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Simple Summary: Through gesture recognition and detection of sika deer, farmers can observe the
gestures of sika deer without physical contact, providing data and technical support for the intelligent
and welfare-oriented breeding of sika deer. This study is based on the YOLOv8 network model.
By optimizing the convolution module, incorporating the attention mechanism, and enhancing the
detection head module, a new method for detecting sika deer poses was developed. The method
was assessed using four behavioral datasets, which included standing, lying, eating, and attacking.
The pose-recognition accuracy of sika deer significantly improved to an average of 91.6%, laying a
foundation for the health assessment and information management of sika deer.

Abstract: As the sika deer breeding industry flourishes on a large scale, accurately assessing the
health of these animals is of paramount importance. Implementing posture recognition through
target detection serves as a vital method for monitoring the well-being of sika deer. This approach
allows for a more nuanced understanding of their physical condition, ensuring the industry can
maintain high standards of animal welfare and productivity. In order to achieve remote monitoring of
sika deer without interfering with the natural behavior of the animals, and to enhance animal welfare,
this paper proposes a sika deer individual posture recognition detection algorithm GFI-YOLOv8
based on YOLOv8. Firstly, this paper proposes to add the iAFF iterative attention feature fusion
module to the C2f of the backbone network module, replace the original SPPF module with AIFI
module, and use the attention mechanism to adjust the feature channel adaptively. This aims to
enhance granularity, improve the model’s recognition, and enhance understanding of sika deer
behavior in complex scenes. Secondly, a novel convolutional neural network module is introduced
to improve the efficiency and accuracy of feature extraction, while preserving the model’s depth
and diversity. In addition, a new attention mechanism module is proposed to expand the receptive
field and simplify the model. Furthermore, a new pyramid network and an optimized detection
head module are presented to improve the recognition and interpretation of sika deer postures
in intricate environments. The experimental results demonstrate that the model achieves 91.6%
accuracy in recognizing the posture of sika deer, with a 6% improvement in accuracy and a 4.6%
increase in mAP50 compared to YOLOv8n. Compared to other models in the YOLO series, such as
YOLOv5n, YOLOv7-tiny, YOLOv8n, YOLOv8s, YOLOv9, and YOLOv10, this model exhibits higher
accuracy, and improved mAP50 and mAP50-95 values. The overall performance is commendable,
meeting the requirements for accurate and rapid identification of the posture of sika deer. This model
proves beneficial for the precise and real-time monitoring of sika deer posture in complex breeding
environments and under all-weather conditions.
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1. Introduction

Sika deer hold significant economic value in the farming industry, with an increasing
demand for their products in both domestic and international markets, resulting in substan-
tial economic benefits for farmers [1]. The advancement of modern technology, particularly
in artificial intelligence and computer vision, has led to the emergence of automated pos-
ture recognition technology, which presents new opportunities for the behavior analysis
and health monitoring of farmed sika deer [2]. This study aims to investigate how these
technologies can be utilized to enhance the efficiency and quality of sika deer farming while
providing a scientific foundation for effective farming management [3]. The primary princi-
ple of sika deer posture detection technology involves training a deep convolutional neural
network model to identify sika deer in the input image and output the posture information
of sika deer. During the training process, the model necessitates a large number of sika deer
images with labeled information as training samples to learn the posture characteristics and
patterns of sika deer. By developing and implementing sika deer pose recognition systems,
breeders can more effectively monitor the health status and behavior of the deer population,
thereby optimizing the breeding environment and management strategies. This approach
not only enhances the production efficiency of sika deer farming but also ensures the health
and welfare of the deer population, supporting the sustainable development of the industry.
Furthermore, the application of this technology can promote advancements in related fields,
establishing a foundation for future automation and intelligence in farming practices [4].

