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Abstract
Personalized medicine tailors treatments and dosages based on a patient’s unique characteristics, particularly its genetic profile. Over the 
decades, stratified research and clinical trials have uncovered crucial drug-related information—such as dosage, effectiveness, and side effects—
affecting specific individuals with particular genetic backgrounds. This genetic-specific knowledge, characterized by complex multirelationships 
and conditions, cannot be adequately represented or stored in conventional knowledge systems. To address these challenges, we developed 
CPMKG, a condition-based platform that enables comprehensive knowledge representation. Through information extraction and meticulous cura-
tion, we compiled 307 614 knowledge entries, encompassing thousands of drugs, diseases, phenotypes (complications/side effects), genes, 
and genomic variations across four key categories: drug side effects, drug sensitivity, drug mechanisms, and drug indications. CPMKG facili-
tates drug-centric exploration and enables condition-based multiknowledge inference, accelerating knowledge discovery through three pivotal 
applications. To enhance user experience, we seamlessly integrated a sophisticated large language model that provides textual interpretations 
for each subgraph, bridging the gap between structured graphs and language expressions. With its comprehensive knowledge graph and user-
centric applications, CPMKG serves as a valuable resource for clinical research, offering drug information tailored to personalized genetic profiles, 
syndromes, and phenotypes.
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Introduction
The primary challenge in drug therapy is the wide varia-
tion in individual responses to medications. This is due to 
differences in drug metabolism and physiological conditions 
[1–3]. Precision medicine, unlike the traditional one-size-
fits-all approach, tailors treatments to each patient’s unique 
genetic makeup and health profile [4, 5]. It recognizes the indi-
viduality of each person, customizing therapies accordingly. 
Currently, the most accurate drug information is found on 
labels and in the Clinical Pharmacogenetics Implementation 
Consortium (CPIC) guidelines, which explain how genomic 
data can inform decisions on dosages, metabolism, and poten-
tial adverse reactions to certain drugs [6, 7]. However, the 

FDA has detailed genomic information for only ∼380 drugs 
on their labels [8]. A significant portion of precision medica-
tion data remains buried in basic drug research databases and 
academic literature [9].

Existing data resources like PharmGKB [10], focusing 
on pharmacology and pharmacogenomics, CTD [11], with 
its specialization in toxicological data, and DrugBank [12], 
offering comprehensive drug information, contain a wealth 
of drug-related knowledge. However, their usefulness is 
hindered by a lack of a unified knowledge representation 
framework and their scattered presence across various plat-
forms. This fragmentation makes it difficult for researchers 
and clinicians to fully utilize these resources [13]. Other
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knowledge resources such as the Precision Medicine Knowl-
edgebase (PreMedKB) [14] consolidate ∼500 000 structured 
precision medicine relationships. But a detailed analysis shows 
that many of these relationships are oversimplified, labeled 
merely as “associate” or “effect,” and fail to reflect the 
nuanced information in the original text. This issue arises 
from the traditional reliance on “triples” in knowledge graphs 
as the basic unit of knowledge representation. Traditional 
triples—comprising a subject, predicate, and object—are lim-
ited in conveying complex biomedical information, especially 
in representing the conditions for the establishment of knowl-
edge [15]. They fail to capture the detailed genomic context 
required for precision medicine. Therefore, there is an urgent 
need for methods that can more accurately represent precision 
medicine knowledge by integrating these genetic conditions 
into knowledge representation. Furthermore, strategies in 
integration, mining, and governance should be developed to 
generate knowledge resources that better meet the require-
ments of precision medicine. Such resources would resolve 
ambiguities in current knowledge bases and focus on precise 
and accurate knowledge representation and dissemination.

To tackle existing challenges in precision medicine knowl-
edge representation, we have developed Condition-based Pre-
cision Medicine Knowledge Graph (CPMKG), a comprehen-
sive and advanced knowledge graph based on conditional 
precision medicine data. Our achievements include the fol-
lowing:

(i) We introduced the “Hyper-Triple,” a novel frame-
work that redefines the core data units in knowl-
edge graphs. This framework overcomes the limitations 
of traditional triples by incorporating specific condi-
tions (genetic backgrounds), ensuring that certain rela-
tionships are valid only under specific circumstances. 
This approach enhances the accuracy and depth of 
our knowledge representation, distinguishing CPMKG 
from traditional knowledge graphs.

