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Abstract: Sustainable development is increasingly driving the trend toward the application of
biomimicry as a strategy to generate environmentally friendly solutions in the design of industrial
products. Nature-inspired design can contribute to the achievement of the Sustainable Development
Goals by improving efficiency and minimizing the environmental impact of each design. This
research conducted an analysis of available biomimetic knowledge, highlighting the most applied
tools and methodologies in each industrial sector. The primary objective was to identify sectors
that have experienced greater adoption of biomimicry and those where its application is still in its
early stages. Additionally, by applying the available procedures and tools to a selected case study
(technologies in marine environments), the advantages and challenges of the methodologies and
procedures were determined, along with potential gaps and future research directions necessary for
widespread implementation of biomimetics in the industry. These results provide a comprehensive
approach to biomimicry applied to more sustainable practices in product design and development.

Keywords: biomimicry; innovation; bioinspiration; biologically inspired method; industrial
design; sustainability

1. Introduction

The ever increasing need to develop sustainable products lies primarily in the ability
to mitigate environmental and social impacts throughout their entire life cycle. From the
initial stage of raw material extraction to the recycling or final disposal of the product,
incorrect solutions can negatively affect the planet through global warming, acidification,
or destruction of the ozone layer. In addition, some stages of the life cycle, such as manufac-
turing, may involve precarious labor conditions or exploitation. To address these issues, the
Sustainable Development Goals (SDGs) [1] propose different methods and strategies. From
an environmental point of view, notable goals include SDG 6 ‘Clean Water and Sanitation’,
SDG 7 ‘Affordable and Clean Energy’, SDG 13 ‘Climate Action’ and SDG 15 ‘Life on Land’.
From a social point of view, SDG 11 ‘Sustainable Cities and Communities’, SDG 9 ‘Industry,
Innovation, and Infrastructure’, and SDG 12 ‘Responsible Consumption and Production’
promote sustainable usage patterns, reduction of the ecological footprint, improvement
of labor conditions, and production of more environmentally friendly and innovative
products. These goals work together to drive the development of more sustainable and
ethical products and processes.

Human beings are an intrinsic component of the planet and are a part of an extensive
ecosystem. Isolated actions overlook the relationship with the surrounding environment.
Numerous contemporary problems, such as climate change, ocean pollution, and species
extinction, among other environmental impacts, could have been prevented through proper
integration with the environment. The SDGs represent an integrated approach to protecting
the planet while ensuring the prosperity of the ecosystem. Successfully achieving these
goals requires innovative approaches that facilitate a shift in perspective toward solving
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real challenges with zero environmental impact. In this context, the SDGs are fostering an
emerging trend in design to create materials and technologies that not only aim to achieve
sustainability through low environmental and social impact, but also possess regenerative
and restorative capabilities [2]. Biomimicry can become a fundamental discipline in this
setting to facilitate the R&D+i process. Its methodologies and tools provide the design
team with a source of inspiration to develop sustainable solutions based on nature, using
biological principles in the design and development stages of products.

Biomimicry [3] is a discipline based on the imitation of nature to develop innovative
solutions to real challenges. Its source of inspiration lies in the observation and analysis of
biological processes and strategies intrinsic to organisms, plants, animals, or ecosystems.
Biomimicry unfolds in various branches or approaches, including bioinspired design,
engineering, biotechnology, sustainable architecture, and medicine. Biomimicry promotes
increased sustainability, innovation, efficiency, adaptability, and resilience while reducing
environmental impact. Among the wide range of opportunities and advantages offered
by applying this approach is the ease of developing innovative and sustainable solutions
that are in harmony with the environment. Consequently, there is a particular interest in
integrating this trend into the design, development, and manufacturing of products, i.e., all
stages of the design process. The success of applied biomimicry lies first in prior knowledge
of the methodologies, tools, and existing knowledge in this field to reduce development
times and facilitate the integration of knowledge and decision-making. Secondly, it offers
results focused on zero impact, efficiency, and optimization of solutions. Additionally, it
serves as a source of inspiration to enhance the creative process and innovation. Figure 1
establishes the correlation between the phases of the design of the product design (needs
analysis, functional design, conceptual design, and detail design) and the intrinsic stages of
the biomimicry design spiral (define, biologize, discover, and abstract) [4].
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By integrating a biomimetic design process and after analyzing the needs, these
are transferred to the functional domain following the approach of biologizing potential
sustainable solutions guided by biological strategies. This task is carried out using the
Biomimicry Taxonomy [5] as a tool that streamlines this process. Once this phase is
complete, the conceptual design of the different alternatives begins. This is the most creative
stage, with increased potential since nature is an inexhaustible source of inspiration. Key
tools include journals, books, or databases such as AskNature [6], which complement the
Biomimicry Taxonomy. The exhaustive search for relevant biological knowledge drives
innovation in solutions and processes. It is also worth highlighting that inspiration can
originate at the organism, behavior, or ecosystem level. Finally, in the detailed design phase,
the solution is defined and optimized to assess its suitability and validate the product using
various prototypes before commercialization.

It is important to note that the biomimetic approach has been developed and imple-
mented by the scientific and technical community across different fields of knowledge
over the years. This approach can be traced back to ancient Greek legends such as that
of Daedalus and Icarus, where they imitated the flight of a bird [7]; Leonardo Da Vinci’s
Renaissance flying machine [8]; or the invention of Velcro by George de Mestral in the
twentieth century [3], among others. Recent studies have shown that using a nature-based
approach allows the development of engineering solutions with better results [9]. This has
enabled greater integration into scientific research, business and education, leading to sig-
nificant investment in this rapidly expanding field. One of the most prominent institutions
in this area is the Biomimicry Institute [3].

The application of biomimicry has been successfully incorporated into research areas
related to technology (ant-based algorithms [10]), medicine (antibacterial adhesive based
on shark skin [11]), energy (wind turbines based on insect wings [12]), transportation (route
optimization based on bees [13] or drones mimicking natural flyers [14–16]), architecture
(building climate control buildings based on termites [17]), and industrial design (foldable
protective helmet based on turtles [18]), among other examples. In industry, bioinspired
solutions can be found in various fields, allowing for the resolution of complex challenges
with cutting-edge robotic technology, such as in exploration, shipwreck research, waste
cleanup, and rescues in the most unknown and hard-to-reach areas, such as seas and oceans,
based on underwater biorobots [19]. A more popular contemporary example is the Airbus
A300-600ST or Beluga, a bio-inspired cargo aircraft [20]. Additionally, numerous tools and
methodologies have been developed for the application of biomimicry.

Biomimicry is a promising discipline. Its application to technological development is
a research hotspot today. Although some fields (such as biomedicine [11], automotive [21],
or robotics [22]) have made substantial advances, their application still faces various chal-
lenges and limitations. The main drawbacks are related to the biological complexity of
nature, making direct replication or translation of its principles into solutions, processes,
or structures in industrial applications challenging. Managing this complexity requires a
multidisciplinary integration of knowledge (including biology, engineering, and industrial
design, among other areas); lack of interdisciplinary skills in the design team can limit
effective application. Second, the lack of widely accepted standards and methodologies
complicates its consistent application and widespread adoption in design projects. Fi-
nally, there are technological limitations related to the industry’s capabilities to replicate
biological processes.

