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Abstract: Background: Gliomas, including the most severe form known as glioblastomas, are
primary brain tumors arising from glial cells, with significant impact on adults, particularly men
aged 45 to 70. Recent advancements in the WHO (World Health Organization) classification now
correlate genetic markers with glioma phenotypes, enhancing diagnostic precision and therapeutic
strategies. Aims and Methods: This scoping review aims to evaluate the current state of deep
learning (DL) applications in the genetic characterization of adult gliomas, addressing the potential
of these technologies for a reliable virtual biopsy. Results: We reviewed 17 studies, analyzing
the evolution of DL algorithms from fully convolutional networks to more advanced architectures
(ResNet and DenseNet). The methods involved various validation techniques, including k-fold cross-
validation and external dataset validation. Conclusions: Our findings highlight significant variability
in reported performance, largely due to small, homogeneous datasets and inconsistent validation
methods. Despite promising results, particularly in predicting individual genetic traits, the lack of
robust external validation limits the generalizability of these models. Future efforts should focus on
developing larger, more diverse datasets and integrating multidisciplinary collaboration to enhance
model reliability. This review underscores the potential of DL in advancing glioma characterization,
paving the way for more precise, non-invasive diagnostic tools. The development of a robust
algorithm capable of predicting the somatic genetics of gliomas or glioblastomas could accelerate the
diagnostic process and inform therapeutic decisions more quickly, while maintaining the same level
of accuracy as the traditional diagnostic pathway, which involves invasive tumor biopsies.

Keywords: adult gliomas; adult glioblastomas; MRI; deep learning; radiogenomics; virtual biopsy;
scoping review

1. Introduction

The brain is primarily composed of neurons, which are responsible for processing
information, and glial cells, which provide structural and functional support. Glial cells
account for at least 50% to 90% of the brain’s composition [1]. Among them, astrocytes play
a critical role in supplying nutrients to neurons, managing interneuronal connections, and
regulating processes such as memory, movement, and odor processing [2].
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Gliomas are tumors that develop from these glial cells in the brain or spinal cord.
Most brain tumors originate in the cerebral hemispheres, particularly in the white matter,
which contains a dense network of axons (projections from neurons) surrounded by glial
cells. However, gliomas can occur throughout the central nervous system. They are the
most common type of brain tumor in children, adolescents, and adults, and are the most
prevalent form of primary (i.e., non-metastatic) brain tumor in adults. The most severe
form of glioma is glioblastoma, which is also the most common central nervous system
tumor in the U.S. population, accounting for 14.2% of all tumors and 50.1% of all malignant
tumors. In 2022, there were 13,272 new cases of glioblastoma in the United States, primarily
affecting adults and occurring more frequently in men than in women [3].

Over time, the World Health Organization (WHO) classifications have increasingly
incorporated correlations between a tumor’s genetic profile and its phenotype. This effort
culminated in the 2021 classification, which clearly distinguishes between childhood and
adult glial tumors [4]. Adult diffuse gliomas are now categorized into three classes: IDH1-
and IDH2-mutated oligodendrogliomas, which exhibit a 1p/19q codeletion (loss of the p
arm of chromosome 1 and the q arm of chromosome 19) and are associated with longer
survival, representing low-grade gliomas; IDH1- and IDH2-mutated diffuse astrocytomas,
which have a variable prognosis, ranging from low-grade to high-grade gliomas; and
glioblastomas, which lack IDH1 or IDH2 mutations but exhibit an activating mutation in the
TERT promoter (a telomere-building protein), EGFR amplification, and specific karyotypic
features. These glioblastomas are classified as high-grade gliomas and are associated
with the worst prognosis. Additionally, methylation of the MGMT gene, which encodes
the DNA repair enzyme O-6-methylguanine-DNA methyltransferase, is an important
factor in determining the efficacy of temozolomide chemotherapy. If the MGMT gene
is unmethylated, the cancer cells are capable of repairing the DNA damage induced by
temozolomide, reducing the drug’s effectiveness [5,6].

