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Simple Summary: OsHV-1 is one of two herpesviruses known to infect invertebrates; this pathogen
has emerged as the primary etiology responsible for mass mortalities in the species. The pathological
characteristics, tissue and cellular tropisms of OsHV-1 in Anadara broughtonii (A. broughtonii) remain
unknown. The objective of this study was to characterize the pathological changes and tissue tropism
during the development of an OsHV-1 infection in A. broughtonii. The results demonstrated that
hemocytes and fibroblastic-like cells were the primary cellular targets of OsHV-1. Additionally,
lesions, infiltrated hemocytes, and co-localized ISH signals were identified in the muscular tissues of
the foot and adductor muscle. These findings contribute to the understanding of OsHV-1 pathogenesis
in Arcidae mollusks.

Abstract: OsHV-1 caused detrimental infections in a variety of bivalve species of major importance
to aquaculture worldwide. Since 2012, there has been a notable increase in the frequency of mass
mortality events of the blood clam associated with OsHV-1 infection. The pathological characteristics,
tissue and cellular tropisms of OsHV-1 in A. broughtonii remain unknown. In this study, we sought
to investigate the distribution of OsHV-1 in five different organs (mantle, hepatopancreas, gill, foot,
and adductor muscle) of A. broughtonii by quantitative PCR, histopathology and in situ hybridization
(ISH), to obtain insight into the progression of the viral infection. Our results indicated a continuous
increase in viral loads with the progression of OsHV-1 infection, reaching a peak at 48 h or 72 h
post-infection according to different tissues. Tissue damage and necrosis, as well as colocalized
OsHV-1 ISH signals, were observed primarily in the connective tissues of various organs and gills.
Additionally, minor tissue damage accompanied by relatively weak ISH signals was detected in the
foot and adductor muscle, which were filled with muscle tissue. The predominant cell types labeled
by ISH signals were infiltrated hemocytes, fibroblastic-like cells, and flat cells in the gill filaments.
These results collectively illustrated the progressive alterations in pathological confusion and OsHV-1
distribution in A. broughtonii, which represent most of the possible responses of cells and tissues to
the virus.

Keywords: OsHV-1; Anadara broughtonii; in situ hybridization; tissue tropism; hemocytes

1. Introduction

The initial case of a herpes-like virus infection in mollusks was documented in Cras-
sostrea virginica in the USA in 1972, representing the inaugural herpesvirus infection in
invertebrate animals [1]. Following such a discovery, other potential herpesvirus infections
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were reported in Ostrea edulis and Mercenaria mercenaria in the UK [2]. These cases were
confined to local populations, and received little attention from the aquaculture sector.
However, mass mortalities of hatchery-reared larval Crassostrea gigas associated with her-
pesvirus infection were reported in France and New Zealand in the summer of 1991 [3,4].
The genomic sequence and capsid structure of the virions purified from infected C. gigas
larvae were subsequently resolved [5]. These results collectively led to the formal taxonomy
of Ostreid herpesvirus 1 (OsHV-1) infecting C. gigas, and established a new family (Malaco-
herpesviridae) under the umbrella of the order Herpesvirales to incorporate invertebrate
herpesviruses [6]. While the homology between OsHV-1 and the mollusk herpesviruses
discovered in the 1970s cannot be currently confirmed, since 1991, mass mortality events
associated with herpesvirus-like particles have been observed in a variety of bivalve species
from a dozen of countries and regions worldwide [7]. In addition to C. gigas, OsHV-1
infections have been associated with mortalities of other bivalves, including oysters, scal-
lops, and clams [8]. More recently, OsHV-1 infection was also detected in a crustacean
(Carcinus maenas) and cephalopod (Octopus vulgaris) by polymerase chain reaction (PCR)
and ISH [9,10].