In this context, this article explores the progress and research efforts related to bio-
mimicry studies; it analyzes the most applied tools and methodologies in each industrial
sector. The main objective is to identify sectors that have experienced greater adoption
of biomimicry as well as those where its application is still in its infancy. Furthermore,
through different case studies, the advantages and application difficulties of biomimetic
methodology and procedures are determined, followed by identifying potential gaps and
future research directions necessary for standardization and normalized implementation in
the industry. The results provide a comprehensive approach to biomimicry applied to more
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sustainable practices in product design and technology development. It should be noted
that there are studies conducting reviews of the biomimetic literature [23], offering a broad
overview of objects and processes of interest found in nature and their applicability [24],
evaluating their importance in different industries such as chemical and process indus-
tries [25], robotics [26], textile industry [27,28], cultural art [29], construction (advances of
biomimicry in structural colors [30] or structure design [31]), and materials science and
manufacturing (bioinspired smart materials [32], natural photonic materials [33], structural
design elements in biological materials [34], additive manufacturing [35]), as well as re-
views on case studies, principles and examples of biomimetic design [36–38]. However,
updated reviews that provide a structured overview of available methodologies and tools,
along with a comprehensive analysis of the main applications of biomimicry in product
and technology design, have not been identified.

To achieve this, this work is structured as follows: Section 2 describes the methodology
used. Section 3 includes the results of the review, integrating bibliometric analysis, analysis
of principles, methodologies, and tools, and the evaluation of the applicability of biomimetic
processes in the design of industrial products and technology. Section 4 discusses the main
findings, concluding in Section 5 with the conclusions of the study.

2. Methodology

The methodology is divided into two stages (Figures 2 and 3). For stage 1, and in the
field of biomimetics, a comprehensive review of the scientific literature has been conducted.
The review entails a critical analysis of existing publications, identifying the current state
of methodologies, tools, and applications of biomimetics in various domains, as well as
future research trends in the field. The review presented in this article is structured around
the analysis of three different contexts: (I) bibliometric analysis, (II) a detailed discussion of
the advantages of applying biomimetics in industrial product projects, and (III) definitions
of future lines of work. The reference database was created from a set of strategically
selected search strings. In this study, and with a holistic approach, an initial primary search
was conducted in the Scopus, Google Scholar, and AskNature databases [6], dated up
to 1997 (the year identified with increasing publication frequency). Data were compiled
from a wide range of Web-based sources, including journals, academic articles, books, and
proceedings. A total of 183 references were selected for this research using the following
keywords: “Bioinspiration and Biomimetics products”, “Biomimetic design case study
product”, “Biomimetic design methodology”, “biologically inspired design”, “Biodesign”,
“four characteristics biologically inspired design”, “Bioinspiration”, “Biomimetics”, “bionic
design method”, “creative analogies biologically inspired design”, “Architecture biode-
sign”, “Bio architecture”, “Biologically inspired approach”, “Bionic architecture”, “Bionic
design”, “Biologically inspired approach”, “Bionic architecture”, “Bionic design”, “natural
materials bionic design”, “biomimicry product design”, “Biodesign products”, “Bionic case
study”, “Biomimicry”, “Biomimetics products”, “biomimicry projects”, “bioinspiration
principles”, “biological materials bioinspired applications”, “nature mimesis in industrial
design”, “bionic urbanism”, “key concepts biomimetics”, “key concepts biomimesis” and
“key concepts biomimetism”. Additionally, to verify the results obtained in this review,
graphical resources of keyword results such as “biomimicry” were consulted, provided by
the Scopus bibliographic database. In Phase 1, the analysis and selection of the final sample
of relevant publications for this review were carried out. The specific variables considered
were: (1) thematic relevance, where publications had to be directly or indirectly related
to the design of industrial products and their contribution to sustainable development;
(2) application to the industrial context and practical feasibility; (3) publication quality;
(4) originality and innovation of proposals.
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Stage 2 evaluated the applicability of biomimicry by examining how its principles
promote (1) the achievement of innovative results and (2) the enhancement of creativity in
the search for sustainable engineering design solutions. Additionally, the current limitations
posed by (1) the implementation of the process and (2) the selection and use of available
biomimetic tools were identified. This phase was carried out using the procedure indicated
in Figure 3; the main methodologies identified in Stage 1 were applied to a case study:
propose solutions to prevent or reduce biofouling in marine vessels. The results were used
to evaluate, comparatively, the applicability of the methodologies through a multi-criteria
analysis. This analysis allowed identification of the limitations and challenges associated
with implementation and use, as well as highlighting those methodologies that best fit the
design process, foster innovation, and enhance the team’s creativity.
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3. Results
3.1. Bibliometric Analysis

Firstly, a general analysis on innovative developments in biomimicry was conducted
using data published on the specialized biomimicry platform known as AskNature [6].
Specifically, the values corresponding to the innovations filtered by sector are of interest,
as shown in Figure 4. It should be noted that most of the results relate to innovations in
the field of materials engineering, with 113 publications accounting for 26% of the total
data. Following this are categories such as ‘Robotics’ and ‘Medicine and biotechnology’,
comprising 12% and 10%, respectively. However, there are areas where, up to now, very few
nature-inspired innovations have been addressed, such as automation or communication.
Among the directly influential factors contributing to the success of these results are the
need for environmentally sustainable materials and resources, as well as the increasing
technological development in recent years. Additionally, medicine and biotechnology are
closely related to nature and learn from it to solve or remedy real problems. Research on
new biomimetic materials allows for easy applicability across various sectors and is socially
well-received, contributing to increased project value regardless of the application area.
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Second, scientific publications were analyzed; as mentioned in Section 2 of the meth-
ods, the search was performed through the Scopus bibliographic database [39], which
allows graphical display of the search results. In this case, it was decided to filter the
published results related to the term “biomimicry” from 1997 to the present. As shown in
Figure 5a, there is a growing trend in biomimicry research and development. Furthermore,
the classification shown in Figure 5b was performed, where the results were categorized
by sector (left) and type of publication (right). From these, it can be deduced that the field
with the greatest applicability is engineering, that most related publications are natural
scientific articles, and that there is a justified growing trend in biomimicry research.

Finally, the selected sample of 138 publications was analyzed, emphasizing the re-
search efforts undertaken by the scientific community in recent years. Firstly, the scope of
the work developed is underscored, focusing on (i) proposals of biomimetic methodologies,
frameworks, and principles; (ii) tools that aid in the implementation of the methodology;
and (iii) case studies. As depicted in Figure 5 (left), there is evident interest in methodologi-
cal development.

Furthermore, the publications were classified into the following areas, which were
easily identified by analyzing similarities in the scope of the research and creating dif-
ferent clusters: (1) architecture, (2) urbanism, (3) biodesign, (4) robotics and automated
technologies, and (5) materials engineering. Figure 6 shows the results according to this
classification. These findings reflect a growing interest in the field of “biodesign” account-
ing for a categorical percentage of 54%, followed by other application areas such as robotics,
architecture, materials, and urbanism, which represent values of 21%, 11%, 10%, and 4%,
respectively. Furthermore, in Figure 6 on the right, the complete set of results is depicted
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in a bar graph according to their nature, where the prominence of applications based on
“biodesign” is once again highlighted.
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Finally, Figure 7 presents the results compiled by year. It describes a certain trend
toward publications related to the field of biodesign in the early 21st century. It is not until
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the middle of the first decade that there is more significant knowledge about tools and
methodologies framed in this subject. From the second decade onward, more consolidated
publications on architecture, urbanism, and robotics begin to appear. In particular, there is a
significant presence of content related to case studies over time, indicating ongoing research
interest in this topic and prompting an increase in the number of reviews conducted for
each category.
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The results of the bibliometric study reflect, in general terms, that approximately 70%
of the analyzed publications focus on the application of biomimicry in specific projects,
products, and systems, while the remaining 30% address the development of methodologies
and tools to facilitate the implementation of biomimicry in the design and development
process (see Figure 6c). It should be noted that among the wide variety of methodologies
used, TRIZ (Theory of Inventive Problem Solving) is the most frequently applied (see
Figure 6d).

