related to its
therapeutic effects, including antiproliferative and anticancer properties [11,66,87–91]. In
this study, the high TPC and TFC of I. viscosa leaves methanolic extracts may underline their
cytotoxic and antiproliferative effects, especially since many polyphenols and flavonoids,
acting through diverse metabolic and signaling pathways, have been shown to cause
significant inhibition of the proliferation of various types of cancer cells [87,90,92,93].

4.3. A Terpenoid-Rich Fraction of I. viscosa (IVL DCM)

Given the scarcity of reports on the anti-lung cancer effects of I. viscosa extracts in
general and I. viscosa terpenoids in particular, we further purified I. viscosa leaves methanolic
extracts (IVLM) in DCM to enrich I. viscosa terpenoids, obtaining the IVL DCM fraction.
GC-MS analysis confirmed the abundance of terpenoids in the IVL DCM fraction. The
enrichment of terpenoids in this fraction is consistent with other studies that used a low-to-
intermediate-polarity solvent to recover slightly polar terpenoids [38,45].

4.4. The Terpenoid-Rich Fraction of I. viscosa Reduced the Proliferation and Migration and Induced
Apoptosis of A549 Lung Cancer Cells

The IVL DCM fraction reduced the viability of A549 and other cancerous cells. Both the
terpenoid and non-terpenoid metabolites identified in the IVL DCM fraction corroborate
the cytotoxic effects of IVL DCM. Terpenoids have diverse biological activities, including
anticancer properties, and have been shown to significantly inhibit the proliferation of
A549 and other cancerous cells [41–44]. Among the identified terpenoids, lupeol and
its triterpene derivatives are highly represented in the IVL DCM fraction and have been
demonstrated to have anticancer activities in cells in vitro and in vivo in mouse mod-
els [94–96]. Betulin, another triterpenoid present in the IVL DCM fraction, was reported
to have anticancer effects [97,98]. Caryophyllene oxide is an oxygenated sesquiterpene
that has been documented to have important anticancer activities, impacting the growth



Biology 2024, 13, 687 18 of 25

and proliferation of various cancer cells [99–103]. Isopulegol is a monoterpene that has
exhibited in vitro cytotoxic effects against several cancer cell lines [104,105]. In addition,
some of the non-terpenoid metabolites have documented anticancer effects and could
contribute to the anticancerous activity of the IVL DCM fraction, δ-tocopherol [106,107]
and phytonadione [108,109], for instance.

The terpenoid-rich fraction reduced the viability of A549 cells, at least partly by
inhibiting the proliferation of A549 cells. IVL DCM reduced the protein levels of the
proliferation marker Ki67 and elevated the protein levels of p-P38 and its downstream
targets CDK inhibitor proteins P21 and P27. These results align with previous studies
reporting that P38 activation slows down the proliferation and increases the expression
levels of P21 in lung cancer cells [110].

The results of examining the apoptotic activity of the terpenoid-rich fraction con-
tribute insights into the mechanisms underlying the anticancer properties of I. viscosa.
The terpenoid-rich fraction activated the intrinsic apoptotic pathway. Indeed, IVL DCM
elevated the levels of the P53 and proapoptotic protein BAX, reduced the levels of the
anti-apoptotic protein BCL2, and activated the effector apoptosis enzyme Caspase 3 into
c-Caspase 3, which activated PARP into c-PARP. In addition, the ratio of BAX/BCL2 was
increased, further confirming the induction of apoptosis through the intrinsic apoptotic
pathway. It is well established that various signals induce the expression of P53, which
activates several transcriptional programs that induce cell cycle arrest [8], DNA repair [8],
senescence, or apoptosis, leading to the suppression of tumor growth [111]. P53 activation
can trigger the intrinsic apoptotic pathway, leading to the release of cytochrome c from
mitochondria, activation of Caspase 9 and Caspase 3, and reduction and induction of BCL2
and BAX protein levels, respectively [112–114]. Active Caspase 3 is an apoptosis effector
enzyme that cleaves various protein substrates, such as caspase-activated DNAse that
fragments genomic DNA and PARP-1, to induce apoptosis [11,114]. The results are in
agreement with previous studies showing that I. viscosa extracts can induce apoptosis in
cancerous cells [24] and in A549 cells [30]. Rechek et al. [30] reported that I. viscosa induced
apoptosis in A549 lung cancer cells, similar to this study. However, Rechek et al. reported
that I. viscosa leaves ethanolic extracts induced apoptosis through activation of RIPK1,
unlike this study where IVL DCM activated the intrinsic apoptotic pathway [30]. This
could be due to the difference in the chemical composition of the ethanolic leaves extract
of I. viscosa leaves prepared by Rechek et al. and the terpenoid-rich fraction prepared in
this study.