The production of mollusks in aquaculture has increased exponentially in recent
decades, with China accounting for most of this growth [11]. In 2021, global marine
mollusk aquaculture production constituted 31.0% of the total global marine aquaculture
production by weight [12]. In China, the ratio was 69.0% [13]. The blood clam, Anadara
broughtonii, previously known as Scapharca broughtonii, is member of the phylum Mollusca,
class Bivalvia, order Arcida, and family Arcidae [14,15]. A. broughtonii is distributed along
the Pacific Northwest coastline covering China, Japan, Korea, and the Far Eastern part
of Russia. A. broughtonii burrows shallowly in sandy mud or muddy bottoms at 5–50 m
depths [16]. The name “bloody clam” originated from the red color of their visceral mass,
which is due to the presence of hemoglobin in both tissues and hemolymph [14]. Adult
blood clams can reach a shell length of 100 mm, which are characterized by thick and harder
calcareous shells, covered by a hairy brown periostracum [16]. This species is harvested
as a source of sashimi, which has resulted in intensive fishing and a significant decline of
the wild resources, particularly after the early 1990s [17,18]. Many efforts have been made
to recover the wild population stocks of A broughtonii in China, Japan, and Korea [19,20].
In China, a large amount of A. broughtonii seeds were produced in hatchery and cultured
in Bohai and the Yellow Seas of China [17]. Such aquaculture and stock enrichment
practices have revealed the susceptibility of A. broughtonii to many pathogenic bacteria
and viruses, including a variant of OsHV-1 [20–22]. The first documented instance of mass
mortalities of A. broughtonii associated with OsHV-1 infection was observed in hatchery-
reared broodstocks in Northern China in 2012 [22,23]. The complete genome sequence
of the OsHV-1 variant infecting A. broughtonii has been determined [24,25]. Additionally,
the transcriptional changes and potential immune responses of A. broughtonii against
OsHV-1 during the progression of OsHV-1 infection have been investigated [26]. Moreover,
temperature and elemental iron have been identified as crucial external and internal factors
in the pathogenicity of OsHV-1, respectively [27,28]. Nevertheless, the morphological
features and their association with the viral infection, which could provide insight into
the understanding the underlying mechanisms of disease, have not yet been subject to
rigorous study.

The primary objective of the present study was to characterize the histological features
at different time points during an experimental infection of OsHV-1 in A. broughtonii.
Secondly, the aim was to determine the tissue and cellular tropisms of OsHV-1 at different
infection stages. The results may provide insights into the entry and distribution routes of
OsHV-1 in A. broughtonii, as well as potential cell and tissue responses to the viral infection.



Biology 2024, 13, 720 3 of 14

2. Materials and Methods
2.1. Blood Clams and Acclimation

The blood clams (Anadara broughtonii) were obtained from Haichang Aquatic Food
Co., Ltd., Qingdao, China. The clams exhibited no clinical signs of illness, with an average
weight of 93.22 g, a shell length of 64.5 mm, and a shell height of 51.2 mm. The blood clams
were cultivated in eight 60 L aerated tanks, with about 25 clams per tank. The blood clams
were initially cultured with sand-filtered seawater at a temperature of 18.0–20.0 ◦C for a
period of two weeks, with the sand-filtered seawater being replaced daily. In the laboratory
setting, the blood clams were fed with seaweed (Laminaria japonica). Subsequently, 18 indi-
viduals were randomly selected for quantitative polymerase chain reaction (qPCR) analysis,
which yielded negative results for OsHV-1. The relevant experiments were approved by the
local animal care and use committee and conducted in accordance with local and central
government regulations.

2.2. Virus Preparation

The OsHV-1 virus suspension was prepared from the OsHV-1 infected blood clams
(stored at −80 ◦C) collected from Jimo in September 2017. The protocol for virus suspension
was employed in accordance with the previously described tissue homogenates method [23].
In brief, the mantle tissues from blood clams with OsHV-1 infection were dissected and
homogenized. After a short centrifugation, the supernatant of the mantle homogenate
underwent a series of filtration processes employing syringe filters with pore sizes of 5 µm,
2 µm, 0.45 µm, and 0.22 µm, in a succession steps. To serve as a control, mantle tissues from
healthy blood clams were used to make negative tissue homogenates in parallel with the
samples from infective calms. The filtered mantle homogenate was temporarily stored in
an ice bath until required for use. A 200 µL aliquot of the tissue homogenates was utilized
for DNA extraction and OsHV-1 DNA quantification.