Furthermore, the classification of publications (see Figure 6b) shows a significant
distribution in the application of biomimicry in various fields of knowledge. Biodesign
leads with 54%, being a universally used strategy for creating sustainable solutions inspired
by nature. Architecture represents 15% of the applications, within which biomimetic
urbanism is highly relevant (4%). Similarly, robotics has also seen significant adoption at
21%, followed by material design at 10%. This diversity of fields of knowledge and the
results of each scientific publication highlight the versatility of biomimetic methodologies
and their potential for innovation in a variety of scientific and technological fields.

Table 1 presents a summary of the bibliometric study, the keywords used for the search,
and the most representative bibliographic references.



Biomimetics 2024, 9, 523 9 of 30

Table 1. Summary of bibliographic sources.

Category Keywords Reference

(1) Classification according to areas of knowledge

Architecture
Architecture; Architecture biodesign; Bionic architecture; Biophilic architecture;

Biomimetic materials in architecture; Sustainable architecture; Biomimetic building
design; Ecological, Biomorphic, Organic architecture.

[40–52]

Town planning

Bio urbanism; ecological urban planning; nature-based urban design; sustainable
urban development; biophilic cities; resilient urban infrastructure; green infrastructure

planning; ecosystem-based urban design; urban biodiversity conservation;
regenerative urban design.

[53–56]

TRIZ
Inventive problem solving; systematic innovation; inventive principles; four

characteristics of biologically inspired design; Bioinspiration & Biomimetics products;
Biomimetic design case study.

[36,57–59]

Biodesign Creative analogies; biologically inspired design; biodesign products; nature-inspired
design; bioinspiration; biomimetics products. [24,25,29,60–117]

Robotics Biomimetic robotics; nature-inspired robotics; nature-inspired mechanisms; robotic
systems inspired by animals; biomimetic locomotion. [22,26,37,118–137]

Materials
Biomimetic composites; bioinspired coatings; nature-inspired polymers; biomimetic
structural materials; bionic ceramics; biologically inspired textiles; natural material

replication; bioinspired surface modifications; biofabricated materials.
[31–33,138–146]

(2) Classification according to study scope

Review Analysis of the current state of research, identification of trends, synthesis and
comparison of methodologies, and future recommendations for biomimetic research. [23–33,35–38,147]

Methodology
Proposition of new methodologies and frameworks to address specific application

problems; these methodologies enhance the applicability of biomimicry in design and
engineering.

[148–164]

Tools
Development and application of software, modeling and simulation, evaluation and

checklists, databases, selected materials, among other innovative tools aimed at
improving design and engineering through biomimicry.

[34,165–171]

Case study
The practical application of biomimicry in various contexts; they provide concrete

examples where biomimicry has been used to solve specific design and engineering
problems.

[172–188]

3.2. Biomimetics: Analysis of the Fundamentals and Available Framework

This section analyzes the current state and scope of the fundamental concepts of
biomimetics, the essential principles guiding this discipline, and the framework for
its application.

The analysis of the results revealed that publications frequently use the terms biomimet-
ics and biomimicry interchangeably. Although both terms refer to the use of biology as a
source of learning and a reference to mimic and develop design solutions, there are nuances
that distinguish them in terms of their focus and methodology [164]. Biomimetics focusses
on mimicking biology to produce creative solutions based on the analogy of biological
phenomena (for example, designing a bullet train inspired by the streamlined shape of
a kingfisher’s beak; geometry that reduces wind resistance, noise, and improves train
speed [189]); whereas “biomimicry” focuses on applying biological knowledge to develop
sustainable practices (for example, developing a water purification system inspired by
the filtration ability of fish gills [190]). Table 2 lists the main terminology classified into
categories and subcategories for the two approaches.

Biomimicry takes nature as a source of learning and inspiration, grounding its pro-
cesses in three fundamental principles: emulating (creating regenerative designs through
the study and replication of nature), ethics (understanding the workings of life to create
designs that are not harmful), and (re)connecting (rebuilding the harmonious and respect-
ful relationship between humans and nature) [191]. Biomimicry also involves partial or
complete imitation of forms, materials, structures, processes, or functions found in nature,
considering three levels of application: organism, by imitating the specific physical and
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biological characteristics of living beings; behavior, translating how organisms act and
interact with their environment; or ecosystem, studying their functioning as self-sustaining
entities (adaptive, self-organized, self-regenerative, and self-optimized) [51].

Table 2. Hierarchies of terminology: biomimicry and biomimetics.

Concept Category Subcategory

Biomimicry
Organism
Behavior

Ecosystem

Patterns
Materials
Structures
Processes
Functions

Biomimetics Of the construction

Material
Substance

Prosthodontics
Robotics

Of processes

Energy
Architecture

Sensors
Kinematics

Of the information

Neuronal
Evolutionary

Process
Organizational

It should be noted that human needs have been met by the set of phenomena, ecosys-
tems, or living beings that exist in nature without altering natural cycles and contributing
to the construction of a planet that has been integrated and functioning for millions of years.
However, the interpretation of nature patterns and their application to viable engineering
solutions is complex.

To address this challenge, a variety of research endeavors aim to standardize the cre-
ation of analogies between natural processes and human processes. Benyus [192] developed
a framework to explore innovative and sustainable solutions using nature. McDonough
and Braungart [193] introduced Cradle to Cradle (C2C), a paradigm focused on architecture
and product design. Industrial ecology [194], on the other hand, aims to develop industrial
systems that mimic natural systems, identifying interaction patterns, exchange flows, and
the properties that industrial systems must exhibit as ecosystems. Finally, Riechmann’s
research [195] deserves mention, as it explores the principle of biomimicry from a broad
perspective, allowing for an understanding of the operational principles of life at various
levels. The ecosystemic perspective highlighted there contributes to the reconstruction of
human ecosystems to be fully integrated with natural ones.

In general, all of these biomimetic frameworks start from the strategy of using nature
as a reference, considering it (1) as a mentor, that is, a source of knowledge and experience
in efficient and effective principles and phenomena that can guide the design of sustainable
systems; (2) as a model from which requirements and solutions to imitate are extracted,
such as forms, processes, systems, and strategies, through a process of transposition; and (3)
as a measure, representing the domain of analysis of solutions, as a space for comparison
between natural and artificial models, facilitating the evaluation of technological innova-
tions through the application of ecological standards [192,193]. Table 3 compares the most
relevant approaches currently existing, adapted from the common framework or from
generic phases.
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Table 3. Comparison of six methodological approaches to biomimetics.

Generic Phases Gramman
(2004) [152]

Schild et al.
(2004) [152]

Hill (1997, 2005)
[152]

Helms et al.
(2009) [152]

Nagel et al.
(2011) [153]

Chen et al.
(2017) [57]

DEFINE AND
BIOLOGIZE

(1) Formulate a
goal search
problem.