Magnetic resonance imaging (MRI) is considered the gold standard for detecting brain
tumors, whether discovered incidentally or as a result of neurological symptoms. MRI can
assess the extent of the disease and determine the feasibility of surgical resection. It also
guides stereotactic biopsy, the only method capable of providing histological and molecular
analyses to confirm the diagnosis and characterize the tumor. This histo-molecular charac-
terization is critical for optimal, patient-specific therapeutic management. However, biopsy
is not feasible for all patients, and there is a risk that the sampled area may not represent
the most severe or prognostically relevant region of the tumor. Additionally, biopsy is an
invasive procedure and carries inherent risks for the patient. Since 2012, the classification of
non-medical images has been revolutionized by deep learning (DL) algorithms, particularly
those utilizing convolutional neural networks (CNNs) [7]. This technology offers significant
potential for application in the genetic characterization of adult glial tumors, presenting
a compelling opportunity for non-invasive diagnostics. The development of a robust al-
gorithm capable of predicting the somatic genetics of gliomas or glioblastomas from MRI
could accelerate the diagnostic process and inform therapeutic decisions more quickly,
while maintaining the same level of accuracy as the traditional diagnostic pathway, which
involves invasive tumor biopsies. Furthermore, such an algorithm could provide valuable
genetic insights for patients’ ineligible for biopsy, offering a non-invasive alternative for
diagnosis and treatment planning.

The aim of our scoping review is to provide a comprehensive, state-of-the-art overview
of the use of DL algorithms in the genetic characterization of adult glial tumors. This
review will cover reported performance, potential limitations, datasets used (including
those available via open access), and future directions needed to advance the field toward
achieving a reliable and reproducible capacity for virtual biopsy.
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2. Materials and Methods

This scoping review was conducted with reference to the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, commonly used for
systematic reviews [8].

2.1. PICOs (Inclusion Criteria)

We defined the PICOs as follows. Population: adults with gliomas or glioblastomas.
Intervention: the development and use of AI models to predict somatic genetics from MRI.
Comparison: not applicable. Outcomes: the ability to predict genetic features, evaluated
using ROC curves. Our focus was on artificial intelligence models utilizing deep learning
(DL) technology, rather than traditional machine learning (ML) approaches.

2.2. Search Strategy

For our research strategy, we selected three databases: PubMed, Embase, and the
Cochrane Library. These databases were chosen for their focus on medical articles relevant
to our topic and the management of patients with gliomas. Although Google Scholar
was considered, it was not used due to the challenges associated with obtaining complete
bibliographic data through scraping methods. IEEE Xplore was also not included, despite
its potential relevance due to its coverage of computer science articles that may involve
the development of deep learning algorithms for genetic feature prediction. Notably, IEEE
Xplore references articles from the IEEE (the Institute of Electrical and Electronics Engineers)
and its partners that are often indexed in PubMed.

We established the following criteria for accessing articles: if an article could not be
accessed through OpenAccess or Shibboleth library access provided by our institution, it
was excluded. Preprints and articles written in languages other than English were also
excluded. For PubMed searches, we excluded all references that did not have full-text
availability. During the review writing process, we planned to re-query one database for
additional relevant articles, choosing PubMed for this second query for simplicity. (query
of each databases in Supplemental Material S1).

Any article known to us but not included in the search results was included in our
review at our discretion. Similarly, if an article cited by one of the query results met the
PICOs criteria but was not included in the initial search results, it was also included in
our review.

2.3. Data Extraction

Search results were compiled using Zotero, an open-access bibliographic tool, which
automatically excluded duplicates and irrelevant records. For data extraction, we used a
tabular file format (“.csv”).

3. Results

The flowchart of the review process is shown in Figure 1. The initial search was
conducted across three databases on 30 December 2023, and an additional search on
PubMed was performed on 1 June 2024, during the writing of the review. The results of
the 17 articles selected for this review are summarized in Table 1. Among these, three
articles employed algorithmic methodologies using DL strategies for the segmentation
and extraction of radiomic features, which were then processed by ML algorithms such as
Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), or Random Forest: S. Rathore
et al. [9], S. Kihira et al. [10], and S. Qureshi et al. [11].
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Figure 1. Flowchart of the review process from initial search to selected records.

Table 1. Summary of the 17 articles sorted by year of publication. SJR: Scimago Journal Ranking;
TCIA: The Cancer Imaging Archive; TCGA: The Cancer Genome Atlas; BrATS: Brain Automated
Tumors Segmentation; SNUH set: Seoul National University Hospital dataset.