(ii) We developed a “knowledge pattern” approach for 
organizing data. This method summarizes events involv-
ing multiple entities into a model, serving as an abstrac-
tion of conditional domain knowledge derived from 
the literature or expert input. These patterns are rep-
resented using the “Hyper-Triple” framework, guiding 
the collection of domain-specific knowledge.

(iii) CPMKG defines four key knowledge patterns for pre-
cision medicine research and application. It integrates 
307 614 pieces of knowledge, addressing the needs of 
personalized medicine and drug discovery. The graph 
presents explicit relationships and constraints, enhanc-
ing the precision of therapies.

(iv) The knowledge graph offers a drug-centric exploration 
landscape, merging insights from molecular and clin-
ical research into a comprehensive reasoning map. 
This facilitates the discovery of valuable evidence, sup-
ports medication synergy, and incorporates pharma-
cogenomics for holistic drug recommendations.

(v) CPMKG employs a large language model (LLM) to 
improve understanding of the knowledge graph. It 
provides clear explanations for subgraphs generated 
through system reasoning, balancing structured infor-
mation with language expression for better user com-
prehension.

Materials and methods
Data collection
To delve into precision medicine knowledge, CPMKG has 
aggregated and restructured 15 727 studies from nine key 
drug-related databases: PharmGKB [10], SIDER [16], CIViC 
[17], DrugBank [12], TTD [18], CTD [11], DCDB [19], 
DoCM [20], and PharmacotherapyDB (https://github.com/
dhimmel/indications). We meticulously extracted and mined 
information on relationships between various entities, such 
as drug side effects, sensitivities, molecular mechanisms, and 
treatments.

Knowledge pattern and conditional knowledge 
representation
CPMKG knowledge pattern
Biomedical literature serves as a vital repository of knowl-
edge, where authors craft sentences to define and delineate 
key concepts. However, not every sentence contains criti-
cal information. Effective distillation of pertinent knowledge 
enhances the precision of text mining tools, bolstering their 
ability to expand knowledge bases and clarify the appli-
cation scope of knowledge graphs. Our research primarily 
examines pharmacogenomics and drug research papers. In 
clinical drug studies, the focus often lies on treatment and 
side effects, whereas drug discovery research prioritizes under-
standing drug sensitivity and mechanisms. Despite varying 
linguistic expressions, these knowledge sources share semantic 
and entity-level commonalities. We harness these similarities 
through knowledge patterns to capture essential information
accurately.

In CPMKG, knowledge is organized into four distinct 
patterns: Pattern 1 links drug side effects to disease treat-
ment, highlighting genetic variations that signal increased risk 
(e.g. the C allele of olanzapine and metabolic syndrome in 
schizophrenia, Fig. 1a) [21–23]. Pattern 2 focuses on drug 
sensitivity, showing how genetic variations impact treatment 
outcomes (e.g. reduced tacrolimus need in liver transplant 
patients with the CC genotype, Fig. 1b) [24–26]. Pattern 
3 elucidates drug mechanisms by connecting drug usage to 
changes in gene expression influenced by genetic variations 
(e.g. reduced AKR1C3 enzyme activity with the A allele during 
daunorubicin treatment, Fig. 1c) [27]. Pattern 4 outlines drug 
indications, providing therapeutic insights for specific drugs 
or combination therapies (e.g. enzalutamide for prostate can-
cer, Fig. 1d) [28]. These knowledge patterns often use genetic 
variations as conditions, highlighting the need for a more 
nuanced representation.

Conditional knowledge representation framework and 
storage
The knowledge patterns we designed, including node-to-edge 
(e.g. conditional) and edge-to-edge (e.g. causal) connections, 
cannot be intrinsically represented by conventional knowl-
edge graphs, which only support node-to-node triples. To 
address this limitation, we extend to a “hypergraph” that 
accommodates complex information and allows for these 
non-node-to-node connections. In our knowledge graph, 
tuples can denote relationships between both entities and rela-
tions. For a tuple (S, R, and O), where S, R, and O stand for 
subject, relation, and object, respectively, R acts as a predicate, 
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Figure 1. Knowledge patterns in CPMKG. (a) Side effects refer to side effects or complications that occur during the use of medication. Example: 
association between olanzapine and metabolic syndrome risk in schizophrenia patients. (b) Drug sensitivity refers to an individual’s propensity to exhibit 
a heightened or exaggerated response to medication compared to the average population. Example: influence of the CC genotype on tacrolimus 
requirement in liver transplant patients. (c) Drug mechanism refers to the relationship between an individual’s genome and their response to 
medications. Example: reduction of AKR1C3 enzyme activity during daunorubicin treatment in patients with the A allele variant. (d) Drug indication refers 
to the formal recommendation for medication use in treating specific diseases or pathological conditions. Example: utilization of enzalutamide in 
prostate cancer treatment.