(1) Formulate a
search

objective.

(1) Problem
formulation
that includes

success factors,
contradictions,
and customer

views.

(1) Analyze
conflicting

demands to
determine basic

functions.

(1) Problem
definition:

identify
functions,

subfunctions,
and

optimization
problems.

(1.1.) Definition
of the problem.

(1.2)
Decompose the

needs.

(1)
Identification of

keywords
related to the
biology of the

product design
of the BOP
pyramid.

DISCOVER
(2) Search for

biological
analogues.

(2) Search and
map a set of

relevant
biological
systems.

(2.1) Evaluate:
Is the search for

analogies
promising?

(2.2) Search for
analogies in

social networks
or databases.

(2) Identify
relevant

biological
structures.

(2) Search for
biological
solutions.

(2) Search for
functional
biological
solutions.

(2) Biological
case search and

resource
analysis.

ABSTRACT
(3) Analyze the

biological
system.

(3.1) Analyze
the biological
system. (3.2)
Evaluate the

system to
determine if a

transfer is
possible; if not,

review the
previous steps.

(3) Verification:
is the analog
system well
understood?

(3) Analyze
biological
structures:

extract basic
principles,
associate

preliminary
solutions.

(3) Define the
biological
solution.

(3) Make
connections

between
biology and
engineering.

(3) Choosing
the appropriate
biological case.

EMULATE
(4) Transfer.

(4) Implement
an analogy.

(4) Assess
transferability:
Four levels of
transfer are
proposed.

(4.1) Transfer
preliminary
solutions to

technical
solutions.

(4.2.) Vary and
combine the

relevant
characteristics

of these
solutions.

(4) Application
of the principle.

(4.1)
Conceptual

design of
solutions. (4.2)

Development of
alternatives.

(4) Transfer

EVALUATE
(5) Evaluation,

verification.
- -

(5.2) Use
common

evaluation
methods.

(5.3) Evaluate
the solution

chosen.

- (5) Validation (5) Evaluation.

The general stages of the process are illustrated in the design spiral of Figure 8 (adapted
from the methodological approaches compared in Table 3). One of the fundamental and
most complex stages is defining the specific function required and identifying the context in
which the design will be applied. This involves biologists, that is, considering how nature
performs the desired function and then identifying the most suitable biological models.
There are databases of biological strategies that allow for the exploration of solutions based
on the challenge to be addressed [6]. During the abstraction phase, the characteristics or
mechanisms of the selected biological strategies are studied in detail; the use of sketches is
a useful tool in this step, facilitating the understanding and visualization of these strate-
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gies. Emulation requires an analysis of patterns and relationships of identified biological
strategies, where the creation of conceptual and mental maps, and rapid prototyping, can
provide clarity and organization to the process. Finally, the evaluation phase focuses on
the critical review of the proposed design, considering its social, environmental, technical,
and economic viability [6]. There are various useful evaluation tools in this phase, such as
Life Cycle Assessment (LCA), selection matrices, or computational simulators. The general
stages of the process are illustrated in the design spiral shown in Figure 8 (adapted from the
methodological approaches compared in Table 3). One of the fundamental and most com-
plex stages is defining the specific required function and identifying the context in which
the design will be applied. This involves biologizing, meaning considering how nature
performs the desired function in order to identify the most suitable biological models.
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It should be noted that the process of applying biomimicry requires a high degree
of knowledge of biological systems. Specialized methodologies and tools are created to
streamline and optimize this process. They are selected based on project requirements
and specifications, facilitating the translation of biological knowledge into technological
applications. These methodologies (such as BioTRIZ [196], MBE [197], UNO-BID [198],
DANE [199], SAPPhIRE [200], or Bio-SBF [201]) allow for addressing specific application
problems through sequential and systematic processes that improve the applicability of
biomimicry in design and engineering.

Two main groups of methodologies are distinguished: textual and schematic. Textual
methodologies are based on the description of biological knowledge using nouns, verbs,
and prepositions. They require an important level of understanding of biological principles
but are not adequately adapted to the process of technological design and development.
Within this type of methodology are AskNature and Biomimicry 3.8; also included in this
group are all bibliographic sources such as books and scientific publications that describe
biological principles and case studies applying them.

However, schematic methodologies are based on graphical representation to illustrate
the structures, functions, behaviors, and interrelationships within biological systems. Al-
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though they do not require prior knowledge of biology, they require skills in modeling,
analysis, and design of functions. This group includes DANE (Design by Analogy to
Nature Engine), Bio-SBF (Bio-System Based Framework), SAPPhIRE, UNO-BID (Universal
Nominal Biologically Inspired Design), and MBE (Model-Based Engineering); their graphi-
cal approach facilitates the translation from biological concepts to technological solutions.
DANE uses the traditional method to express biomimetic functions. SAPPhIRE is based on
identifying causal relationships between elements, whereas UNO-BID employs dynamic
physical parameters to identify relevant biological properties. Finally, MBE establishes
terminology based on general attributes to abstract innovative knowledge and apply it
to prototypes.

Within the spectrum of available resources, some such as BioTRIZ, AskNature, Design
Spiral, DANE 2.0, or idea-Inspire are based on a hybrid approach that includes textual
strategies and schematic representation to facilitate the application of biomimetic design.
The Design Spiral stands out for its intuitive approach to conceptualizing solutions in
projects, stimulating creative thinking in the initial stages. However, by using BioTRIZ in
combination with other design tools and databases such as AskNature [6], results based
on quantitative and practical parameters can be achieved, simplifying the abstraction
from theory to technical realization. Similarly, MBE (Model Based Engineering) [164],
linked to TRIZ, offers a more structured approach to biomimetic design. Although this
methodology was not specifically developed for biomimetic contexts, it can be used to guide
the development of solutions by facilitating problem analysis and definition, translating
it into biological terms, classifying and comparing different bioprototypes, analyzing
biological strategies and their technological application, and finally, implementation and
verification. It should be noted that while DANE 2.0 and Idea-Inspire are mentioned in
numerous publications as tools applicable to biomimicry, the difficulty of accessing these
platforms limits their utility. Table 4 analyzes the applicability of these methodologies
according to their suitability for each stage of the biomimicry framework.

Table 4. Methods available to solve biologically inspired problems.

Stages BioTRIZ MBE BID DANE SAPPhIRE Bio-SBF

Problem analysis X X X X X X
Define problems abstractly X X X

Transport to biology X X X X X
Classify possible bioprototypes X X X X X

Compare and select bioprototypes X X X X
Analyze biological strategies X X X X X X

Transport to technology X X X X
Implement and verify X

The application of these methodologies can present a certain level of abstraction that
makes their application challenging. Therefore, they often rely on tools that streamline
the procedures, including the development and application of software, modeling and
simulation, evaluation and checklists, databases, and selected materials, among other
innovative tools aimed at improving design and engineering through biomimicry. The
research and proposals of The Biomimicry Institute [3] stand out in this group. The
biomimicry taxonomy offers a classification of biological strategies based on the required
function. This resource is complemented by access to AskNature [6]. Although these
resources are highly functional, it is important to consider the specific context in which the
solution will be applied, as different contexts may require different strategies to achieve
the same functionality. Table 5 summarizes the biomimicry taxonomy, listing specific
functions, along with application examples. The complete study can be found in the
Supplementary Materials.
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Table 5. Biomimicry taxonomy.