2.3. Experimental Infection and Sample Collection
2.3.1. Experimental Design

One hundred and eighty (180) blood clams were randomly divided into an infected
group (120 animals) and a control group (60 animals). For the infected group, the 120 clams
were allocated to six tanks (each containing approximately 50 L of sea water and 20 animals);
three tanks were assigned for sampling at different time point, and the other three were
employed for mortality surveillance. For the negative control group, the 60 clams were
separated into three tanks (each containing approximately 50 L of seawater and 20 animals)
for monitoring mortality.

2.3.2. Virus Inoculation and Sample Collection

For the challenged group, 200 µL tissue homogenates (~5 × 104 copies of viral
DNA/µL) were injected into the foot of each animal. Meanwhile, each animal in the con-
trol group received an injection with an equal volume of the negative tissue homogenate.
At the end of the experimental infection, all clams were sacrificed for qPCR analysis.
Additionally, six clams from the negative control tank were utilized for histological
and ISH examination. During the infection process, one clam was sampled from each
of the three challenged tanks for sampling at each time point, namely 0, 6, 12, 24, 48,
and 72 (hpi). Cross-sections of clams, including five organs (mantle, gill, hepatopan-
creas, adductor muscle, and foot), were sampled from each individual. One section was
fixed in Davidson’s alcohol-formalin-acetic acid fixative for 24–36 h, after which it was
transferred to 70% ethanol in anticipation of a histological and ISH examination. The
remaining sections were promptly stored at a temperature of −40 ◦C for subsequent
DNA extraction and qPCR assay.
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2.4. DNA Extraction and qPCR Analysis

The detection and quantification of OsHV-1 DNA were performed by qPCR accord-
ing to the methods described in a previous report [29]. Total DNA was extracted from
five tissue samples of each collected clam as previously described, using the TIANamp™
Marine Animal DNA Kit (TIANGEN, Beijing, China) in accordance with the instruc-
tions provided. The concentration and quality of extracted total DNA were determined
using a NanoDrop 2000 spectrophotometer (Thermo Scientific®, Waltham, MA, USA).
qPCR was performed on a Bio-Rad CFX Connect RealTime system (Bio-Rad Labora-
tories, Hercules, CA, USA). Amplification was conducted in a 25 µL reaction system
containing 2 µL DNA, 1 µL of each primer (BF: 5′-GTCGCATCTTTGGATTTAACAA-
3′ and B4: 5′-ACTGGGATCCGACTGACAAC-3′). The reaction mixture consisted of
12.5 µL 2 × FastStart Essential DNA Probes Master, 0.5 µL TaqMan® probes (5′-FAM-
TGCCCCTGTCATCTTGAGGTATAGACAATC-BHQ-3′) and 8 µL ddH2O. The reaction
mixture was incubated at 95 ◦C for 10 min, after which 40 cycles of 10 s at 95 ◦C and 30 s
at 60 ◦C were performed. The data were expressed as the number of OsHV-1 copies per
nanogram of total tissue DNA for the three replicates.

2.5. Histology and In Situ Hybridization

The histological sections were made according to standard protocols, including de-
hydration in ethanol series, clearing, embedding in paraffin and cutting into 3–5 µm thick
sections using a rotary microtome. The tissue sections were subjected to staining with
hematoxylin and eosin (for histopathological analysis) or treatment with the C2/C6 probe
(for ISH). The C2/C6 DNA probe was prepared by incorporating digoxigenin-11-dUTP
into PCR products as previously reported [30]. The ISH procedure was a modification of
previously published protocols [31,32], and fully described in Bai et al. (2020) [33].

The non-specific binding of the antibody was assessed by performing a hybridiza-
tion of the positive section using hybridization buffer without a DIG-labeled probe. To
assess the potential for non-specific staining due to the presence of endogenous alka-
line phosphatase, the anti-DIG alkaline phosphatase conjugate was omitted during the
testing of the positive sections. Sections were considered positive for OsHV-1 DNA if
typical blue/black precipitates were visible within the cells and all controls yielded the
expected results.