Furthermore, the results of this study are consistent with studies demonstrating that
terpenoids can significantly inhibit proliferation and induce apoptosis in A549 and other
cancerous cells [41–44]. For example, I. viscosa sesquiterpene lactones can inhibit the growth
and metastasis of human cancer cells, induce apoptosis, autophagy, and cell cycle arrest,
and increase the sensitivity of chemotherapy drugs, activate the p38 MAPK pathway,
and inhibit the NF-κB pathway in lung cancer [115]. In addition, several terpenoids
that we identified in the IVL DCM fraction are known to induce apoptosis [94–105]. For
instance, caryophyllene oxide has been shown to induce apoptosis of A549 cells [99] and
has been reported to induce apoptosis through the PI3K/AKT/mTOR/S6K1 pathway [101].
Phytonadione (Vitamin K1) is a non-terpenoid metabolite in IVL DCM, which induces
apoptosis in colon cancer cell lines [108].

Cell migration is required for efficient tumor metastasis as cells spread away from
the primary tumor site [116,117]. In this study, a wound healing assay revealed that IVL
DCM inhibited the. migration of A549 cells. In accordance, I. viscosa methanol extracts
were shown to suppress migration and induce cytotoxicity and apoptosis of melanoma
cell lines [28]. Furthermore, terpenoids have been reported to inhibit cancer cell migra-
tion [118]. In contrast, other studies have reported that I. viscosa extracts can enhance
migration of fibroblast cells, suggesting that the extracts may be beneficial as wound heal-
ing agents [119]. The difference in effects on cell migration may be related to the difference
in chemical composition between the terpenoid-rich IVL DCM fraction and the I. viscosa
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extracts with wound healing activity and the kind of cells used (cancerous human cells
vs. mouse fibroblasts). For example, tomentosin, a sesquiterpene lactone highly abundant
in I. viscosa, was shown to inhibit migration of osteosrcoma [120] and multiple meyeloma
cells [121] and downregulate genes enriched in migration, proliferation, growth, and inva-
sion pathways [121]. Andrographis is a diterpene that was shown to inhibit migration of
A549 cells [122].

Focal adhesion kinase (FAK) promotes the migration and invasion of tumor cells [123–126].
FAK levels are frequently high in cancerous cells. High FAK levels correlate with human
cancers’ metastatic potential [127–129]. IVL DCM-mediated inhibition of cell migration
was accompanied by inhibition of FAK activation. The latter event may underpin the
attenuated migratory potential of A549 cells. This is the first report of the correlation
between inhibition of cell migration and suppression of FAK activation by I. viscosa extracts.
Interestingly, terpenoids have been shown to inhibit FAK activation. Isomalabaricane
triterpenoids have been shown to target FAK [130]. Oridonin diterpenoid inhibits the FAK
signaling pathway in human small cell lung cancer cells H1688 [131]. However, it remains
to be tested if the inhibition of FAK activation is the only mechanism through which IVL
DCM inhibits A549 cell migration or if IVL DCM may target other cell migratory pathways.

This study has given significant insights into the mechanisms of action underlying
the anticancer effects of I. viscosa bioactivities. Uncovering the full therapeutic potential
of I. viscosa remains a daunting task due to the complexity and variability of I. viscosa
extracts, which contain hundreds or even thousands of individual bioactive compounds of
varying abundance and identifying compounds responsible for a given biological activity
is by itself a very ambitious endeavor. This task is further complicated by the fact that the
overall activity of extracts of medicinal plants is possibly a result of the combined action of
multiple compounds with synergistic, additive, or antagonistic activity [132].

In conclusion, this study revealed the cytotoxic effects of a methanolic extract of
I. viscosa. Furthermore, a terpenoid-rich fraction was prepared and characterized by GC-
MS. The terpenoid-rich fraction is rich in several terpenoids, identified for the first time
in I. viscosa, that can explain its ability to inhibit proliferation and migration and induce
the intrinsic apoptotic pathway in A549 cells. These results warrant future purification of
the I. viscosa terpenoid-rich fraction to isolate its metabolites responsible for the observed
anticancer effects. Overall, our study revealed the potential anti-cancerous effects of
I. viscosa terpenoids against lung cancer cells, affirming I. viscosa as a renewed source for
the discovery of potential anticancer drugs.
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