Object detection plays a vital role in computer vision. By leveraging the power of
deep convolutional neural networks, models can learn complex feature representations
from images, enabling them to accurately detect and localize objects. In recent years, deep
learning has been widely applied to animal behavior recognition (Li et al., 2020) [5], agri-
cultural product inspection (Deng et al., 2019) [6], and other fields. Simultaneously, some
researchers have started using deep learning techniques to study the living habits of ani-
mals. For instance, deep learning technology is utilized to detect the farming environment
and contour information of cattle. To acquire the health information of cattle, Qiao et al.
proposed a Mask R-CNN-based method to address the instance segmentation and contour
extraction challenges of cattle in a real farm environment [7]. Wang et al. introduced a
YOLOv8-based estrus cow recognition model to tackle the issue of real-time monitoring
of cows’ estrus period in a farm environment, enhancing target detection efficiency [8].
To enhance the accuracy of detecting key parts of sika deer, considering the diverse deer
farm environment and the swift movement of sika deer, Xiong et al. proposed an AD-
YOLOv5 algorithm for key parts detection based on YOLOv5s [9]. Shao et al. employed
deep separable convolution to distinguish the standing, lying, and side-lying postures of
pigs, achieving an accuracy of 92.45% [10]. To enhance the detection of facial emotions
in pigs and analyze their emotional cues, Nie et al. proposed a deep learning strategy
based on CreToNeXt YOLOv5 for advanced pig facial emotion detection [11]. Gong et al.
proposed the behavior recognition of sika deer [12]. An enhanced Google Inception Net-
work (GoogLeNet) model was utilized for behavior identification. The model achieved a
recognition rate of 98.92% for red deer behavior. Wu et al. utilized CNN-LSTM to identify
the basic behaviors of individual cows in complex environments, and further enhanced
the recognition accuracy of five postures: drinking water, estrus, walking, standing, and
lying [13]. Yu et al. conducted a study on automatic recognition of daily cow behaviors
using deep learning, enabling the model to accurately identify various behaviors exhibited
by cows in real cowshed environments [14]. The rapid advancement of deep learning
technology has demonstrated significant potential in image recognition and analysis. How-
ever, current target detection models may face limitations in specific environments, such as
complex lighting conditions on farms, or regarding the diverse range of animal behaviors.
Additionally, in the field of sika deer farming, there is currently no model that is highly
suitable for farmers to remotely detect and identify sika deer postures. To enhance the
accuracy of sika deer posture detection and recognition, it is essential to refine the existing
model to adapt to these unique environments and the requirements of sika deer farming.
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In order to solve the aforementioned issues, this paper introduces an enhanced model
for sika deer posture recognition based on YOLOv8. This model enhances the fundamental
model in various ways, such as introducing an efficient multi-scale attention mechanism,
enhancing a novel pyramid network structure model, improving the structure of the
original C2f model, and refining the detection head module of the original model. By
evaluating the performance using the self-constructed sika deer dataset, the GFI-YOLOv8
model has demonstrated commendable accuracy, recall, and average precision, showcasing
notable enhancements. The key contributions of this article are as follows:

(1) In this paper, Iterative Attentive Feature Fusion (iAFF) [15] is introduced into the
C2f structure to form the C2f_iAFF. The original Spatial Pyramid Pooling Fast (SPPF)
module is replaced with the attention-based intra-scale feature interaction module
(AIFI) [16] module. This enhancement aims to improve the model’s performance in
object detection and recognition by iteratively fusing features at different scales. It
focuses on processing advanced image features through a self-attention mechanism.

(2) This paper proposes a new attention mechanism module, which is combined with
the CSP-Net structure to form a new down-sampling network module called CSA.
The proposed EMCA module is the core component of CSA, enhancing the depth
and diversity of feature extraction through an improved multi-branch structure. This
module offers a more comprehensive feature description and boosts the model’s
generalization ability.

(3) We replaced the original YOLOv8 detection head with a new detection head module
called DETECT_SPFPN. This change introduced a new contrast space generalized
feature pyramid network (SPFPN) that enhances the concept of the feature pyramid
network (FPN) for object detection. The SPFPN efficiently integrates multi-scale
features, essential for capturing high-level semantics and low-level spatial details. To
optimize performance under computing resources, feature maps of different scales
utilize different channel dimensions.

2. Materials and Methods
2.1. Datasets
2.1.1. Data Acquisition

The sample data were collected at Dong’Ao Deer Farm in Shuang Yang City, Jilin
Province. The images were taken intermittently for a total of 10 days using a mobile phone.
To enhance the dataset’s robustness, sika deer were photographed in various postures
during different times of the day: morning, afternoon, evening, and during other routine
activities. Image storage was done on an external portable hard drive, capturing a total of
596 sika deer images at a consistent resolution of 640 × 640 pixels. The remaining 579 sika
deer sample data were sourced from the public animal four-category dataset on the Kaggle
website [17], with the sika deer image resolution standardized to 640 × 640 pixels.

2.1.2. Dataset Production

We utilized the lightweight graphic annotation software Labelimg to categorize sika
deer into four postures: standing, lying, eating, and attacking. In this method, a total of
1175 sika deer image data were created and divided into an 8:2 ratio, resulting in a training
set comprising 940 images and a validation set consisting of 235 images. To enhance the
model’s generalization and robustness, and to prevent overfitting during training, this
paper employed data augmentation techniques such as black and white images, Gaussian
noise, random flipping, and adding pixel block occlusion. The image effects after data
augmentation are illustrated in Figure 1. Following data augmentation, the training set
expanded to 3760 images while the validation set remained at 940 images. The sika deer
postures were categorized into four groups: standing, lying, eating, and attacking. Specific
information is detailed in Table 1.
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Figure 1. Images enhanced by different data augmentation method.