Authors Year Journal SJR Pub.
Year Title

Number
of

Patients

Gliomas/
Glioblastomas/

Both

MRI
Modalities Dataset Algorithms

I. Levner
et al. [12] 2009

Medical Image
Computing

and Computer-
Assisted

Intervention

0.297

Predicting MGMT
Methylation Status of
Glioblastomas from

MRI Texture

59 Glioblastomas T1-Gd, T2,
T2-FLAIR Local CNN (2 layers)

P.
Eichinger
et al. [13]

2017 Scientific
Reports 1.533

Diffusion tensor image
features predict IDH
genotype in newly
diagnosed WHO

grade II/III gliomas

79 Gliomas T2-FLAIR TCIA N-net

P. Chang
et al. [14] 2018 AJNR Am J

Neuroradiol 1.543

Deep-Learning
Convolutional Neural
Networks Accurately

Classify Genetic
Mutations in Gliomas

259 Gliomas
T1w, T1-Gd,

T2w,
T2-FLAIR

TCIA,
TCGA CNN

S. Liang
et al. [15] 2018 Genes 1.592

Multimodal 3D
DenseNet for IDH

Genotype Prediction
in Gliomas

167 Both
T1w, T1-Gd,

T2w,
T2-FLAIR

BrATS-
2017,

TCGA
M3D-DenseNet

M. Hedye-
hzadeh

et al. [16]
2020

Journal of
Digital

Imaging
1.055

A Comparison of the
Efficiency of Using a

Deep CNN Approach
with Other Common
Regression Methods
for the Prediction of
EGFR Expression in

Glioblastoma Patients

166 Glioblastomas
T1w, T1-Gd,

T2w,
T2-FLAIR

TCIA,
TCGA CNN
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Table 1. Cont.

Authors Year Journal SJR Pub.
Year Title

Number
of

Patients

Gliomas/
Glioblastomas/

Both

MRI
Modalities Dataset Algorithms

Y. Matsui
et al. [17] 2020

Journal of
Neuro-

Oncology
1.256

Prediction of
lower-grade glioma
molecular subtypes
using deep learning

217 Gliomas

T1w, T2w,
T2-FLAIR,
Spectrome-

try, PET scan

Local ResNet into
CNN

B Kocak
et al. [18] 2020 European

Radiology 1.606

Radiogenomics of
lower-grade gliomas:

Machine
Learning-based MRI
texture analysis for
predicting 1p/19q
codeletion status

107 Gliomas T1w, T2w TCIA CNN against
ML algorithms

S Rathore
et al. [9] * 2020

Neuro-
Oncology
Advances

1.052

Multi-institutional
non-invasive in vivo
characterization of
IDH, 1p/19q, and

EGFRvIII in glioma
using neuro-Cancer
Imaging Phenomics

Toolkit (neuro-CaPTk)

473 Both

T1w, T1-Gd,
T2w,

T2-FLAIR,
DSC, DCE

Local,
TCIA,
TCGA

Neuro-CaPTK
(Cancer Imaging

Phenomics
Toolkit)

C. G. B. Yo-
gananda
et al. [19]

2021 AJNR Am J
Neuroradiol 1.34

MRI-Based
Deep-Learning

Method for
Determining Glioma

MGMT Promoter
Methylation Status

247 Gliomas T2w TCIA,
TCGA 3D-dense-Unets

Y. S. Choi
et al. [20] 2021 Neuro-

Oncology 3.097

Fully automated
hybrid approach to

predict the IDH
mutation status of
gliomas via deep

learning and
radiomics

856 Both T1w, T2w,
T2-FLAIR

Local,
SNUH set,

TCIA
CNN

I. Hraps, a
et al. [21] 2022 Medicina 0.59

External Validation of
a Convolutional

Neural Network for
IDH Mutation

Prediction

21 Glioblastomas T1w, T2w,
T2-FLAIR

Local,
TCIA,
TCGA

CHOI et al.’s
CNN [20]

E.
Calabrese
et al. [22]

2022
Neuro-

Oncology
Advances

1.052

Combining radiomics
and deep

convolutional neural
network features from
preoperative MRI for
predicting clinically