while S and O can be entities or other tuples. This structure is 
defined as follows: 

G = ⟨V,E⟩

E = Evv,Eev,Eee

Here, Evv represents edges that connect a vertex or an entity 
to another. Eev denotes edges that link a vertex to an edge or 
vice versa. Finally, Eee signifies edges that connect two edges. 
In a semantic context, Eev is often utilized to denote a con-
straint condition for a tuple, while Eee usually describes how 
one tuple (or event) leads to another. This framework allows 
for a more nuanced representation of complex relationships 
and conditions within the knowledge graph (Supplementary 
Fig. S2).

Our graph structure incorporates causes, conditions, and 
other crucial information, enabling detailed exploration of 
relationships. This intricate hypergraph comprises three fun-
damental structures: node-to-node, node-to-relation, and 
relation-to-relation connections, as shown in Supplementary 
Fig. S1a–c. Our knowledge representation framework also 
includes concept composition, representing combined med-
ication as a collective “ALL” union of various drugs. We 
introduce “gate” nodes, inspired by logic gates, to amalga-
mate concepts and relations into new entities. We use two 
primary gates: the “AND gate,” integrating all members, and 
the “OR gate,” combining some members (see Supplemen-
tary Fig. S1d). Multiple nodes or edges directly connected 

without a gate node are considered independent. Addition-
ally, our framework allows for the expression of negation and 
likelihood in all relations, making it highly expressive and 
adaptable for various scenarios.

Due to our updated knowledge representation, the classic 
knowledge graph storage method cannot accommodate our 
framework. To address this, we can adapt the data struc-
ture to better fit the storage capabilities of contemporary 
graph databases. Our approach involves integrating a helper 
node within a relationship, serving as a meaningful predicate. 
Specifically, we augment relationship predicates to function 
similarly to entities. We introduce a special relationship node 
that represents the original relationship predicate. This node 
uses “from” and “to” edges to indicate the direction of the 
relationship between the subject and object nodes. As a result, 
a triple’s relationship is routed through this node, facilitat-
ing connections to entities or other triples. Furthermore, we 
can insert an auxiliary node within relationships to convey 
complex relationships more effectively, as demonstrated in 
Supplementary Fig. S2D. Additionally, this method enhances 
the flexibility and scalability of our knowledge graph, allow-
ing for more intricate data representations and improving 
query performance.

Conditional knowledge mining
To ensure better alignment with our knowledge patterns, we 
refined our approach using several methods for knowledge 
mining and data integration.
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We employed automated entity and relationship extraction 
techniques, utilizing regular expressions to parse unstructured 
text from databases such as PharmGKB [10], DrugBank [12], 
and CTD [11]. This approach allowed us to identify and 
extract entities and their relationships, converting raw text 
into structured data for our knowledge patterns. For a com-
prehensive description, refer to the Supplementary Methods 
for Processing Each Database.

From PharmGKB [10], we extracted 13 055 entries, and 
from CTD [11], we extracted 143 280 entries, which were 
then standardized and integrated.

To create a unified dataset for databases like SIDER [16], 
where data were scattered across multiple files, we merged and 
standardized various data tables. This process ensured consis-
tency and completeness, resulting in a consolidated dataset of 
89 491 entries.

For databases like TTD [18], which provided data in 
HTML format, we extracted relevant information by pars-
ing the HTML content and reorganized it into a standardized 
dataset format, processing a total of 1002 entries.

In databases like PharmacotherapyDB (https://github.com/
dhimmel/indications), where files contained duplicates, we 
performed deduplication by comparing data points and 
removing redundant entries. This process ensured each entry 
was unique and accurate, resulting in 11 751 unique entries 
post-deduplication.

For databases like DCDB [19], which listed multiple drugs 
in a single table, we isolated each drug entry and combined rel-
evant data points to form a comprehensive dataset, processing 
496 entries.