3. Results
3.1. Clinical Signs and Mortality

The survival of blood clams was monitored on a daily basis, and the resulting survival
curves were plotted (Figure 1A). The most striking anomaly observed in the experimental
group was the turbid and frothy water, which manifested approximately 24 hpi. The
principal indication of moribund individuals was the loss of the shell’s capacity to close
and the pale visceral mass. The gill filaments exhibited redness and swelling due to the
repletion of the gill hemolymph vessels with hemocytes containing hemoglobin. Acute
mortality was observed in blood clams at 48 hpi. The cumulative mortality of blood clams
was 0% at 6 hpi and 12 hpi, 5% at 24 hpi, 55% at 48 hpi, 95% at 72 hpi and 100% at 96 hpi
(Figure 1A). The control group demonstrated no mortality during the viral infection period,
and the seawater remained relatively clear.

3.2. Viral DNA Quantification by qPCR

The presence of OsHV-1 DNA was first identified in the mantle at 6 hpi. In the foot
and adductor muscle tissues, the viral DNA loads peaked at 48 hpi, with amounts of
2.87 × 102 and 3.91 × 103, respectively. However, a subsequent decline was noted at
72 hpi. In the mantle, gill, and hepatopancreas, the viral DNA loads demonstrated a
gradual increase throughout the course of infection until 72 hpi (Figure 1B). The viral
levels were found to range from 1.13 to 5.45 × 105 DNA copies per ng of mantle DNA;
5.26 to 5.08 × 105 DNA copies per ng of hepatopancreas DNA; 5.70 to 5.03 × 105 DNA
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copies per ng of gill DNA; 4.94 to 2.87 × 102 DNA copies per ng of foot DNA; and
5.54 to 3.91 × 103 DNA copies per ng of adductor muscle DNA (Table 1). No evidence
of OsHV-1 DNA was found in clams from the control group at the end of the experi-
mental infection.
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Figure 1. (A) The cumulative mortality of Anadara broughtonii during experimental infection. The
experimental group was injected with OsHV-1 (200 µL of ~5 × 104 copies viral DNA/µL) into the
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(B) OsHV-1 viral DNA detection curves by qPCR in different tissues of the blood clam during the
infection period.

Table 1. The OsHV-1 DNA detected in experimentally infected Anadara broughtonii by qPCR and in
situ hybridization.

Table
(hpi)

Mantle Hepatopancreas Gill Foot Adductor Muscle

ISH qPCR ISH qPCR ISH qPCR ISH qPCR ISH qPCR

0 - 1.13 - 5.26 - 5.70 - 4.94 - 5.54
6 - 1.89 × 101 - 5.38 - 5.35 - 5.06 - 5.00

12 - 1.57 × 101 - 5.14 - 5.63 - 5.69 - 5.42
24 - 4.46 × 104 - 6.27 - 6.60 - 5.02 - 6.22
48 + 4.98 × 104 ++ 1.14 × 101 + 2.67 × 102 ++ 2.87 × 102 ++ 3.91 × 103

72 ++ 5.45 × 105 ++ 5.08 × 105 ++ 5.03 × 105 ++ 2.54 × 102 + 3.46

The “++”, “+” and “-” symbols indicate the presence of a high-intensity positive signal, a low-intensity
positive signal, and the absence of a positive signal, respectively. The abbreviation “hpi” stands for “hours
post injection”.

3.3. Histopathology and In Situ Hybridization

The results of agarose gel electrophoresis demonstrated the successful amplification
of a fragment of OsHV-1 DNA, as evidenced by the presence of a distinct band with
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an approximate size of 700 base pairs (bp). Furthermore, the incorporation of DIG was
confirmed, resulting in an increase in the molecular mass of the amplified nucleic acid
(Figure 2). The original file of Figure 2 was provided in the Supplementary File.

Biology 2024, 13, x FOR PEER REVIEW 5 of 14 
 

 

 
Figure 1. (A) The cumulative mortality of Anadara broughtonii during experimental infection. The 
experimental group was injected with OsHV-1 (200 µL of ~5 × 104 copies viral DNA/µL) into the foot 
of each clam, and the control group with an equal volume of the negative tissue homogenate. (B) 
OsHV-1 viral DNA detection curves by qPCR in different tissues of the blood clam during the in-
fection period.  