Table 1. Definition of sika deer posture classification.

Posture Category The Name of the Pose Pose Definition

Standing Standing Sika deer have at least three legs standing on the
ground at the same time

Lying Lying
The abdomen of the body is in contact with the
ground, and the hooves and legs are not used to
support the body

Eating Eating
The mouth of the sika deer touches the ground, or
the sika deer is standing next to the trough, or the
small sika deer is feeding on its mother’s milk

Attacking
Bumping,
kicking,
Chasing

The act of striking another deer’s body or antlers
with its horns, sika deer kicking or kicking the other
body with its front foot, or before or after a fight

2.2. The Proposed Improved GFI-YOLOv8

YOLOv8 is the latest model in the YOLO series, based on the family of target de-
tection models introduced by Ultralytics [18]. These models are cutting-edge SOTA
(state-of-the-art) models in the field. In this paper, we propose an improved YOLOv8n-
based model for target detection of sika deer—the GFI-YOLOv8 model. The backbone
mainly consists of two modules, C2f_iAFF and AIFI, which extract features from the in-
put image, respectively. The C2f_iAFF module acquires rich gradient information while
ensuring lightweight design. The AIFI module utilizes the self-attention mechanism to
process high-level features in the image. The neck uses the feature pyramid network and
path aggregation network structure to enhance the feature fusion capability of the network
by combining features of different scales. The CSA module replaces the C2f module in the
head network, and the SPFPN module replaces the original pyramid network structure.
The modified model structure is illustrated in Figure 2.
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2.2.1. Modification of Backbone Network Structure

The bottleneck structure is commonly utilized in deep networks and was initially
introduced in ResNet. The C2f class is a key component in the YOLO algorithm. This class
is a neural network module inherited from nn.Module. In this article, we introduced the
iAFF module from the Attentional Feature Fusion paper to enhance the performance of the
sika deer posture recognition network. The structure of the iAFF module is illustrated in
Figure 3. The iAFF model addresses the bottleneck that may arise from the initial integration
of feature maps through iterative attention feature fusion. This approach enables the model
to achieve superior results even with fewer layers or parameters.
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The improved C2f-iAFF structure diagram is obtained, as shown in Figure 4. The
enhanced C2f module conducts feature extraction and transformation on the input data
through two convolutional layers (cv1 and cv2). It divides the input data into two branches,
where one branch is directly sent to the output, while the other branch goes through mul-
tiple bottleneck modules and the iAFF module for processing. This process boosts the
network’s nonlinear and representation capabilities. The C2f module achieves feature fu-
sion by combining features from different branches in the channel dimension, enhancing the
expressive power of features. These enhancements in the C2f-iAFF structure significantly
improve the model’s feature fusion ability, leading to notable performance enhancements
in the sika deer posture recognition task.
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We utilize the attention-based intra-scale feature interaction module (AIFI) in the
RT-DERT module to replace the original SPPF module. Large kernel convolutional neural
networks have garnered significant attention in recent years. They increase the size of the
convolution kernel to expand the receptive field, thereby enhancing the expressiveness of
the model. However, large kernel convolution faces two primary challenges in practical
applications: one is the substantial computational load, and the other is the potential
introduction of redundant information. To address these issues, we incorporate the AIFI
(attention-based intra-scale feature interaction) module in the RT-DETR model, which,
along with the cross-scale feature fusion module (CCFM) based on CNN, forms the encoder
section of the model. The core structure of the AIFI model is illustrated in the figure. The
main model structure of AIFI is shown in Figure 5.
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The AIFI module utilizes the self-attention mechanism to handle high-level features in
the image. Self-attention is a mechanism that enables the model to consider other pertinent
parts of the data while processing a specific part. This approach is especially apt for
processing high-level image features with abundant semantic information. Recognizing
that the high-level feature layer embodies richer semantic concepts, it can better capture
the relationships between conceptual entities in the image. Simultaneously, it mitigates
the deficiency of essential semantic depth in low-level features, which could result in data
processing redundancy and ambiguity.

2.2.2. Improved Convolutional Neural Network Module and Attention Mechanism Module
EMCA Module

We have developed a new, efficient multi-scale fusion attention mechanism that
combines the spatial attention branch with the channel attention branch. The input data are
standardized and processed through this mechanism, followed by passing them through
the convolution layer and activation function using the channel attention mechanism.
Downsampling is employed to emphasize or diminish features while maintaining high
resolution within the module to mitigate the potential loss of high-resolution information
in deep neural networks. We have designed EMCA to fully collapse the feature layer in one
dimension, and, ultimately, convert the integrated data into the required output model size
through the convolution layer and activation function in the same dimension. Its structure
is shown in Figure 6.