Group Subgroup Functions Example

Move or stay
put

Attach Permanently, temporarily. [120,124]
Move In/on solids, in/on liquids, and in/through gases. [96,118,120,126,127,129]

Protect from
physical harm

Protect from living
threats Animals, plants, fungi, and microbes. [132,140,141]

Protect against
nonliving threats

Excess liquids, loss of liquids, loss of gases, light,
temperature, wind, gases, dirt/solids, chemicals, fire,

ice, and nuclear radiation.
[31,41,43,140,141]

Manage structural
forces.

Shear, compression, thermal shock, impact, tension,
turbulence, mechanical wear, chemical wear,

and creep.
[31,41,43,44,140,141,174]

Regulate
physiological

processes

Cellular processes, maintenance of homeostasis, and
reproduction or growth. [25]

Prevent structural
failure

Buckling, deformation, fatigue, melting, and
fracture/rupture. [41,138,140,141,174]

Coordinate Coordinate by self-organization, activities,
and systems. [55,132]

Maintain
community

Cooperate Interactions within and between species, ecosystems,
and systems, including cooperation and competition. [26,55]

Provide ecosystem
services

Managing disturbances, regulating flows, pollination,
soil generation, detoxification, erosion control,

nutrient cycling, climate regulation, seed dispersal,
biodiversity maintenance, and biological control.

[109,179]

Modify
Modify the physical,

chemical, and
electrical state

Involves alterations in size, shape, mass, volume,
pressure, density, phase, buoyancy, and other material
characteristics and adjustments in energy, reactivity,

concentration, electrical charge, and other
chemical properties.

[31,139]

Adapt/optimize Genotype, phenotype, co-evolve, and behaviors. [31,32,41,55,131,182]
Transform/convert

energy
Conversion of electrical, magnetic, chemical,

mechanical, thermal, and radiant energy. [32]

Make
Reproduce,

physically and
chemically assemble

The ability to self-replicate; construction of physical
and chemical structures, including polymers,

metal-based compounds, molecular devices, crystals,
inorganic and organic compounds, and modification

of chemical bonds on demand.

[41,140,144]

Process
information

Navigate Movement through air, liquid, solid, and land. [132]

Sending signals Various means such as light, sound, touch,
and chemicals. [32]

Processing signals
and compute

Includes differentiating, transducing, and responding
to signals. Computing, learning, and decoding. [31,37,119,123]

Sensing
environmental cues

Numerous factors such as light, temperature, motion,
and time. [25,31,32,96]

Break down
Chemically and
physically break

down

Separation of metals and halogens, breaking down
compounds and catalyzing bonds; and nonliving and

living materials.
[25,139]

Get, store, or
distribute
resources

Capture, absorb, or
filter. Store,

distribute, expel

Organisms, solids, liquids, gases, energy, and
chemical entities. [25,52,144,182]

However, there are a wide variety of tools that facilitate the application of biomimicry
in the design process. These include databases, material selectors, consulting companies
or organizations, scientific journals, and other sources. Table 6 shows some of the most
relevant tools. These provide knowledge and inspiration on biomimetic applications, such
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as the collaboration between Zara and Piñatex® (a material made from pineapple leaf
fiber) [202]. Figure 9 shows the manufacturing process of this sustainable material, along
with one of the commercialized results of this collaboration [203].

Table 6. Other tools for the application of biomimetics.

Type Description Source

Database

ZQ Journal—It shows the synergy between science and biologically inspired design, using case
studies, news, and articles relevant to this topic. [204]

Global Design Challenge—Offers an annual global bioinspired solution challenge in the contest
mode. The annual files can be consulted on this page. [205]

ABM HYDRO—Research team on numerical and experimental marine hydrodynamics focused
on innovative biomimetic solutions that improve and enable advanced marine operations. [206]

Nanophotonics Centre—Research group that studies the optical biomimetics of plants and insects
in search of photonic effects. [207]

Maxwell Centre—Microbial biophysics for biotechnology and biomimetics. [208]

Material
selectors

Material Pathways—It is part of the research group at the Kolding School of Design’s
Sustainability and Design Laboratory. As a result, sustainable approach cards have been

designed that can function as a source of inspiration, as ways to mediate knowledge and values
in multidisciplinary teams, or as ways to reflect and create analytical awareness.

[209]

Biomimicry Toolbox—It is a biomimicry manual focused on the “challenge to biology” approach
to addressing biomimicry. [210]

Companies/
organizations

Biomimicry 3.8—It is the world’s leading bioinspired consulting firm that offers consulting on
biological intelligence, professional training, and inspirational speaking. [211]

International Society of Bionic Engineering—The main aim is to bring people together from
different disciplines and nations in bionic science, to raise discussions, to create joint strategies

and to bring forward the education of the next generations.
[212]

Scientific
Journals

Biomimetics—It is an international, peer-reviewed, open-access journal on biomimicry and
bionics, published monthly online by MDPI. [213]

Journal of Biomimetics, Biomaterials and Biomedical Engineering—Its scope covers the fields of
biocompatible materials, biomedical engineering, and biomimetics (descriptions of subjects are

given following Medical Subject Headings MeSH).
[214]

Others
Biomimicry DesignLens—Summary of the basic tools of Biomimicry 3.8. It includes design

guidelines depending the start point: “from the challenge to biology” or “from biology
to design”.
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3.3. Evaluation of the Applicability of the Biomimetic Procedure

This section evaluates the applicability of biomimicry. It analyzes how its principles
promote (1) the achievement of innovative results and (2) the enhancement of creativity in
the search for sustainable engineering design solutions. In addition, it identifies the current
limitations posed by (1) the implementation of the process and (2) the selection and use of
available biomimetic tools. The selected case study was the search for solutions to control
(prevent or reduce) biofouling in marine vessels.

The technological systems operating in oceanic and maritime environments for re-
search and exploration maintain direct contact with the marine ecosystem, experiencing
the natural phenomenon of biofouling [216]. Various organisms, such as algae, barnacles,
and mollusks, adhere to submerged surfaces, affecting the durability of structures, nega-
tively impacting aesthetics, and increasing resistance to vessel advancement (resulting in
increased fuel consumption related to greenhouse gas emissions). Additionally, in the past
decade, the introduction of robotic systems has been promoted to streamline operations,
reduce operational and labor costs, and improve occupational risk control. Biofouling is a
serious problem for these unmanned vessels, as it can obstruct mechanical components
and electronic systems, compromising their operation. Furthermore, the design of these
systems [217–219] can involve environmental risks such as habitat alteration, oil, fuel, or
chemical waste emissions pollution, noise pollution, disruption of migration or feeding
patterns, thermal effects, and modification of ocean currents. For these reasons, the use
of biomimicry in the design of these systems has allowed for a reduction in environmen-
tal impact, optimizing aspects such as propulsion, stability, and maneuverability, among
others. This clear interest in the search for technological solutions for the marine environ-
ment based on nature has led to the evolution of these systems into biologically inspired
autonomous underwater vehicles (BAUV).