3.3. Histopathology and In Situ Hybridization 
The results of agarose gel electrophoresis demonstrated the successful amplification 

of a fragment of OsHV-1 DNA, as evidenced by the presence of a distinct band with an 
approximate size of 700 base pairs (bp). Furthermore, the incorporation of DIG was con-
firmed, resulting in an increase in the molecular mass of the amplified nucleic acid (Figure 
2). The original file of Figure 2 was provided in the Supplementary File. 

 
Figure 2. The labeling of OsHV-1 DNA probe with digoxigenin (DIG) -11-dUTP. “M” indicated the 
DNA markers, “1” and “2” indicated the bands of the DIG-labeled PCR products and the normal 
PCR, respectively. 
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DNA markers, “1” and “2” indicated the bands of the DIG-labeled PCR products and the normal
PCR, respectively.

Histological lesions and OsHV-1 DNA signals were not identified in tissue sections
of any organs collected during the initial stage of the viral infection. At 48 hpi and 72 hpi,
gross lesions and positive signal with the OsHV-1 DNA probe were observed in the
hepatopancreas, gill, mantle, foot, and adductor muscle in all cases. No histopathological
changes or positive signal were observed in the five tissues of the control group.

The most notable sign of inflammation was the aggregation and infiltration of hemo-
cytes in the connective tissues of the hepatopancreas and mantle, as well as in the gill
filaments. The heavy infiltration of hemocytes was particularly evident around the vacuo-
lated digestive tubules, and hybridization signals appeared at 48 hpi (Figure 3A). The most
severe lesions associated with severe hemocyte infiltration and the strongest hybridization
signals in the hepatopancreas were observed at 72 hpi (Figure 3B). At 48 hpi, the gill
hemolymph vessels exhibited a pronounced repletion with OsHV-1 infected hemocytes
(ISH signals, Figure 4A). While the repletion of hemocytes appears to have diminished
at 72 hpi, there was an increase in the number of flat cells in the gill filaments that were
infected by OsHV-1 (ISH signals, Figure 4B). The lesions observed in the tissue and the
presence of viral DNA signals were predominantly found in the connective tissue and
infiltrated cells. On occasion, OsHV-1 signals were also identified in fibroblast-like cells
within the mantle (Figure 5A). Additionally, ISH-labeled cells were observed within the
connective tissue of the mantle, especially along the muscle fibers (Figure 5B). In the foot
and adductor muscle, muscle rupture and myonecrosis were observed with minimal or
no hemocyte infiltration (Figures 6 and 7). In addition to the detection of OsHV-1 DNA
signals in infiltrated cells, the presence of these signals was also observed in the nuclei of
cells dispersed within the muscle fibers.
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cells (right) in the hepatopancreas at 72 hpi. Scale bar = 500 µm, 100 µm and 20 µm, respectively.
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gills. Positive results are indicated by black/blue precipitates. (A) Pathological changes (left) and
positive cells (right) in the gill at 48 h post-injection (hpi). (B) Pathological changes (left) and positive
cells (right) in the gill at 72 hpi. Scale bar = 100 µm and 20 µm, respectively.
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mantle. Positive results are indicated by black/blue precipitates. (A) Pathological changes (left) and
positive cells (right) in the mantle at 48 hpi. (B) Pathological changes (left) and positive cells (right) in
the mantle at 72 hpi. Scale bar = 100 µm and 20 µm, respectively.
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Figure 6. Histopathology and in situ hybridization investigation of OsHV-1 infected A. broughtonii
foot. Positive results are indicated by black/blue precipitates. (A) Pathological changes (left) and
positive cells (right) in the foot at 48 hpi. (B) Pathological changes (left) and positive cells (right) in
the foot at 72 hpi. Scale bar = 100 µm and 20 µm, respectively.
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adductor muscle. Positive results are indicated by black/blue precipitates. (A) Pathological changes
(left) and positive cells (right) in the adductor muscle at 48 hpi. (B) Pathological changes (left) and
positive cells (right) in the adductor muscle at 72 hpi. Scale bar = 500 µm and 100 µm, respectively.