In contrast, the multi-scale spatial attention mechanism in universities requires the
input data to pass through two distinct branches via the pooling layer. Subsequently, the
data go through upsampling and convolution layers multiple times to acquire the necessary
weights and output results. This process increases the data volume for the weights and
output results. Consequently, a channel attention mechanism is incorporated, and a reverse
residual block is added to transmit the output result back to the 1 × 1 convolution layer,
thereby reducing the data volume.

We rethink Inverted Residual Block in MobileNetv2 [19] with core modules in Trans-
former [20], and inductively abstract a general Meta Mobile Block (MMB) in Figure 7,
which takes parametric arguments expansion ratio λ and efficient operator F to instantiate
different modules.



Animals 2024, 14, 2640 7 of 17

Animals 2024, 14, x FOR PEER REVIEW 7 of 19 
 

resolution information in deep neural networks. We have designed EMCA to fully 
collapse the feature layer in one dimension, and, ultimately, convert the integrated data 
into the required output model size through the convolution layer and activation function 
in the same dimension. Its structure is shown in Figure 6. 

Groups

X Avg Pool Y Avg Pool Conv(3*3)

Concat + Conv(1*1)

C*H*W

C//G*H*W

C//G*1*W
C//G*H*WC//G*H*1

C//G*1*(W+H)

Sigmoid Sigmoid

C//G*1*W C//G*H*1

Re-weight

Iutput

 Avg Pool

 Avg PoolGroupNorm

Softmax

Softmax

Sigmoid

Re-weight

Matmul

Matmul

+

C//G*H*W

C//G*H*WC//G*1*1

C//G*H*W

1 x C//G

1 x H x W

(b) EMA

(c)  SE

Residual Residual

X

+

X

Global pooling

FC

ReLU

FC

Sigmoid

Scale

+

 
ResNet Module

H x W x C

H x W x C

H x W x C

SE-ResNet Module

(d) EMO

Sec（3，3）x 
N1

Sec（3，3）x 
N2

Sec（3，3）x 
N3

Sec（3，3）x 
N4

4x 8x 16x 32x

(a) EMCA

Input Normalizion EMA +

Conv ReLU SE

OutputConv ReLU EMO

 
Figure 6. (a) is the overall structure module of EMCA, (b) is a structural diagram of an efficient 
multi-scale attention module for cross-spatial learning, (c) is the channel attention mechanism 
module, and (d) is the downstream task of the reverse residual struct. 

In contrast, the multi-scale spatial attention mechanism in universities requires the 
input data to pass through two distinct branches via the pooling layer. Subsequently, the 
data go through upsampling and convolution layers multiple times to acquire the 
necessary weights and output results. This process increases the data volume for the 
weights and output results. Consequently, a channel attention mechanism is incorporated, 
and a reverse residual block is added to transmit the output result back to the 1 × 1 
convolution layer, thereby reducing the data volume. 

We rethink Inverted Residual Block in MobileNetv2 [19] with core modules in 
Transformer [20], and inductively abstract a general Meta Mobile Block (MMB) in Figure 
7, which takes parametric arguments expansion ratio λ and efficient operator F to 
instantiate different modules. 

Figure 6. (a) is the overall structure module of EMCA, (b) is a structural diagram of an efficient
multi-scale attention module for cross-spatial learning, (c) is the channel attention mechanism module,
and (d) is the downstream task of the reverse residual struct.

Animals 2024, 14, x FOR PEER REVIEW 8 of 19 
 

1×1 Conv 

1×1 Conv

Γ 

λ

+

Meta Mobile Block  
Figure 7. MMB structure diagram. 

Taking the image input 𝛸(𝛸 ∈ 𝑅𝐶 × 𝐻 ×𝑊) as an example, MMB first expands the 
channel dimension using the extended MLP with an output/input ratio equal to λ. 𝑋௘ = 𝑀𝐿𝑃௘(𝑋)൫∈ 𝑅ఒ஼×ு×ௐ൯ (1)

Finally, a shrinking MLP with an inverse input-to-output ratio equal to λ is used to 
reduce the channel size. 𝑋௙ = Γ𝑃௘(𝑋)൫∈ 𝑅ఒ஼×ு×ௐ൯ (2)

The residual connection is used to obtain the final output. 𝑌 = 𝑋 + 𝑋௙൫∈ 𝑅ఒ஼×ு×ௐ൯ 
Normalization and activation functions are omitted for clarity. 

EMCA maintains the highest resolution within the module in both channel and 
spatial dimensions. In the multi-scale fusion attention mechanism, a reverse residual is 
added to the last input feature layer at the university to create an efficient model akin to 
ResNet [21] for downstream tasks, thereby reducing data transmission time. 