relevant genetic
biomarkers in
glioblastoma

400 Glioblastomas

T1w, T2w,
T2-FLAIR,
SWI, DWI,
ASL, MD,
AD, RD

Local CNN Limb

B.-H. Kim
et al. [23] 2022 Cancers 1.312

Validation of
MRI-Based Models to

Predict MGMT
Promoter Methylation

in Gliomas: BraTS
2021 Radiogenomics

Challenge

400
(+585) Both

T1w, T1-Gd,
T2w,

T2-FLAIR

Local,
SNUH set,

BrATS
2021

Efficient-Net,
squeeze-and-

excitation
networks,
SEResNet,

SEResNeXt,
DenseNet

S. Kihira
et al. [10] * 2022 Cancers 1.312

U-Net Based
Segmentation and
Characterization of

Gliomas

208 Both T2-FLAIR Local DenseNet121

H. Sakly
et al. [24] 2023

Cancer Control:
Journal of the
Moffitt Cancer

Center

0.698

Brain Tumor
Radiogenomic

Classification of O6-
Methylguanine-DNA

Methyltransferase
Promoter Methylation

in Malignant
Gliomas-Based

Transfer Learning

585 Glioblastomas
T1w, T1-Gd,

T2w,
T2-FLAIR

BrATS
2021

Alexnet,
Googlenet,

Resnet,
ImageNet, VGG,

DenseNet,
Xception, Incep-
tionV3Squeezenet
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Table 1. Cont.

Authors Year Journal SJR Pub.
Year Title

Number
of

Patients

Gliomas/
Glioblastomas/

Both

MRI
Modalities Dataset Algorithms

S. A.
Qureshi

et al. [11] *
2023 Scientific

Reports 0.9

Radiogenomic
classification for
MGMT promoter

methylation
status using

multi-omics-fused
feature space for least

invasive diagnosis
through mpMRI scans

585 Glioblastomas T1w, T1-Gd,
T2w

BrATS
2021

CNN for
segmentation
and extraction

feature but SVM
or k-NN for
classification

N. Saeed
et al. [25] 2023 Medical Image

Analysis 4.112

MGMT promoter
methylation status

prediction using MRI
scans. An extensive

experimental
evaluation of deep

learning models

585 Glioblastomas
T1w, T1-Gd,

T2w,
T2-FLAIR

BrATS
2021

ResNet,
DenseNet,

EfficientNEt

* Articles employing deep learning strategies did not advance to the genetic characterization of tumors.

3.1. Bibliographical and Descriptive Data on Publications

The 17 publications span from 2009 to 2023 (Figure 2a). For each publication, we
collected the Scimago Journal Rank (SJR) score for the year of publication, with a median of
1.312, a minimum of 0.297, and a maximum of 4.112. For comparison, the SJR scores in 2023
for major journals were as follows: Nature—18.509, Cell—24.342, and The New England
Journal of Medicine—20.544. Among medical imaging journals, Medical Image Analysis
had the highest SJR in 2023, with a score of 4.112.
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(a) (b) 

Figure 2. (a) Publications per year; (b) violin plot showing the number of patients used in algorithm
training and testing. The cross points correspond to 21 patients (I. Hraps, a et al. [21]) and 985 patients
(B.-H. Kim et al. [23]). x-axis: no unit, y-axis: number of patient.

The number of patients used to develop the algorithms ranged from 21 to 985 (Figure 2b).
However, I. Hraps, a et al. [21] presented replication work involving 21 patients without
retraining, based on the work of Y.S. Choi et al. [20]. In contrast, B.-H. Kim et al. [23] used up
to 985 patients, which were combined from the Seoul National University Hospital (SNUH)
dataset (400 patients) and the MICCAI BrATS 2021 dataset (585 patients). The algorithm
described in their study was initially trained on the 400 patients from the SNUH dataset.

Among the seventeen articles, seven used data from patients with glioblastomas,
five used data from patients with gliomas, and five used data from patients with both
glioblastomas and gliomas.
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The MRI sequences employed in these studies were primarily T2-weighted (T2w) and
T2 Fluid-Attenuated Inversion Recovery (T2-FLAIR) (Table 2).

Table 2. MRI sequences used in articles employing DL algorithms. T1w: T1-weighted; T1-Gd:
T1-weighted post-gadolinium contrast; T2w: T2-weighted; T2-FLAIR: T2 Fluid-Attenuated Inver-
sion Recovery.

MRI Sequence Number Percent

T1w 13 76%
T1-Gd 9 53%
T2w 14 82%

T2-FLAIR 14 82%
Spectrometry 1 6%

Other 3 18%

3.2. Deep-Learning Strategy

All the articles utilized algorithms that fit the definition of deep learning. Among
these, three employed DL algorithms, but the task of classifying tumors based on their
genetic characteristics was handled by a separate machine learning (ML) algorithm [2–4].

Of the 17 papers, 10 used CNNs with fully convolutional architectures. These CNNs
were applied either directly to the images, after automatic segmentation by a deep learning
algorithm with a specific architecture, or following manual segmentation.