4. Discussion

Mollusk farming represents one of the earliest and most significant forms of aqua-
culture, with mollusks being farmed on a global scale [34,35]. Despite the overall yield of
mollusk aquaculture increasing at a rapid pace, the production of specific species and par-
ticular regions has suffered significant losses because of epidemic disease outbreaks [36–41].
Since its initial description in 1997, OsHV-1 has emerged as a significant concern within the
mollusk aquaculture sector in China [42]. It has been confirmed that infections and asso-
ciated mortalities have occurred in four bivalve species. The species of mollusks affected
include the Chinese scallops Chlamys farreri, the Pacific oysters C. gigas, the blood clams
A. broughtonii, and the half-crenated arks Anadara kagoshimensis, all of which are native
to China [39]. Moreover, OsHV-1-specific positive PCR results have been documented in
approximately a dozen additional species, although an active infection has not been con-
clusively established [43]. At present, the detection of OsHV-1 infection is predominantly
reliant on molecular techniques, which encompass a range of PCR-based methods [44]. For
example, quantitative PCR based on TaqMan® and SYBR® green chemistry, conventional
PCR, propidium monoazide (PMA) real-time PCR, and LAMP have been employed in
this context [29,45,46]. While molecular methods facilitate rapid detection and diagno-
sis, they are unable to ascertain an active infection or characterize the distribution of the
virus-positive signal across multiple organs within the animal [47].

The most recent scientific advance associated with OsHV-1 infection has been primar-
ily based on the molecular and biochemical approaches [48]. However, the mere detection
of OsHV-1 and other pathogen DNA sequences in a cell–host does not necessarily indicate
the establishment of an infection. It is advisable to corroborate the results of molecular anal-
ysis with those obtained through other techniques, such as histology and ISH, to ascertain
their reliability [49]. The histological alterations associated with OsHV-1 infections lack
specificity, rendering ISH a valuable approach for attaining a more profound comprehen-
sion of this disease. ISH is a technique that combines molecular cytology, histochemistry,
and histology. It is a widely utilized complementary approach for virus detection and
localization [49,50]. Infection with OsHV-1 has been diagnosed in several species using
ISH, including C. gigas [30,51], Ostrea edulis, Crassostrea angulata [52], crustaceans (Carci-
nus maenas) and cephalopods (Octopus vulgaris) [9,10], while the physical and temporal
distribution of OsHV-1 in C. gigas has been the subject of extensive study [30,51,53].

The cellular and tissue tropism, as well as the pathological characteristics of OsHV-1 in
A. broughtonii, remain poorly understood. In this study, a foot injection of a viral suspension
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was employed in lieu of a cohabitation assay to simultaneously infect all blood clams with
the same amount of OsHV-1 virus [28]. As reported by Xin et al. (2019) [28], OsHV-1
infection developed rapidly in A. broughtonii, with mortality rates reaching 95% at 72 h
post-infection (hpi) and 100% at 96 hpi. High levels of OsHV-1 DNA load were observed in
the mantle at 24 hpi, which was also the first appearance of mortality. A marked increase
in both viral DNA (in the gill, foot, and adductor muscle) and clam mortality (from 5% to
55%) was observed between 24 and 48 h post-infection. The viral DNA load reached its
maximum concentration in the foot and adductor muscle at 48 hpi, and in the gill, mantle,
and hepatopancreas at 72 hpi. The C2/C6 probe was utilized to identify positive virus
signals in the challenge group through in situ hybridization (ISH), thereby enabling the
tracing and localization of OsHV-1 in five distinct tissues of A. broughtonii. At 6~24 hpi, low
viral DNA detection by qPCR was positive, whereas viral DNA detection on histological
sections by ISH was negative for blood clams A. broughtonii infected with OsHV-1. These
results may be partially attributed to the enhanced sensitivity of qPCR in comparison to
ISH, given that the former involves a replication step of genetic material, whereas the
latter does not [54]. ISH signals of OsHV-1 were observed in the mantle, hepatopancreas,
gill, foot, and adductor muscle at 48 hpi, concomitant with an increase in the viral DNA
load above 102 copies/ng total DNA. Nevertheless, it should be noted that a one-to-one
correspondence between viral DNA loads detected by qPCR and ISH results is not absolute.
For instance, no ISH signals were discerned in the mantle collected at 24 hpi with a high
viral DNA load (4.46 × 104 copies/ng total DNA), whereas ISH signals were identified in
the adductor muscle collected at 72 hpi with a low viral DNA load (3.46 copies/ng total
DNA). It is postulated that sampling bias during DNA extraction and qPCR (less than
30 mg of tissue were sampled) may be partially responsible for the inconsistent results
between ISH and qPCR.