CSA Module 
Convolutional neural networks have enabled state-of-the-art methods to achieve 

incredible results on computer vision tasks such as object detection. In this paper, we 
introduce the Cross Stage Partial Network (CSP-Net) to alleviate the problem of previous 
works requiring large amounts of inference computation from a network architecture 
perspective [22]. CSP-Darknet is a convolutional neural network and object detection 
backbone developed in 202022. The architecture uses a series of CSP blocks with an 
increasing number of layers; the output of each block is concatenated with the output of 
the corresponding block in the previous stage. This allows the network to learn both fine 
and coarse features of the input. The final output is obtained by applying a convolutional 
layer to the feature map generated by the last CSP block. Based on this, we propose a new 
convolutional neural network module (CSA), as shown in Figure 8. 

Figure 7. MMB structure diagram.

Taking the image input X(X ∈ RC × H × W) as an example, MMB first expands the
channel dimension using the extended MLP with an output/input ratio equal to λ.

Xe = MLPe(X)
(
∈ RλC×H×W

)
(1)

Finally, a shrinking MLP with an inverse input-to-output ratio equal to λ is used to
reduce the channel size.

X f = ΓPe(X)
(
∈ RλC×H×W

)
(2)
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The residual connection is used to obtain the final output. Y = X + X f
(
∈ RλC×H×W)

Normalization and activation functions are omitted for clarity.
EMCA maintains the highest resolution within the module in both channel and spatial

dimensions. In the multi-scale fusion attention mechanism, a reverse residual is added to
the last input feature layer at the university to create an efficient model akin to ResNet [21]
for downstream tasks, thereby reducing data transmission time.

CSA Module

Convolutional neural networks have enabled state-of-the-art methods to achieve
incredible results on computer vision tasks such as object detection. In this paper, we
introduce the Cross Stage Partial Network (CSP-Net) to alleviate the problem of previous
works requiring large amounts of inference computation from a network architecture
perspective [22]. CSP-Darknet is a convolutional neural network and object detection
backbone developed in 202022. The architecture uses a series of CSP blocks with an
increasing number of layers; the output of each block is concatenated with the output of
the corresponding block in the previous stage. This allows the network to learn both fine
and coarse features of the input. The final output is obtained by applying a convolutional
layer to the feature map generated by the last CSP block. Based on this, we propose a new
convolutional neural network module (CSA), as shown in Figure 8.
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(c) is the CSA module structure.

The CSA module inherits and develops the Cross Stage Partial Network design concept
of CSP-Net, achieving enhanced sensitivity to gradient changes by integrating feature maps
in multiple stages of the network. Optimizing the flow of gradients also helps maintain
the richness and diversity of information in the deep layers of the network, significantly
improving the efficiency and accuracy of feature extraction. During data transmission, the
input features are divided into two channels, namely, y1 and y2. Each residual block in the
network is followed by an EMA module [23]. The number of channels is then restored to the
original data throughput through SPP, up-sampling, and down-sampling. The final merging
branch passes the input features through an EMCA module and then outputs the obtained
feature data through a 1 × 1 convolution. The EMA module enhances the smoothness
of feature representation by applying exponentially weighted averaging on feature maps,
reducing noise, and retaining important feature information. The EMCA module is the
core part of CSA, further enhancing the depth and diversity of feature extraction through
an improved multi-branch structure. CSA can effectively capture key information in the
image, achieving more accurate feature representation of small texture features or the
overall image structure. Additionally, this cross-stage feature integration helps reduce
overfitting during network training as feature maps at different stages complement each
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other, providing a more comprehensive feature description and enhancing the model’s
generalization ability.

2.2.3. Improved Detection Head Derect Module: SPFPN

In order to enhance the accuracy of sika deer posture recognition, we have introduced
an improved feature pyramid network module named Spatially Aware Feature Pyramid
Network (SPFPN). Unlike the traditional FPN [24–26], SPFPN adjusts the weights of feature
maps of various scales adaptively by incorporating a high-level multi-scale fusion attention
mechanism, enabling a more efficient capture of the spatial information of the target.
SPFPN comprises multiple parallel feature extraction layers, each designed to enhance
feature representation through a self-focused module. It employs strategic up-sampling
and down-sampling techniques to facilitate the efficient fusion of features across various
scales while preserving high resolution. Additionally, the concept of asymptotic fusion is
implemented to ensure that features from different levels progressively converge during
the fusion process, thereby minimizing the semantic gap between them. The proposed
SPFPN architecture is shown in Figure 9.
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Because the feature scales corresponding to the feature maps within the same feature
layer exhibit a significant semantic gap—particularly due to the differing weights of parallel
scale feature maps—direct fusion can result in a substantial semantic disparity. To address
this issue, we have designed the structure of the Scale-Pyramid Feature Pyramid Network
(SPFPN) to be asymptotic and have integrated advanced multi-location fusion attention
mechanisms. This allows for the fusion of parallel feature mappings, enabling feature
transmission to achieve cross-space interaction. Consequently, this structure facilitates a
closer integration of semantic features across different levels.