The specific architectures mentioned included DenseNet, ResNet, and U-Net. One of
the studies explored transfer learning by adapting non-medical image classification models
for use in medical image classification (H. Sakly et al. 2023 [24]).

3.3. Tumor Genetics’ Explored

The articles primarily focused on predicting genetic or epigenetic abnormalities, includ-
ing the presence of IDH1/2 mutations, methylation of the MGMT promoter, over-expression
of EGFR, and the 1p/19q co-deletion (Table 3). Additionally, one study investigated the
prediction of tumor variations affecting PTEN, ATRX, TERT, CDKN2A/B, TP53, and chro-
mosomal rearrangements such as Trisomy 7 and Monosomy 10 [9].

Table 3. Genetic and epigenetic abnormalities explored in the studies.

Genetic Features Number Percent

IDH1/2 mutation 9 53%
MGMT methylation 9 53%

EGFR expression 3 18%
1p19q codeletion 4 24%

Other 1 6%

3.3.1. IDH Mutation Prediction

Based on the Area Under the Receiver Operating Characteristic (ROC) Curve (AUC),
the algorithm proposed by Y.S. Choi et al. [20] achieved the best performance with an
AUC of 0.96 (95% CI: 0.93–0.99) (Table 4). However, when this algorithm was replicated
on external data by I. Hraps, a et al. [21], the AUC was 0.74 (95% CI: 0.53–0.91), with a
sensitivity of 78% and a specificity of 75%. The first study included patients with both
gliomas and glioblastomas, while the second focused solely on glioblastoma patients.
One of the highest performances was reported by P. Eichinger et al. [13], who achieved
an AUC of 0.952 using 79 patients, compared to the 856 patients in the study by Y.S. Choi
et al. [20].
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Table 4. Prediction of IDH mutation presence. Includes AUC (Area Under the ROC Curve); 95%
confidence intervals (CI) are shown in brackets where available. NA: Not Available.

Tumors Type AUC (95% CI) Accuracy (%) Sensitivity (%) Specificity (%)

P. Eichinger et al. [13] Gliomas 0.952 0.95 NA NA
P. Chang et al. [14] Gliomas 0.91 (0.89–0.92) NA NA NA
S. Liang et al. [15] Both 0.857 84.6 78.5 88.0

Y. Matsui et al. [17] Gliomas NA 82.9 NA NA
S. Rathore et al. [9] Both 0.87 82.5 70.43 88.32
Y.S. Choi et al. [20] Both 0.96 (0.93–0.99) 93.8 NA NA
I. Hraps, a et al. [21] Glioblastomas 0.74 (0.53–0.91) 76 78 75

E. Calabrese et al. [22] Glioblastomas 0.96 (0.88–1) 84 100 83
S. Kihira et al. [10] Both 0.93 (0.90–0.97) NA 0.98 0.32

3.3.2. MGMT Promoter Methylation Prediction

The highest performance in predicting MGMT promoter methylation was achieved by
the algorithm of S.A. Qureshi et al. [11], with an AUC of 0.96 (95% CI: 0.94–0.98) (Table 5).
This performance was achieved using a deep learning approach for segmentation and
radiomics extraction, followed by classification with a Random Forest algorithm, which is
a machine learning strategy.

Table 5. Prediction of MGMT promoter methylation. AUC (Area Under the ROC Curve), 95%
confidence intervals (CI) are shown in brackets where available. NA: Not Available.

Tumor Type AUC (95% CI) Accuracy (%) Sensitivity (%)

I. Levner et al. [12] Glioblastomas NA 87.7 85.4
P. Chang et al. [14] Gliomas 0.81 (0.76–0.84) NA NA

C. G. B. Yogananda et al. [19] Gliomas 0.58 (0.4182–0.7422) 1 65.95 NA
E. Calabrese et al. [22] Glioblastomas 0.73 (0.65–0.81) 2 68 72
B.-H. Kim et al. [23] Both 0.517 (0.459–0.645) 51.9 NA
S. Kihira et al. [10] Both 0.62 (0.54–0.71) NA 0.45

H. Sakly et al. [24] 3 Glioblastomas NA NA NA
S. A. Qureshi et al. [11] Glioblastomas 0.96 (0.94–0.98) 4 96.94 96.31

N. Saeed et al. [25] Glioblastomas 0.631 (0.629–0.633) NA NA
1 Results of C. G. B. Yogananda et al. include erratum: https://doi.org/10.3174/ajnr.A7715. 2 Combined method
using CCN and Random Forest algorithm on radiomics feature achieved an AUC of 0.77 (95% CI: 0.63–0.91). 3 Did
not present results on one or more validation datasets. 4 Achieved best performance but utilized a final step of
ML classifier.