For databases like CIViC [17] and DoCM [20], which 
lacked structured relationships or complete data, we 
employed manual curation. Experts identified and added 
missing entities and relationships to ensure completeness and 
accuracy. This resulted in the curation of 1998 entries from 
CIViC [17] and 89 entries from DoCM [20], filling gaps and 
ensuring accurate representation.

Graph interpretation by LLM
To improve the user experience of CPMKG, we have incor-
porated the ChatGPT API, specifically the gpt-4o, into our 
web application. The integration of the AI-generated con-
tent model equips our web application with advanced nat-
ural language processing capabilities, significantly enhancing 
its interactivity and intelligence. We have designed prompts 
for four distinct application scenarios (Supplementary Table 
S3). The graphic descriptions generated in response to these 
prompts are tailored to user needs and supported by evi-
dence from our knowledge graph. In this setup, the LLM 
refines and consolidates our knowledge, producing content 
that is both user-friendly and accurate. Importantly, we ensure 
that the model strictly adheres to the information in the 
knowledge graph, preventing the introduction of unsupported 
information and avoiding the risk of model hallucination.

Entity disambiguation
Entity disambiguation is a critical process for resolving ambi-
guities among entities sharing the same name. In CPMKG, 
this technique is applied to standardize five distinct types 
of entities: drugs, diseases, phenotypes, genetic variations, 
and genes. Each of these entities is associated with its own 
ontology, encompassing controlled vocabularies of standard 

names, synonyms, and IDs (the ontologies used for these 
entities are detailed in Supplementary Table S2).

For entities where a direct correlation exists between the 
source database entity ID and the target ontology ID, we 
employ ID mapping for straightforward standardization. For 
entities lacking this direct link, name mapping is utilized. 
Using controlled vocabulary M = (m1, m2, …, mn), we map 
the original structured names N of these entities against M to 
identify the most accurate terms. When this mapping results 
in a unique ID, it is adopted as the entity’s external ID. In cases 
where the mapping leads to multiple “best matches,” manual 
correction is undertaken. 

Γbest = argmaxΓ

n

∑
i=0

𝜑(mi,N)

Results
Statistics on entities and knowledge in CPMKG
CPMKG aims to advance precision medicine and drug dis-
covery in clinical research. Utilizing a unified knowledge rep-
resentation framework, CPMKG consolidates comprehensive 
pharmaceutical knowledge through processes like knowledge 
acquisition, element mining, and restructuring (Supplemen-
tary Fig. S3). This process has yielded 307 614 pieces of 
detailed drug knowledge, including 139 824 entries on side 
effects, 9819 on drug sensitivity, 144 269 on drug mecha-
nisms, and 13 702 on drug indications. This comprehensive 
data encompasses 2150 drugs, 1689 diseases, 1719 pheno-
types, 5029 genetic variations, and 20 111 genes (Table 1). 
For a more detailed statistical breakdown, including filtering 
and merging across various databases, refer to Supplementary 
Table S1. 

In terms of entity disambiguation, the process resulted 
in the standardization of 30 698 entities, with 918 entities 
not aligned with external database mappings. Notably, there 
are 618 entities in CPMKG that can be classified as both 
diseases and phenotypes. These entities are represented in dif-
ferent knowledge patterns: diseases are associated with treat-
ments, while phenotypes are linked to side effects. Users can 
choose the appropriate classification based on their specific
use case.

Unlike traditional methods that integrate databases from 
diverse sources, CPMKG focuses on aligning data sources to 
predefined knowledge patterns. This methodology involves 
literature mining and manual curation based on original 
evidence within these patterns. This strategy not only gath-
ers essential knowledge elements, such as drug interactions 
and genomic variations, but also enhances existing data by 
introducing new knowledge patterns.