3. Experimental Results and Analysis
3.1. Evaluation Indicators

We evaluated the performance on the sika deer test images using precision, recall,
AP50, mAP50, number of parameters, and GFLOPs. In object detection, TP represents the
number of correctly identified object boxes, FP represents the number of incorrectly identi-
fied object boxes, and FN is the number of missed object boxes, calculated by subtracting
TP from the total number of object boxes. The default value of mAP50 is set to mAP50-95,
representing the average mAP50, with a step increment of 0.05. The calculation formula is
as follows:

P =
TP

TP + FP
(3)

R =
TP

TP + FN
(4)
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AP =
∫ 1

0
P(r)dr (5)

mAP =
∑N

I=1 APi
N

(6)

According to the log file, we can plot the curve depicting changes in the evaluation
indices as the number of training epochs increases during the training process, as illustrated
in Figure 10. The graph below displays the accuracy (Precision), recall (Recall), mAP50, and
mAP50-95 of the GFI-YOLOv8 model utilized for sika deer posture recognition detection
over 100 training rounds. The value of each evaluation index gradually stabilizes starting
from the 95th round.
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3.2. Experimental Details

This study uses the same equipment for experiments, and the model is based on the
PyTorch deep learning framework and developed in the Anaconda environment. Table 2
shows the main experimental equipment environment configuration. The experimental
hyperparameters are set as follows: the number of iterations is 100, the batch size is 32, the
optimizer is SGD, the initial learning rate is 0.01, the learning rate momentum is 0.937, the
weight attenuation coefficient is 0.0005, and the model is trained using one GPU.

Table 2. Experimental environment configuration.

Environment Configuration Parameter

Operating system Windows10
CPU Intel(R) Core(TM) i9-10920X CPU @ 3.50GHz
GPU NVIDIA GeForce RTX 3080
Development environment PyCharm 2023.2.5
Language Python 3.9.6
Framework PyTorch 2.0.1
Operating platform CUDA 11.8
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3.2.1. Comparative Experiments of Different Attention Mechanisms

This paper utilizes the YOLOv8n network as the foundational model and evalu-
ates its performance using accuracy (Precision), recall rate (Recall), average precision
(mAP), parameter quantity (Params), and floating-point operation number (GFLOPs) as
key indicators. The study compares the performance of YOLOv8n, YOLOv8n-iRMB [27],
YOLOv8n-EMA, YOLOv8-SE [28], and YOLOv8n-EMCA. The experimental results are
shown in Table 3. After comparison, the EMCA structure is obviously superior to the other
three attention mechanisms in precision, recall rate, and mAP50-95. The EMCA module
demonstrates superior results in this experiment.

Table 3. Comparison of different attention mechanisms.

Methods Precision (%) Recall (%) mAP50 (%) mAP50-95 (%) Para (M) GFLOPs

YOLOv8n 85.6 81.6 85.6 65 30.06 8.1
EMA 90.5 80.4 89.2 66.8 30.06 8.1
iRMB 90.3 85.2 90.1 67 33.56 8.3
SE 88.7 83.4 86.4 67.8 31.45 8.3
EMCA 91.3 85.4 84.6 68.8 30.51 8.4

3.2.2. Comparison of Different Feature Extraction Backbone Networks in Head Networks

In order to evaluate the performance of the best head backbone network, CSA is
compared with YOLOv8, YOLOv8_CSPS, CSPS_EMA, and CSPS_iRMB. The experimental
results are shown in Table 4. It shows that CSA is significantly higher than other modules
in both precision and recall. CSA only achieved 86.5% accuracy in mAP50, which did
not exceed the other three modules; however, its mAP50-95 was higher than the other
four modules. Therefore, the CSA module was selected to enhance the structure of the
head network.

Table 4. Comparison of different feature extraction backbone networks in head networks.

Methods Precision (%) Recall (%) mAP50 (%) mAP50-95(%) Para (M) GFLOPs

YOLOv8n 85.6 81.6 85.6 65 30.06 8.1
YOLOv8n + CSPS 90.1 84.1 90.3 67.8 29.83 8.1
CSPS + EMA 89.3 84.2 89.6 67.3 29.91 8.2
CSPS + iRMB 85.1 84.6 88.5 67.4 32.79 8.9
CSA 90.3 86.4 86.5 68.5 33.54 8.1

3.2.3. Comparison of Different Improved C2f Networks

In order to compare the experimental results of the improved C2f module, we con-
ducted the following comparative experiments. We added EMA, iRMB, AKConv [29],
Faster_block, EMCA, and iAFF modules, respectively. The experimental results are shown
in Table 5. It shows that C2f-iAFF structure has the highest mAP50-95, Recall (R), and
mAP50. The improved structures based on the C2f-iAFF framework also demonstrate
good performance.