The second-best performance was achieved by P. Chang et al., with an AUC of 0.81
(95% CI: 0.76–0.84) [14]. Two studies reported AUCs with confidence intervals around
0.5, suggesting that their performance may be no better than chance [19,23]. I. Levner’s
2009 study [12],which utilized a small neural network based on MRI texture analysis,
achieved an accuracy of 87.7% for predicting MGMT promoter methylation. This study,
while innovative, is primarily a proof of concept due to its very small dataset. H. Sakly
et al. [24] explored transfer learning with image classification algorithms.

Additionally, the work by Saeed et al. [25] did not present the highest performance
(Table 5), but was notable for comparing several deep learning algorithm architectures.
Their study focused on understanding discrepancies in results from similar algorithms,
rather than solely developing the most robust model.

3.3.3. EGFR Amplification Prediction

In our review, only three articles attempted to predict EGFR amplification (overexpres-
sion) (Table 6). Among these, M. Hedyehzadeh et al. did not present results that could be
directly compared, but their deep learning strategy was able to statistically detect EGFR
amplification in glioblastomas [16].

https://doi.org/10.3174/ajnr.A7715
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Table 6. Prediction for EGFR amplification. AUC (Area under the ROC curve) and 95% confidence
interval (CI) are shown in brackets where available. NA: Not Available.

Tumor Type AUC (95% CI) Accuracy (%) Sensitivity (%) Specificity (%)

M. Hedyehzadeh et al. [16] 1 Glioblastomas NA NA NA NA
S. Rathore et al. [9] Both 0.80 2 86.74 84.91 87.5

E. Calabrese et al. [22] Glioblastomas 0.72 (0.64–0.80) 3 66 68 66
1 No metrics could be used as comparison. 2 Trained on 248 patients, with the maximum of 473 patients available
in the study. 3 Appeared less performant than the Random Forest classifier on radiomics (AUC = 0.77 [95% CI:
0.67–0.87]) and combined classifier (AUC = 0.80 [95% CI: 0.74–0.86]).

Of the remaining two studies, S. Rathore et al. achieved slightly better results, although
their final classifier was a Random Forest algorithm rather than a deep learning approach [9].
Similarly, E. Calabrese et al. reported better performance with their Random Forest classifier
compared to their CNN classifier [22].

3.3.4. Chromosome 1p19q Co-Deletion Prediction

The algorithm with the best performance for predicting 1p/19q co-deletion status
was proposed by P. Chang et al. [14] (Table 7). Among the four articles addressing this
prediction, B. Kocak et al. [18] tested a CNN and various ML algorithms (k-NN, Random
Forest, SVM, etc.) on the same dataset, with the CNN yielding better results than the
other methods.

Table 7. Prediction for co-deletion of chromosomes 1p and 19q. AUC (Area Under the ROC Curve)
and 95% confidence interval (CI) are shown in brackets where available. NA: Not Available.

Tumor Type AUC (95% CI) Accuracy (%) Sensitivity (%) Specificity (%)

P. Chang et al. [14] Gliomas 0.88 (0.85–0.90) NA NA NA
Y. Matsui et al. [17] Gliomas 1 NA 75.1 NA NA
B. Kocak et al. [18] Gliomas 0.869 (0.751–0.987) 2 83.8 87.5 75.8
S. Rathore et al. [9] Both 0.79 3 75.15 81.49 73.96

1 Presented patients with IDH wild-type gliomas, which have been classified as glioblastomas since 2021. 2 Both
the CNN and ML algorithms trained on the same dataset. 3 Trained on 192 patients, with a maximum of
473 patients available in the study.

4. Discussion
4.1. Evolution of Publications

A chronological analysis of the publications reveals a significant gap between the initial
study in 2009 and the subsequent surge in research starting from 2017. Several factors may
account for this hiatus. In 2009, glioma and glioblastoma classification was primarily based
on histological criteria, with limited integration of genetic characteristics into therapeutic
decision-making. At that time, the methylation status of the MGMT promoter was the
primary genetic factor influencing chemotherapy choices.

I. Levner et al. [12] conducted a proof-of-concept study in 2009 using a two-layer
CNN to predict MGMT promoter methylation with 87% accuracy on a training dataset.
It was not until 2017 that more sophisticated research emerged, incorporating advanced
CNN architectures such as ResNet and DenseNet. This shift reflects advancements in
DL technologies and the increasing importance of genetic factors in glioma classification
and treatment.