Conditional knowledge-based schema of CPMKG
The conditional knowledge-based schema of CPMKG is con-
structed from four primary knowledge patterns: drug side 
effects, drug sensitivity, drug mechanisms, and drug indica-
tion. These patterns form the foundational elements of the 
schema, including entities such as drugs, diseases, phenotypes, 
genes, and variations. The relationships among these enti-
ties establish the schema’s structure (Fig. 2). Differing from 
traditional knowledge graphs, CPMKG incorporates critical 
yet long-missing causal and conditional associations, embod-
ied in relationships between entities and triples, as well as 

https://github.com/dhimmel/indications
https://github.com/dhimmel/indications


CPMKG 5

Table 1. Statistics on entities and knowledge in CPMKG

Knowledge pattern Knowledge source Knowledge Drug Disease Phenotype Variant Gene

Side effects SIDER, PharmGKB, and DrugBank 139 824 1712 544 1719 1447 597
Drug sensitivity CIViC, TTD, DrugBank, DoCM, and PharmGKB 9819 496 336 – 3478 880
Drug mechanisms CIViC, CTD, and PharmGKB 144 269 1039 – – 682 19 984
Drug indications PharmacotherapyDB, DCDB, and SIDER 13 702 1394 1544 – – –
Total – 307 614 2150 1689 1719 5029 20 111

En-dashes (–) : data is not available for this knowledge pattern.

Figure 2. Conditional knowledge-based schema of CPMKG. This schema includes foundational elements such as drugs, diseases, phenotypes, genes, 
and variations. “Drugs” cover pharmacological substances, “diseases” encompass pathological conditions, “variations” refer to differences in the 
human genome, “phenotypes” include side effects or complications, and “genes” pertain to human genes. This schema illustrates the integration of 
these entities and their detailed relationships, highlighting the four conditional knowledge patterns in precision medicine.

among triples themselves. This allows for a nuanced rep-
resentation of precision medicine knowledge, highlighting 
differences in individual genetic backgrounds and population 
characteristics.

Drug-centered conditional knowledge exploration
CPMKG empowers researchers to delve into drug-centered 
research in precision medicine. It offers users access to knowl-
edge across four categories, including medication recommen-
dations and pharmacogenomics, anchored in core elements 
like drugs and genetic variations. For example, Fig. 3a dis-
plays a knowledge list centered on “warfarin.” It provides 
switchable lists covering four types of precision medicine 
knowledge, enabling users to deeply understand and com-
pare warfarin’s effects across different genetic backgrounds 
and explore personalized drug recommendations via entity-
condition-relationship pairs.

Furthermore, CPMKG presents each knowledge unit 
graphically, allowing users to visualize the type of knowledge, 
the conditions under which it was established, and its evidence 
sources within the knowledge graph. This is accompanied 
by detailed knowledge descriptions and annotations for each 

entity. For instance, Fig. 3b demonstrates that under the 
genetic background NC_000010.11:g.94981296A>C, war-
farin treatment for venous thromboembolism heightens bleed-
ing risk [29]. This graphical representation provides an intu-
itive understanding of the knowledge, while the descriptions 
and entity annotations offer an in-depth comprehension of the 
graph.

Knowledge inference with multiple evidence
Each knowledge unit, representing a specific knowledge pat-
tern, can effectively communicate the author’s intended infor-
mation. However, the scope of knowledge conveyed by a 
single piece of literature remains confined. CPMKG, as a 
knowledge graph, empowers researchers to integrate multi-
ple knowledge instances into subgraphs, each drawing on 
numerous evidence sources. This allows for systematic rea-
soning about pertinent knowledge connections within these 
subgraphs.

Take, for example, the frequent occurrence of KRAS muta-
tions (KRAS is a proto-oncogene that encodes a GTPase) in 
cancer, a factor in >20% of human cancers. These muta-
tions are also present in patients with malignant pleural 
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Figure 3. Knowledge exploration in CPMKG. (a) Precision medicine knowledge list. A list centered on “warfarin,” comprising four distinct patterns. (b) 
Knowledge unit details. Illustrated by “warfarin treatment side effects,” it includes graphical representation, established conditions, evidence sources, 
and entity details. (c) Multiple evidence explorations. Subgraph exploration centered on metformin, along with knowledge description. (d) Systematic 
reasoning. Illustration of pemetrexed’s efficacy in MPM treatment and its correlation with reduced KRAS expression, suggesting a shared mechanism 
with methotrexate, supporting methotrexate’s potential effectiveness in MPM treatment.
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Figure 4. Advanced application of CPMKG. (a) Personalized drug suggestion offers tailored medical advice based on diagnostic outcomes and genetic 
backgrounds. Example: crucial factors for prescribing medication to breast cancer patients with the NC_000002.12:g.38071060G>A,C variant. (b) 
Pharmacogenomics focuses on understanding drug mechanisms for personalized medicine and novel drug discovery. Example: ivacaftor’s effects on 
various CFTR alleles and genotypes in CF. (c) Medication synergy assistant optimizes treatment outcomes and patient safety, particularly with multiple 
drugs. Example: effects of interferon α-2b and ribavirin in treating chronic hepatitis C.
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mesothelioma (MPM). As shown in Fig. 3d, pemetrexed effec-
tively treats MPM and reduces KRAS protein expression, a 
mechanism shared with methotrexate [30]. This shared mech-
anism led us to hypothesize methotrexate’s effectiveness in 
treating MPM, a hypothesis supported by the literature [31].