Table 5. Comparison of different improved C2f networks.

Methods Precision (%) Recall (%) mAP50 (%) mAP50-95 (%) Para (M) GFLOPs

C2f_EMA 87.3 81.8 86.3 62.7 29.91 8.1
C2f_iRMB 84.2 83.1 86.3 63.6 29.83 8.1
C2f_AKConv 86.1 80.4 85.6 65.4 23.67 8.2
C2f_Faster 83.5 81.9 86.8 62.7 32.79 8.0
C2f_EMCA 87.8 81.7 87.5 64.7 33.54 8.1
C2f_iAFF 88.7 83.4 89.8 66.2 30.52 8.1
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3.3. Ablation Experiment

Through the experimental comparison of different modules, it is concluded that
this study introduces an iterative attention mechanism in the C2f module to form a new
C2f_iAFF module based on YOLOv8n. It replaces the original SPPF module with an
attention-based internal scale feature interaction module (AIFI). Simultaneously, a new
convolutional neural network structure (CSA) is proposed, and the original detection head
is replaced by the SPFPN module. Finally, the feature extraction ability and reasoning
speed of the model are enhanced. To study the various improved modules introduced
in the model recognition results, the variable control method is used to design ablation
experiments to obtain different improved models. Then, the improved model is trained
using the same training method. The experimental results are shown in Table 6. It can be
intuitively seen from the table that in addition to the recall rate, our improved module has
the best effect in terms of precision, mAP50, and mAP50-95.

Table 6. Ablation experiment.

NO. C2f_iAFF AIFI CSA SPFPN Precision (%) Recall (%) mAP50 (%) mAP50-95 (%) Para (M) GFLOPs

1
√

88.7 83.4 89.8 66.2 30.52 8.1
2

√
89.1 83.4 89.6 67.6 31.2 8.4

3
√

90.3 86.4 86.5 68.5 33.54 8.1
4

√
87.6 82.6 83.1 65.1 8.8 30.5

5
√ √

88.4 83.7 84.7 64.8 8.4 29.7
6

√ √ √
89.8 83.4 88.5 66.1 8.9 32.7

7
√ √ √

90.9 84.0 87.4 65.6 19.6 48.8
8

√ √ √ √
91.6 82.4 91.1 68.3 51.74 20.3

Comparative Experiments on the Performance of Different Network Models

In order to evaluate the posture recognition capabilities of the enhanced model pre-
sented in this paper, we compared it with current mainstream detection models under iden-
tical conditions: YOLOv5n, YOLOv7-tiny, YOLOv8n, YOLOv8, YOLOv9, and YOLOv10
benchmark models. Detailed experimental results are provided in Table 7. As indicated in
Table 7, the GFI-YOLOv8 model proposed in this study was assessed using self-constructed
datasets. In terms of precision (P), mean average precision (mAP), and other evaluation
metrics, it outperforms the mainstream models YOLOv5, YOLOv7-tiny [30], YOLOv8n,
YOLOv8, YOLOv9 [31], and YOLOv10 [32], although it falls short of YOLOv9 in recall
rate. However, precision and parameter count are superior to those of YOLOv9. Despite
the incorporation of new modules, the model remains competitive with existing models
regarding parameter count (Params) and floating-point operations (GFLOPs), demonstrat-
ing superior performance and generalization compared to all models except YOLOv10,
YOLOv5n, and YOLOv8n. Under the same experimental conditions, the enhanced algo-
rithm proposed in this study achieves higher recognition accuracy for sika deer posture
recognition, with the mAP50 and mAP50-95 values also being the highest. This study
demonstrates that the enhanced algorithm model exhibits excellent adaptability while
maintaining high accuracy, particularly in meeting the requirements of sika deer breeding.

Table 7. Comparison results of different network models for deer posture detection.

Methods Precision (%) Recall (%) mAP50 (%) mAP50-95 (%) Para (M) GFLOPs

YOLOv5n 85.2 79.4 85.2 52.9 17.64 4.1
YOLOv7-tiny 64.3 66.5 66.7 33 60.22 13.2
YOLOv8n 85.6 81.6 86.5 65 30.06 8.1
YOLOv8s 89.9 83 89.5 67.4 111.27 28.4
YOLOv9 88.4 85.9 86.4 67.9 96.01 38.7
YOLOv10 85.9 79.8 87.4 63 26.95 8.2
GFI-YOLOv8n (Ours) 91.6 82.4 91.1 68.3 51.74 20.3
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In order to more intuitively demonstrate the advantages of this model, we evaluate the
precision (P), recall (R), mAP50 (%) and mAP50-95 (%), model size (Params), and floating-
point operations (GFLOPs). The performance comparison of seven different algorithms is
shown in Figures 11–13.
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3.4. Heat Map Visualization Analysis