For the development of bioinspired solutions, the Biomimetic Design Spiral [220],
BioTRIZ [196] (due to its analogy to the TRIZ methodology, widely known in engineering
for creative problem solving), Biomimicry Taxonomy [5] and AskNature [6] were selected.
The latter facilitated the identification of the most relevant biological strategies according to
the specific function to be addressed (biofouling) in the context of use (marine environment).
Other methodologies or tools, such as DANE 2.0 and Idea-Inspire, were discarded (due
to their level of update, accessibility, or compatibility), as well as SAPPhIRE (due to the
high degree of definition of this causality model, which would be interesting if access to
the Idea-Inspire tool were available), and Bio-SBF and MBE (due to requiring a higher
degree of definition). UNO-BID was also excluded (being a combination of DANE and
SAPPhIRE, requiring greater definition and understanding), along with the free and open
access ontology software Protégé v.5.6.4 [221], to achieve an optimal result. Analyzing the
objective of technological development (biofouling control in vessels) in the context of use
(marine environment), the biomimetic design spiral (define, discover, abstract, emulate, and
evaluate) was applied, effectively guiding the stages and simplifying the necessary iteration
between the phases of observation, abstraction, emulation, and evaluation. Figure 10
summarizes the results of the spiral.

The problem to be solved is posed by the following question: How can we prevent
biofouling on a vessel? The context must be properly defined: the marine environment.
The answer begins with the biological phase (Table 7), where questions are formulated
about how nature performs similar functions.

In the discovery phase (or search for biological strategies), the AskNature resource [6]
was used to explore how nature addresses the issue of biofouling. This platform facilitated
the identification of organisms that have evolved with surfaces that repel the adhesion of
other living beings or exhibit behaviors resistant to this phenomenon. Subsequently, in
the abstraction phase, the biomimetic taxonomy [5] was used to decode the underlying
principles of natural strategies and translate them into technologically applicable design
solutions. Taxonomy streamlines the search in the AskNature database [6] and incorporates
Biomole [222], an add-on that identifies coexisting functions and streamlines research.
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In this case, the function “protect against physical damage” and subfunctions related to
protection against biotic and abiotic threats were selected. Table 8 provides a synthesis of
the biological strategies extracted from the database.

Biomimetics 2024, 9, x FOR PEER REVIEW 17 of 33 
 

 

interesting if access to the Idea-Inspire tool were available), and Bio-SBF and MBE (due to 
requiring a higher degree of definition). UNO-BID was also excluded (being a 
combination of DANE and SAPPhIRE, requiring greater definition and understanding), 
along with the free and open access ontology software Protégé v.5.6.4 [221], to achieve an 
optimal result. Analyzing the objective of technological development (biofouling control 
in vessels) in the context of use (marine environment), the biomimetic design spiral 
(define, discover, abstract, emulate, and evaluate) was applied, effectively guiding the 
stages and simplifying the necessary iteration between the phases of observation, 
abstraction, emulation, and evaluation. Figure 10 summarizes the results of the spiral. 

 
Figure 10. Design Spiral results. 

The problem to be solved is posed by the following question: How can we prevent 
biofouling on a vessel? The context must be properly defined: the marine environment. 
The answer begins with the biological phase (Table 7), where questions are formulated 
about how nature performs similar functions. 

Table 7. Definition and biologization of the design challenge. 

Concept Description 
Design question How can we avoid biofouling on a boat? 

Functions Avoid biofouling, protect, maintain physical integrity. 

Context Marine environment, humid environment, saline 
environment. 

Biologized questions 

How does nature… prevent biofouling in humid 
environments? 

… protect itself in salty environments? 
… maintain its physical integrity in the sea? 

Figure 10. Design Spiral results.

Table 7. Definition and biologization of the design challenge.

Concept Description

Design question How can we avoid biofouling on a boat?
Functions Avoid biofouling, protect, maintain physical integrity.
Context Marine environment, humid environment, saline environment.

Biologized questions
How does nature. . . prevent biofouling in humid environments?

. . . protect itself in salty environments?
. . . maintain its physical integrity in the sea?

Table 8. Biological strategies and models.

Biological Strategy Biological Model

Scales protect the skin:
cartilaginous fish.

The skin of cartilaginous fish is protected by a protective layer of
abrasive placoid scales, called denticles.

The skin influences
biofouling: the shark.

Rapidly flowing water near the surface of the skin would reduce
the time microorganisms have to settle on the surface and help

eliminate those that do settle. Another hypothesis is that the
microscopic shape of the shark scales and the topography of their

surface prevent the settlement of microorganisms.

Rough surfaces resist
biofouling: common mussel,

Mediterranean mussel.

The topography of the shell surface consists of a repeating pattern
of waves ~1–2 µm wide and ~1.5 µm high. Researchers studying
various shell surfaces and their microtopographies found that the
“waviness” (overall texture) of the surface correlates with both

strength and scale release.

Skin resists microorganisms:
pilot whale.

The skin of pilot whales resists microorganisms through
microscopic pores and nanoridges, surrounded by a secreted

enzymatic gel that denatures proteins and carbohydrates.
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Table 8. Cont.

Biological Strategy Biological Model

Stony corals have
microstructures on their

surface that prevent
biofouling.

Corals have several antifouling strategies. The first is a bioactive
antifouling of natural origin. The second is a low surface energy,

which decreases the adhesion force to the surface, preventing
organisms from adhering. The third is the shedding effect, in

which they use a slippery slime to “remove” attached organisms.
The fourth is the use of soft external tentacles that prevent

organisms from adhering to their surface. And finally, fluorescent
pigments are used to absorb harmful UV rays.

Figure 11 illustrates the brainstorming for solutions involving paints that mimic shark
skin or scales. Before moving on to the prototyping phase, it is important to perform a
systematic evaluation of the proposal. For this purpose, the Biomimicry Institute offers a
useful checklist [223].
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Applying this checklist emphasizes that the designed solution should be manufactured
locally, using recyclable or recycled materials that allow reconfiguration. It should exhibit
multifunctional characteristics for application in various areas, redefine a competitive
advantage based on nature-inspired strategies, and avoid toxic and polluting materials.
These are some aspects that easily fulfill the proposed solution, but others included in this
checklist related to product marketing or the competent company or organization have not
been considered because validation has been limited to the product-solution design.

On the one hand, the BioTRIZ method was applied, which is an adaptation of the
TRIZ methodology for inventive problem solving [196]. BioTRIZ relies on 40 inventive
principles (Table 9) and various associated parameters (Table 10), arranged in a BioTRIZ
contradiction matrix (Table 11), to identify and overcome obstacles that may arise in the
design process. Although it is possible to apply the QFDE (Quality Function Deployment)
matrix beforehand to translate needs into technical specifications, this was not considered
because of the study’s objective (evaluating the applicability of biomimetic methodologies).
Once the problem was identified, the area to be improved and the obstacle factor were
selected; in the case study, these were structure and time, respectively. Based on this
selection, the most relevant inventive principles are 1 (segmentation), 2 (extraction), and
4 (asymmetry), as detailed in Table 11.
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Table 9. The 40 principles of inventiveness.

Nº Principle Nº Principle

1 Segmentation 21 Rushing through
2 Extraction 22 Convert harm into benefit
3 Local quality 23 Feedback
4 Asymmetry 24 Mediator
5 Consolidation 25 Self-service
6 Universality 26 Copying
7 Nesting 27 Dispose
8 Counterweight 28 Replace of the mechanical system
9 Prior Counteraction 29 Pneumatic or hydraulic constructions
10 Prior action 30 Flexible membranes or thin films
11 Cushon in Advance 31 Porous material
12 Equipotentiality 32 Change the color
13 Do it in reverse. 33 Homogeneity
14 Spheroidality 34 Rejecting and regenerating parts
15 Dynamicity 35 Transformation of properties
16 Partial action 36 Phase transition

17 Transition into a new
dimension 37 Thermal expansion

18 Mechanical vibration 38 Accelerated oxidation
19 Periodic action 39 Inert environment
20 Continuity of useful action 40 Composite materials

Table 10. Parameters corresponding to BioTRIZ fields.