To make these subgraphs more accessible, we have inno-
vatively combined LLMs with precise, specialized medical 
knowledge from our database, including reference articles, 
to provide clear descriptions for each subgraph. We offer 
four distinct scenarios for varied graph descriptions, skill-
fully connecting structured graphs with narrative language. 
For instance, Fig. 3c displays a subgraph centered on “met-
formin,” illustrating gene variations and their impact on dia-
betic patients’ responses and side effects. The rs784888(G)
allele correlates with a better response to metformin, reducing 
hyperglycemia severity compared to rs784888(C) [32], while 
the rs5219(T) allele is linked to an increased likelihood of 
treatment failure compared to rs5219(C) [33]. Common side 
effects for hyperglycemia patients taking metformin include 
blurred vision, urticaria, pruritus, skin rash, tremor, lethargy, 
hypertension, and syncope.

Advanced application of CPMKG (case study)
CPMKG enhances the drug usage experience with three user-
centric applications: personalized drug suggestion, which 
offers tailored medical advice; pharmacogenomics applica-
tion, accelerating drug mechanism research and discovering 
new applications for existing drugs; and medication synergy 
assistant, aiding in the selection of effective drugs or drug 
combinations.

Case study 1: personalized drug suggestion
Personalized drug suggestion aids clinical research by 
enabling individualized medical advice based on patients’ 
diagnostic outcomes and genetic backgrounds. Consider 
Fig. 4a, which delineates crucial factors for prescrib-
ing medication to breast cancer patients carrying the 
NC_000002.12:g.38071060G>A,C genetic variant. For the 
GG genotype, docetaxel may be ineffective [34]. In con-
trast, the CC genotype can increase nausea risk with dox-
orubicin [35] and potentially lead to diminished efficacy with 
epirubicin [36]. However, this variant does not impact the 
effectiveness of gemcitabine and paclitaxel [37]. Importantly, 
cyclophosphamide has the potential to reduce peripheral neu-
ropathy risk in patients with the C allele [38]. CPMKG 
provides valuable genotype-specific references to support pre-
scription choices in clinical research.

Case study 2: pharmacogenomics application
Pharmacogenomics plays a crucial role in understanding drug 
mechanisms for personalized medicine and novel drug dis-
covery, particularly in diseases like cystic fibrosis (CF). CF, 
caused by mutations in the CF transmembrane conductance 
regulator (CFTR) gene [39], can be treated with ivacaftor, a 
CFTR potentiator that enhances CFTR protein function [40]. 
Figure 4b demonstrates ivacaftor’s effects on various CFTR
alleles and genotypes, highlighting 11 genomic variations that 
significantly influence the drug’s pharmacological response 
in the human body. For instance, ivacaftor treatment alters 
CFTR activity in the NC_000007.14:g.117603654T>A,C

and NC_000007.14:g.117611620A>C variants. Addition-
ally, the NC_000007.14:g.117559592_117559594del vari-
ant is linked with increased CFTR transport [41] but does 
not affect the protein’s thermal stability [42]. Such insights 
are invaluable for developing targeted treatments for patients 
with CFTR-related conditions.

Case study 3: medication synergy assistant
In drug indication, both efficacy and side effects are of 
paramount importance. Medication synergy assistants can 
optimize treatment outcomes and bolster patient safety, par-
ticularly when multiple drugs are used, either in combination 
or individually. For example, Fig. 4c demonstrates the effects 
of interferon α-2b and ribavirin in treating chronic hepati-
tis C [43]. Both drugs, whether used separately or together, 
significantly increase the risk and severity of anemia. How-
ever, patients with the NC_000020.11:g.3271278A>C and 
NC_000020.11:g.3213247A>C genetic variants experience 
less severe anemia after ribavirin treatment [44, 45]. Conse-
quently, ribavirin therapy is recommended for patients with 
these specific genetic profiles.