We have better demonstrated the better adaptability of this model through some visual
analysis. The figure below is a comparison of YOLOv8n and my model (GFI-YOLOv8)
using heat maps. Heat maps usually use gradient colors to represent the size of data
values [33]. The color changes from light to dark, or from one color to another, to show
the low value to high value of the data. The change in color can be likened to the change
in temperature, where colder colors (such as blue or green) represent lower values and
warmer colors (such as red or yellow) represent higher values. As shown in Figure 14, it can
be seen that the heat map image displayed by our model is more effective, which can better
cover the recognized graphics, and the depth of the color can represent the confidence of
the recognition.
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4. Discussion

In this study, GFI-YOLOv8 has effectively addressed the previous research gap in the
field of long-distance, non-contact attitude recognition of sika deer. Research on sika deer
pose recognition provides breeders with a valuable tool to accurately assess their breeding
status and enables comprehensive monitoring of changes in sika deer poses over time.
With this technology, farmers can analyze the breeding status of sika deer with greater
precision and monitor their behavior and health in real time, thereby optimizing breeding
management. This demonstrates that our approach has significant potential for widespread
application and value.

The design concept of the GFI-YOLOv8 model is mainly reflected in three aspects.
Firstly, we introduce C2f_iAFF and AIFI models to enhance the integration ability of multi-
scale features. These models use an iterative attention mechanism to continuously process
data features at different levels to improve the fusion effect of features at different scales.
This design effectively solves the defects of the original model in extracting target edge
and texture information, thus improving the accuracy of target detection. Secondly, to
enhance the depth and diversity of feature extraction, we developed the CSA module.
This module is based on the Convolutional Neural Network (CSP) and EMCA module as
the core. The EMCA module divides the input feature map into two parts and uses an
efficient multi-scale fusion attention mechanism to deeply analyze the interrelationships
between different features. This spatial analysis captures the relative position relationship
between the global context information and the feature map effectively. Finally, to integrate
features from different modules more efficiently, we designed a new detection head module.
By integrating an efficient multi-scale fusion attention mechanism, SPFPN can adjust the
weights of different scale feature maps adaptively, capturing the spatial information of
the target more accurately. This method avoids the information redundancy that may be
caused by simple feature concatenation in the original model, further improving the overall
performance of the model.

Although the model proposed in this paper achieves accuracy and speed in deer
target detection, it also has limitations. Due to the computing requirements of the kernel,
the size of the model increases, especially in resource-constrained environments, which
may make it difficult to adapt the model to all server devices. When the model processes
deer images with severe occlusion, the feature information is lost due to occlusion, or
the model’s generalization ability is insufficient. In future research, we will strive to
enhance the accuracy of occluded object detection. Simultaneously, we will optimize
the model structure, and reduce the calculation amount and model size to improve the
adaptability and deployment efficiency of the model on various devices. In the future,
we will explore the model’s performance in more complex environments, enhance its
robustness and predictability, and integrate it with other deep learning techniques and
optimization methods to further reduce the total cost of model computation and enhance
real-time processing power.

5. Conclusions

This paper proposes an enhanced model GFI-YOLOv8 based on YOLOv8, specifically
optimized for sika deer posture recognition. The paper suggests the C2f module should
be replaced with the C2f_iAFF module. The module’s capacity for data generalization
has been strengthened, leading to an improvement in accuracy rates. The AIFI module
replaces the SPPF module and focuses on processing high-level image features through
a self-attention mechanism, which enhances the detection of high-level image features.
The designed CSA module enhances the depth and diversity of feature extraction through
the reverse residual structure of the core part of EMCA, addressing the issue of overly
large models caused by multi-level data input. The original YOLOv8 detection head is
replaced with the DETECT-SAFPN detection head, and the SPFPN optimized feature
pyramid network is introduced. By expanding the data input method from single-branch
to multi-branch input, the receptive field is increased, enhancing the accuracy of sika deer
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posture recognition target detection. While enhancing the accuracy of sika deer posture
recognition, GFI-YOLOv8 also maintains high detection speed and low computational
cost. The experimental results demonstrate that GFI-YOLOv8 performs well on the self-
built sika deer dataset, achieving an accuracy of 91.6% and a mAP50 improvement of
4.6%. Compared to other models in the YOLO series, it offers comprehensive performance
advantages in terms of parameter volume, GFLOPs, detection speed, and accuracy. Our
work provides a meaningful exploration for the accurate identification of sika deer poses.
In our future work, we aim to further enhance dataset richness, model performance, and
system functionality.
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