4.2. Deep Learning Algorithms

The neural network architectures employed in the studies reviewed have evolved sig-
nificantly over time. Early studies utilized Fully Convolutional Neural Networks (FCNNs).
Later, more advanced architectures such as ResNet, DenseNet, and U-Net were introduced.
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Some researchers also explored transfer learning using models like AlexNet, GoogleNet,
and InceptionV2 [24].

The use of DL algorithms for the genetic characterization of glial tumors from medical
imaging is well justified by the extensive application of these algorithms in computer vision
tasks. Deep learning has become a cornerstone in the classification and analysis of com-
mon objects, providing highly detailed and nuanced representations through distributed
parameterization. These DL algorithms can capture complex patterns in imaging data that
traditional methods might miss. While some studies indicate that traditional ML methods
may outperform DL strategies in predicting specific genetic characteristics (S. Rathore
et al. [9] or S. A. Qureshi et al. [11]), the key question is not whether ML is superior to
DL, but rather under which conditions and architectural configurations DL algorithms
will fully surpass ML approaches for this task. The focus should be on identifying the
optimal DL architectures and settings that can achieve superior performance in genetic
characterization, rather than comparing DL and ML as broad categories.

However, there was considerable variation in the validation methods used across
studies. While some studies employed a classic train–test split, others used k-fold cross-
validation with varying k-values (3, 4, or 5) or Leave-One-Out Cross-Validation (LOOCV)
for small sample sizes. External validation on independent datasets was notably infrequent,
which could be a significant limitation.

Notably, Y. S. Choi et al. conducted an external validation of both the TCIA and
SNUH datasets [20]. Their study revealed significantly poorer results on the TCIA dataset
compared to the SNUH dataset, which showed comparable results. This disparity may
be attributed to differences in patient management and imaging protocols between Seoul
and the institutions contributing to the TCIA dataset. The consistency in management and
imaging modalities, as well as histological and molecular studies, within the SNUH dataset
could explain the better performance on this dataset.

4.3. Performance and Reproducibility

Algorithms with very high AUCs (close to 1) raise questions about their generalizabil-
ity. A publication by N. Saeed et al. [25] explored this issue, highlighting that the limited
size of datasets and inadequate validation methods can artificially inflate performance.
Most studies are based on a single dataset, thus limiting the reproducibility of results.

The reproducibility of these algorithms, based on this literature review, is largely
questionable. Many studies report exceptional performance metrics, however, these results
often derive from specific datasets with limited external validation. The lack of robust
testing across diverse datasets and clinical settings raises concerns about the reliability
of these algorithms in real-world healthcare applications. For these deep-learning mod-
els to be applicable in clinical practice, it is imperative to enhance their robustness and
generalizability. Future research must focus on improving the validation processes and
expanding datasets to ensure that these algorithms can consistently perform well across
various populations and imaging conditions. Only through such advancements can we
hope to make these algorithms reliably exploitable in healthcare settings.

Although some attempts have been made to predict multiple genetic traits within
a single model, results are often presented individually for each trait. This suggests a
juxtaposition of classifiers rather than an integrated model capable of distributed prediction
in a multidimensional space.

4.4. Limitations and Challenges

The main limitations identified include the limited size and homogeneity of datasets.
With fewer than 1000 patients, these datasets may not capture the full variability needed
for robust model training, particularly given that a single DICOM MRI scan can yield up
to 1000 radiomics parameters. Additionally, the frequent lack of well-defined external
validation datasets undermines the assessment of algorithm reliability and reproducibility,
which are crucial for ensuring model generalizability.
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An important area for improvement is the integration of an explanatory dimension
into algorithm development. This would facilitate a better understanding of algorithm
limitations and biases, which is crucial for ensuring medical liability. Without such trans-
parency, the deployment of these algorithms in clinical settings could face significant legal
and regulatory challenges, potentially hindering their future use in healthcare.

Furthermore, addressing the genetic heterogeneity of tumors presents a significant
challenge. The current datasets are inadequate for this purpose; therefore, there is a
need to develop datasets incorporating three-dimensional information from biopsy areas,
potentially in the form of a three-dimensional biopsy probability field.