Discussion
Despite the advancements achieved with CPMKG, some 
detailed aspects still require deeper exploration. Precision 
medicine demands a thorough understanding of both enti-
ties and their attributes, such as gene variant genotypes 
and clinical indices. Transitioning from traditional triples to 
hyper-triples presents challenges in making accurate infer-
ences due to the detailed and specific conditions involved. 
However, genetic information in drug databases is limited, 
and even the original literature often lacks necessary genomic 
details. As this area is under-researched, we aim to refine 
this in future studies and encourage broader contributions. 
This shift also underscores the need for further research 
into advanced knowledge reasoning methods. Our forward-
looking approach leverages the sophisticated understanding 
capabilities of LLMs to decode complex semantics and hyper-
triples. Additionally, we aim to utilize natural language inter-
pretation based on intricate knowledge reasoning, driving the 
advancement of application-focused knowledge graphs.

Conclusion
CPMKG revolutionizes traditional drug knowledge by incor-
porating refined elements like specific conditions, making it 
ideal for precision medicine. Our knowledge graph offers 
personalized medication recommendations based on patients’ 
genetic profiles, serving as a reference for clinical practice. 
It also supports researchers by facilitating drug metabolism 
studies and targeted drug discovery. Unique in its approach, 
CPMKG employs the “hyper-triple” concept in knowledge 
representation, capturing the complex nuances of precision 
medicine with remarkable accuracy. It merges and rational-
izes various precision medicine knowledge pieces through 
innovative knowledge graph construction methods. This pro-
cess not only uncovers information overlooked in current 
research but also enhances the understanding and applica-
tion of these knowledge graphs in clinical research. Further-
more, the hypergraph structure can be seamlessly integrated 
into any graph database, accommodating existing database 
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technologies while ensuring minimal information loss com-
pared to the original research publications. This effectively 
preserves the depth and complexity of the relationships, pro-
viding a robust and comprehensive foundation for future 
clinical-related research.

To make our knowledge graph more user-friendly, we have 
integrated LLM for graph interpretation. This integration not 
only advances our construction methods but also enriches the 
fusion of structured graphs with textual data. It broadens the 
spectrum of user engagement with knowledge graphs, paving 
the way for new perspectives in their representation, storage, 
and interpretation.

Acknowledgements
We would like to thank Dr Qingwei Xu from Ezhou Indus-
trial Technology Research Institute, Huazhong University of 
Science and Technology for his support of website develop-
ment.

Supplementary data
Supplementary data is available at Database online.

Conflict of interest
None declared.

Funding
This research was supported by the National Key Research 
and Development Program of China (Grant Nos 
2021YFC2301502, 2021YFF0703702, 2016YFC0901904, 
and 2023YFA0915501); Key disciplines in the three-year 
Plan of Shanghai municipal public health system (2023–2025) 
(GWVI-11.1-42); Shanghai Science and Technology Inno-
vation Action Plan (Grant No. 23JS1401500); Shanghai 
Municipal Science and Technology Major Project; and R&D 
Program of Guangzhou National Laboratory (Grant No. 
GZNL2024A01002).

Data availability
CPMKG is publicly accessible through https://www.biosino.
org/cpmkg/. All data and resources hosted on the platform 
are freely accessible.

References
1. Jian J, He D, Gao S et al. Pharmacokinetics in pharma-

cometabolomics: towards personalized medication. Pharmaceuti-
cals (Basel) 2023;16:1568. https://doi.org/10.3390/ph16111568

2. Hamburg MA, Collins FS. The path to personalized medicine. 
N Engl J Med 2010;363:301–04. https://doi.org/10.1056/
NEJMp1006304

3. Dingemanse J, Appel-Dingemanse S. Integrated pharmacokinetics 
and pharmacodynamics in drug development. Clin Pharmacokinet
2007;46:713–37. https://doi.org/10.2165/00003088-200746090-
00001

4. Schee Genannt Halfmann S, Evangelatos N, Schröder-Bäck P et al. 
European healthcare systems readiness to shift from ‘one-size fits 
all’ to personalized medicine. Per Med 2017;14:63–74.