Fields Parameters

Substance Weight, Loss of substance, Amount of substance
Structure Stability, Complexity, Durability/Robustness/Life

Space Length, Area, Volume, Shape
Time Speed, Productivity/Reproduction, Duration of Action

Energy Force, Stress/Pressure, Strength, Temperature, Illumination
Intensity/Brightness, Energy/Power, Function Efficiency, Noise

Information
Security/Protection/Vulnerability, Harmful Effects by System, Harmful Effects

on System, Repairability/Healing, Adaptability, Ability to Detect/Precision,
Amount of Information (Memory)

Table 11. Application of a case study to the BioTRIZ matrix.

Parameters Substance Structure Time Space Energy/Field Information/
Adaptation

Substance 13, 31, 15, 17, 20,
40 1, 2, 3, 15, 24, 26 15, 19, 27, 29, 30 15, 31, 1, 5, 13 3, 6, 9, 25, 31, 35 3, 25, 26

Structure 1, 10, 15, 19 1, 15, 19, 24, 34 1, 2, 4 10 1, 2, 4 1, 3, 4, 15, 19, 24,
25, 35

Time 1, 3, 15, 20, 25,
38

1, 2, 3, 4, 6, 15,
17, 19 2, 3, 11, 20, 26 1, 2, 3, 4, 7, 38 3, 9, 15, 20, 22,

25 1, 2, 3, 10, 19, 23

Space 3, 14, 15, 25 2, 3, 4, 5, 10, 15,
19 1, 19, 29 4, 5, 14, 17, 36 1, 3, 4, 15, 19 3, 15, 21, 24

Energy/Field 1, 3, 13, 14, 17,
25, 31

1, 3, 5, 6, 25, 35,
36, 40 3, 10, 23, 25, 35 1, 3, 4, 15, 25 3, 5, 9, 22, 25, 32,

37 1, 3, 4, 15, 16, 25

Information/
Adaptation 1, 6, 22 1, 3, 6, 18, 22, 24,

32, 34, 40 2, 3, 9, 17, 22 3, 20, 22, 25, 33 1, 3, 6, 22, 32 3, 10, 16, 23, 25

In this context, the highlighted strategies include dividing the hull into independent
and easily removable parts, both superficially and structurally, as shown in Figure 12. To
generate biomimetic alternatives aligned with these principles, it was necessary to consult
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various sources, such as specialized journals, books, and biomimetic databases, to gather
information on relevant biological strategies [224–229].
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From this analysis, possible inspirations for segmentation are drawn, based on the
ability of snakes to shed their skin [229], or the ability of starfish to detach and regenerate
their limbs when attacked, even generating a new body structure from a detached limb [164].
The first alternative is proposed, involving the application of an easily removable layer on
the lower part of the vessel’s hull, below the waterline. This innovative approach would
not only facilitate biofouling removal but could also be reused for other purposes. The
principle of asymmetry can be applied by introducing surface roughness into submerged
areas, creating molds or paints that mimic fish scales. An example of this solution is
antifouling paints based on shark skin [226].

Finally, after generating alternatives, it is necessary to evaluate the feasibility and
suitability of the solutions. For this purpose, it is necessary to resort to other complementary
methods, as the validation stage is not included in BioTRIZ [58,196]. Specialized biomimicry
validation methods can be used (such as the Biomimicry Institute Checklist [223], which
provides a specialized procedure to ensure solutions are aligned with ecological and
sustainability principles) or alternative non-specialized evaluation methodologies (such
as Analytic Hierarchy Process (AHP) or multi-criteria analysis, which assess feasibility
from multiple perspectives including technical, economic and environmental factors).
Additionally, a Life Cycle Assessment (LCA) can be useful for verifying and comparing the
environmental impact of solutions.

Evaluation of Biomimetic Methodologies

To assess the applicability of the methodologies, a multi-criteria analysis was con-
ducted (Table 12), which allowed for identifying the limitations and challenges associated
with implementation and use, as well as highlighting those that best fit the design process,
fostering innovation and improving the creativity of the team. The methodologies were
evaluated using a set of semiquantitative indicators:

• Accessibility of tools: ease of search; open access/private license; ease of download
and installation.

• Implementation time: duration of the design process from conceptualization to prototyping.
• Technical barrier: technical obstacles encountered during implementation, including

limitations in the database, data availability and accessibility, materialization capability
(prototyping, simulation).
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• Theory-practice gap: difference between expected results based on biomimetic theory
and actual results obtained in practical applications.

• Integration with conventional design and development processes: integration compatibility.
• Usability according to resource nature: availability of interactive and digital platforms;

or static resources (such as manuals, PDF guides, or checklists).
• Required knowledge level, adaptability to users: need for specialized knowledge in

biological systems; intuitive application by professionals without specialization in
underlying biological principles.

Table 12. Multicriteria analysis of biomimetic methodologies.

Indicator Design Spiral BioTRIZ AskNature DANE 2.0 Idea-Inspire

Accessibility of the tool High Medium High Low Low
Implementation time High Low Medium No data No data

Technical barrier No No No Yes Yes
Gap between theory and practice No No No Yes Yes

Integration with existing design processes High High High High High
Accessibility and usability Yes Yes Yes No No
Knowledge level required Low High Low High High

Among the methodologies and tools applied, the Design Spiral [223] stands out as
a valuable initiation into biomimicry, fostering creative thinking under this approach.
However, combining BioTRIZ [58,196] with other design tools and search engines such as
AskNature [6] can produce a more comprehensive and defined outcome. BioTRIZ excels in
the emulation phase because of its defined design principles, facilitating the translation of
these principles into specific technical solutions. DANE 2.0 and Idea-Inspire are mentioned
in numerous publications as tools for biomimicry applicability [230–232], but currently face
accessibility problems.

4. Discussion

The results of the literature review show a growing trend toward the adoption and
development of knowledge in engineering, materials science, and architecture, highlighting
substantial progressive advancements in biodesign, especially in robotics. The interest in
biomimicry as a tool for technological advancement in engineering is driven by the need
to enhance the functionality, efficiency, and sustainability of the proposed solutions. The
areas that experienced the greatest growth included robotics, primarily for exploration,
rescue missions, and agriculture tasks; and the energy sector, focused on optimizing the
development and efficiency of renewable technologies. In addition, the development
of bioinspired materials and manufacturing methods has significant applications in the
medicine, construction, and aerospace industries. In architecture, biomimicry emerges as
a tool for creating more sustainable environments and improving adaptability, durability,
and aesthetics.

This trend is driven, first, by the advantages that biomimicry offers at a strategic level
for the organization; significant improvements are identified in planning processes and
project success achievement. Particularly notable is the enhancement in the scope and
optimization of timelines, allowing for accelerated development times. Biomimicry acts
as a catalyst for creativity, fostering the generation of innovative ideas and opening new
business opportunities. In this way, the organization is on a strategic path of sustainable
innovation. At the operational level, compared to traditional design methods, biomimicry
significantly enhances the social and environmental performance of developed technologi-
cal solutions, including its adaptability and resilience to environmental conditions, energy
efficiency, and a significant reduction in environmental impact.