Another challenge is the variability between datasets, as exemplified by differences
in results between the TCIA and SNUH datasets reported by Y. S. Choi et al. [20]. The
lack of standardized guidelines for MRI assessment of brain tumors—such as sequence
types and field strength (3 T versus 1.5 T)—and the variability in genetic data acquisition
and analysis due to factors like neurosurgical expertise, histological study, and molecular
biology methods further complicate the situation.

To advance this field, it is crucial to foster interdisciplinary collaboration among
mathematicians, radiologists, pathologists, geneticists, and neurosurgeons to effectively
address clinical demands and overcome these challenges.

5. Conclusions

Our review of 17 articles on the application of deep learning (DL) algorithms in
the radiogenomic characterization of gliomas and glioblastomas underscores both the
advancements and the persistent challenges in this emerging field. Since the early studies in
2009, and particularly since 2017, significant progress has been made. However, numerous
obstacles remain to ensure the effectiveness and generalization of these models for a
potential virtual biopsy.

The increased interest in this field since 2017 is attributed to technological advance-
ments and a growing recognition of the importance of genetic markers in the classification,
prognosis, and treatment of gliomas and glioblastomas, as reflected in the WHO 2021
classification. However, the methodologies for model validation and the limited size of
datasets continue to be major concerns. The seemingly high performance of some algo-
rithms must be approached with caution due to the frequent lack of external validation,
raising questions about their generalizability.

Efforts to integrate the prediction of multiple genetic traits into a single model are still
in the early stages. Most studies focus on predicting individual traits, indicating a reliance
on separate classifiers rather than a comprehensive, multidimensional approach. To address
this, it is essential to develop larger and more diverse datasets, incorporating clinical history,
ethnic diversity, tumor characteristics, and molecular and cytogenetic features. ITo account
for tumor heterogeneity, and incorporating three-dimensional information on the areas of
probability of biopsy could further enhance our understanding of genetic variation within
tumors and improve the assessment of tissue characteristics at tumor resection margins.

The limitations of current datasets and validation methods underscore the need for
interdisciplinary collaboration. Integrating expertise from mathematicians, radiologists,
pathologists, geneticists, and neurosurgeons is crucial for developing models that are both
reliable and clinically relevant. Additionally, incorporating an explanatory dimension into
algorithms is vital for understanding and addressing their biases and limitations, which is
essential for overcoming potential legal and regulatory hurdles.

Key Recommendations for Future Research

• External Validation: Ensure robust validation on external datasets to assess gen-
eralizability and avoid overfitting on internal datasets, which may artificially in-
flate performance.



Biomedicines 2024, 12, 2156 12 of 14

• Improved Validation Methods: Apply advanced validation techniques such as k-fold
cross-validation with sufficiently large k-values and Leave-One-Out Cross-Validation
(LOOCV), especially for small datasets, to improve reliability.

• Dataset Size and Diversity: Use larger and more diverse datasets, capturing clinical,
genetic, and demographic variability (e.g., tumor types, patient populations, and
ethnicities) to ensure broad applicability of the algorithms.

• Integrated Multi-Genetic Trait Models: Focus on developing integrated models capable
of predicting multiple genetic traits simultaneously, rather than separate classifiers, to
better reflect the complexity of gliomas.

• Integration of Tumor Heterogeneity: Develop models that take account of tumor
heterogeneity to improve the understanding of tumor complexity.

• Explanatory and Interpretable AI: Ensure that deep learning models include inter-
pretable components to allow clinicians to understand algorithm predictions, thus
enhancing their trust in AI tools and ensuring accountability in clinical settings.

• Standardized MRI Acquisition Protocols: Establish standardized protocols for MRI
acquisition (e.g., field strength and sequence types) to reduce variability between
datasets and improve model reproducibility.

• Cross-Disciplinary Collaboration: Promote interdisciplinary collaboration among data
scientists, radiologists, pathologists, geneticists, and neurosurgeons to design clinically
relevant models that align with real-world clinical workflows.

• Ethical and Legal Frameworks: Address ethical and regulatory considerations, en-
suring that the developed models comply with standards for medical liability, data
privacy, and patient safety, especially given the potential future deployment of AI
in healthcare.

Finally, although DL holds promise for advancing the radiogenomic characterization
of gliomas and glioblastomas, ongoing improvements in datasets, validation methods, and
interdisciplinary co-operation are necessary to fully realize the clinical potential of these
tools. Such advancements will be instrumental in achieving objective early therapeutic
decision-making and aligning with the principles of personalized, preventive, predictive,
participative, and pertinent (5P) medicine.
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