5. Naithani N, Sinha S, Misra P et al. Precision medicine: concept and 
tools. Med J Armed Forces India 2021;77:249–57.

6. Caudle KE, Klein TE, Hoffman JM et al. Incorporation of pharma-
cogenomics into routine clinical practice: the Clinical Pharmacoge-
netics Implementation Consortium (CPIC) guideline development 
process. Curr Drug Metab 2014;15:209–17.

7. Relling MV, Klein TE, Gammal RS et al. The Clinical Pharmacoge-
netics Implementation Consortium: 10 years later. Clin Pharmacol 
Ther 2020;107:171–75.

8. Kim JA, Ceccarelli R, Lu CY. Pharmacogenomic biomarkers in US 
FDA-approved drug labels (2000-2020). J Pers Med 2021;11:179.

9. Scott SA. Personalizing medicine with clinical pharmacogenetics. 
Genet Med 2011;13:987–95.

10. Barbarino JM, Whirl-Carrillo M, Altman RB et al. PharmGKB: 
a worldwide resource for pharmacogenomic information. Wiley 
Interdiscip Rev Syst Biol Med 2018;10:e1417.

11. Davis AP, Wiegers TC, Wiegers J et al. CTD tetramers: a new 
online tool that computationally links curated chemicals, genes, 
phenotypes, and diseases to inform molecular mechanisms for 
environmental health. Toxicol Sci 2023;195:155–68.

12. Wishart DS, Feunang YD, Guo AC et al. DrugBank 5.0: a major 
update to the DrugBank database for 2018. Nucleic Acids Res
2018;46:D1074–D1082.

13. Wilkinson MD, Dumontier M, Aalbersberg IJ et al. The FAIR Guid-
ing Principles for scientific data management and stewardship. Sci 
Data 2016;3:160018.

14. Yu Y, Wang Y, Xia Z et al. PreMedKB: an integrated pre-
cision medicine knowledgebase for interpreting relationships 
between diseases, genes, variants and drugs. Nucleic Acids Res
2019;47:D1090–101.

15. Anderson C, Müller H, Hanbury A et al. Formal ontologies 
in biomedical knowledge representation. Yearb Med Inform
2013;22:132–46.

16. Kuhn M, Letunic I, Jensen LJ et al. The SIDER database of drugs 
and side effects. Nucleic Acids Res 2016;44:D1075–79.

17. Griffith M, Spies NC, Krysiak K et al. CIViC is a community 
knowledgebase for expert crowdsourcing the clinical interpreta-
tion of variants in cancer. Nat Genet 2017;49:170–74.

18. Zhou Y, Zhang Y, Zhao D et al. TTD: Therapeutic Target Database 
describing target druggability information. Nucleic Acids Res
2024;52:D1465–77.

19. Liu Y, Wei Q, Yu G et al. DCDB 2.0: a major update of the drug 
combination database. Database (Oxford) 2014;2014:bau124.

20. Ainscough BJ, Griffith M, Coffman AC et al. DoCM: a database of 
curated mutations in cancer. Nat Methods 2016;13:806–07.

21. Mulder H, Franke B, van Der-beek van der AA et al. The asso-
ciation between HTR2C gene polymorphisms and the metabolic 
syndrome in patients with schizophrenia. J Clin Psychopharmacol
2007;27:338–43.

22. Risselada AJ, Vehof J, Bruggeman R et al. Association between 
HTR2C gene polymorphisms and the metabolic syndrome in 
patients using antipsychotics: a replication study. Pharmacoge-
nomics J 2012;12:62–67.

23. Ma X, Maimaitirexiati T, Zhang R et al. HTR2C poly-
morphisms, olanzapine-induced weight gain and antipsychotic-
induced metabolic syndrome in schizophrenia patients: a meta-
analysis. Int J Psychiatry Clin Pract 2014;18:229–42.

24. Chen YK, Han LZ, Xue F et al. Personalized tacrolimus dose 
requirement by CYP3A5 but not ABCB1 or ACE genotyping in 
both recipient and donor after pediatric liver transplantation. PLoS 
One 2014;9:e109464.

25. Wei-lin W, Jing J, Shu-sen Z et al. Tacrolimus dose requirement 
in relation to donor and recipient ABCB1 and CYP3A5 gene 
polymorphisms in Chinese liver transplant patients. Liver Transpl
2006;12:775–80.
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