It is reasonable to find that OsHV-1 DNA loads increased with the development of
infection after experimental infection [55,56], while the decrease or sudden drop of the
viral loads at the end of the viral disease has also been frequently reported both in C. gigas
and A. broughtonii [28,57,58]. Similar infection process and mortality patterns with the
present study were reported in Xin et al. (2019); they revealed that a decrease in the amount
of hemocytes were evidenced in the infected A. broughtonii from 48 hpi to 72 hpi [28].
In the present study, a sudden drop and decrease in OsHV-1 DNA loads were revealed
in adductor muscle and foot at 72 hpi, but not in the gill, mantle and hepatopancreas.
We speculate that the depletion of hemocytes as the infection advances, and the lack of
connective tissues in the adductor muscle and foot, should be responsible for the decrease
in the viral DNA loads. As reported previously in C. gigas and A. broughtonii [28,51,59,60],
fluctuations of the viral loads at the initial stage (12 hpi in the mantle) of viral disease have
also been found in the present study. These results suggested that the immune system of
clams was trying to manage the viral infection and control its replication.

Studies on OsHV-1 infection in C. gigas have indicated that the connective tissue of
various organs, including the mantle, gill and digestive gland, is the primary target of OsHV-
1 infection. This finding is supported by the literature, as evidenced by references [32,51,52].
Additionally, fibroblastic-like cells, hemocytes, and myocytes have been demonstrated to
be susceptible to OsHV-1 infection [31,51]. In the present study, a substantial number of
hemocytes and associated ISH signals were also observed in the hepatopancreas and gills
(see Figures 3 and 4). Additionally, a substantial number of fibroblast-like cells within the
connective tissues of the mantle were identified and labeled with ISH signals (Figure 5).
The histological lesions were invariably accompanied by abnormal nuclei, which exhibited
either marginated chromatin or pyknosis. However, cellular infiltration was only observed
in a subset of cases [30,51]. Additionally, OsHV-1-specific probe labeling revealed the
presence of infected nervous cells throughout the visceral ganglion in infected oyster spat
sections. Furthermore, labeled cells were observed in the gonads of adult oysters, some of
which were identified as oocytes [61,62]. These findings indicate the potential for vertical
transmission of OsHV-1 through the infected gametes of asymptomatic adults [30,52].
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Furthermore, intranuclear acidophilic inclusions comparable to Cowdry type A inclusions
were identified in some oyster species infected with OsHV-1, including Ostrea edulis [63,64]
and Ostrea angasi [65], but not in C. gigas. The present study did not detect Cowdry type
A inclusions. On occasion, weak ISH signals were observed in the nuclei of potential
myocytes in the foot and adductor muscles (see Figures 6 and 7).

5. Conclusions

Since the initial characterization of OsHV-1 infection in A. broughtonii in 2012, this
pathogen has emerged as the primary etiology responsible for mass mortalities in the
species. A substantial body of scientific literature has emerged on the characterization of
the viral disease. The objective of this study was to characterize the pathological changes
and tissue tropism during the development of OsHV-1 infection in A. broughtonii. The
results demonstrated that hemocytes and fibroblastic-like cells were the primary cellular
targets of OsHV-1. Additionally, lesions, infiltrated hemocytes, and co-localized ISH
signals were identified in muscular tissues of the foot and adductor muscle. These findings
contribute to the understanding of OsHV-1 pathogenesis in Arcidae mollusks.
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