In contrast, there are sectors where biomimicry has not achieved widespread applica-
bility, such as automation, wastewater treatment, HVAC and communications, with few
developments. This situation can be attributed, in part, to the challenges associated with
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research and a deep understanding of biological principles, as well as the complexity of
abstracting them into viable and scalable solutions. Therefore, the main barrier identified
in this research is the need for multidisciplinary teams that combine biological knowledge
with specific technical competencies in each sector. Currently, it is not common to find
industry teams that integrate specialized profiles in natural environments and ecosystems;
this poses an obstacle to the adoption of biomimetic approaches.

Despite these difficulties, biomimicry can be an opportunity to achieve sustainable
development goals in the industry. It should be noted that progress in the SDGs generally
faces obstacles mainly due to the lack of alignment between traditional engineering methods
and emerging sustainable approaches. This discrepancy arises from the challenge of
balancing economic feasibility with desired outcomes in terms of environmental and social
impact. Adopting integrated solutions or proposals that aim to simultaneously improve
social impact, environmental performance, and quality, along with technical and economic
feasibility, represents a challenge for companies and organizations. These strategies often
involve high complexity in management, substantial initial investments, and subsequent
maintenance costs. At times, sustainable proposals can compromise established economic
and technical objectives. Similarly, after implementation, clean technologies demand
new and specific specialized operational knowledge. Additionally, it must be noted that
often the benefits materialize in the medium to long term and not always in monetary
gains. Biomimicry can help overcome these obstacles by streamlining and providing
flexibility in the design and manufacturing process of sustainable solutions, balancing
social, environmental, and economic dimensions. To achieve this, it is necessary to establish
a framework complemented by agile tools and comprehensive databases. However, none
of the biomimicry approaches and methodologies available allow for a comprehensive
integration of all phases of an engineering project from planning and design to modeling,
simulation, optimization, or analysis. Similarly, while various resources are available, these
are independent of each other, which complicates their combined application within the
same project. Therefore, it is essential to unify and simplify the procedure by gathering
user guides, methodology, tools, and digital resources that are easily accessible. It also
underscores the current challenge of seeking and accessing digital resources, as well as
selecting the most suitable ones based on the objective and expected outcome.

The analysis carried out in this research reveals several strategic directions for biom-
imicry research, which will maximize its value and applicability in the industrial sector.

• Development and establishment of a standardized framework: create a standard frame-
work to guide the biomimetic process coherently, intuitively, and easily integrable
with other procedures for analyzing social, economic, and environmental impacts
(such as Life Cycle Assessment).

• Development of an integrated procedure that combines a variety of complementary
resources, including methodology, technical guidelines, and support tools such as
databases and evaluators. The procedure should be easily integrated into conventional
technological development approaches.

• Enhancing the availability and access to quality biomimetic resources, including
expanding and updating databases, specialized software, or compilations of case
studies that can serve as references.

• Finally, beyond the research sphere, it is important for organizations to promote the for-
mation of multidisciplinary teams with experts in biological principles. Additionally,
creating these teams is more effective from the initial stages of engineering educa-
tion at universities, where competencies related to the proper mimetic integration of
technology into ecosystems are included.

5. Conclusions

Nature has provided answers to a variety of phenomena, processes, and structures
with minimal complexity, optimizing outcomes over millions of years of evolution. This
fact underscores the interest in using nature as a reference to develop industrial ecosystems
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similar to natural ones, addressing the central problem of our time: the clash between
industrial development and the biophysical limits of the planet. In this context, biomimicry
emerges as a versatile strategy that can be applied in all engineering fields. Despite the
significant body of knowledge currently available, seeking and using resources often
presents challenges. There is a growing interest in creating unified platforms that facilitate
access to methodologies, databases, evaluation tools, and other digital resources to simplify
the application of biomimicry in engineering projects. The goal is to enhance and accelerate
the proposal and implementation of more sustainable and innovative solutions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomimetics9090523/s1. Table S1 includes an extensive biomimicry
taxonomy of Table 5, listing specific functions along with application examples.
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Systems; Ceschin, F., Gaziulusoy, İ., Eds.; Routledge: London, UK, 2019; ISBN 978-042-945-651-0.

172. Salta, M.; Wharton, J.A.; Stoodley, P.; Dennington, S.P.; Goodes, L.R.; Werwinski, S.; Mart, U.; Wood, R.J.K.; Stokes, K.R. Designing
Biomimetic Antifouling Surfaces. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 4729–4754. [CrossRef]

173. Wang, M.; Suda, T. The Bio-Networking Architecture: A Biologically Inspired Approach to the Design of Scalable, Adaptive, and
Survivable/Available Network Applications. In Proceedings of the Symposium on Applications and the Internet, San Diego, CA,
USA, 8–12 January 2001.

174. Biology, S.R. Search the Structures of Bionic Principles for Designing Tensegrity Structures. Adv. Environ. Biol. 2014, 8, 714–721.
175. Tagg, R.; Bravo, C. Biodesign: The Process of Innovating Medical Technologies. J. Commer. Biotechnol. 2010, 16, 362–364. [CrossRef]
176. Yao, J.; Wei, M. A New Bionic Architecture of Information System Security Based on Data Envelopment Analysis. In Proceedings of

the 2014 International Conference on Management of e-Commerce and e-Government, Shanghai, China, 31 October–2 November
2014; pp. 93–97.

177. Magne, P.; Douglas, W.H. Rationalization of Esthetic Restorative Dentistry Based on Biomimetics. J. Esthet. Restor. Dent. 1999, 11,
5–15. [CrossRef] [PubMed]

178. Ratner, B.D. Replacing and Renewing: Synthetic Materials, Biomimetics, and Tissue Engineering in Implant Dentistry. J. Dent.
Educ. 2001, 65, 1340–1347. [CrossRef] [PubMed]

179. Solga, A.; Cerman, Z.; Striffler, B.F.; Spaeth, M.; Barthlott, W. The Dream of Staying Clean: Lotus and Biomimetic Surfaces.
Bioinspir. Biomim. 2007, 2, 126–134. [CrossRef] [PubMed]

180. Araghizadeh, Z. An Analysis of Architectural Characteristics of an Aquarium from Bionic Design Approach. Eur. Online J. Nat.
Soc. Sci. Proc. 2014, 3, 1–6.

181. Banu, M.; Epureanu, A.; Coman, M. Biomimetics Approaches of the Deformation Mechanisms in the Crystalline Materials. In
Proceedings of the 11th WSEAS Int. Conference on Mathematical Methods, Computational Techniques and Intelligent Systems,
Baltimore, MD, USA, 7–9 November 2009.

182. Rant, D.; Pavko-Čuden, A. Self-foldable knitted bags for household storage of bakery products based on biomimetics. In
Proceedings of the 8th Conference on Information and Graphic Arts Technology, Ljubljana, Slovenia, 7–8 June 2018.

183. Boonma, P.; Champrasert, P. Bisnet: A Biologically-Inspired Architecture Forwireless Sensor Networks. In Proceedings of the
International Conference on Autonomic and Autonomous Systems (ICAS’06), Silicon Valley, CA, USA, 19–21 July 2006; p. 54.

184. Ferraro, V.; Canina, M. A New Approach to Wearable Systems: Biodesign beyond the Boundaries. In Proceedings of the 3rd
International Conference on Research into Design Engineering (ICORD 11), Bangalore, India, 10–12 January 2011.

185. Santulli, C.; Langella, C. Introducing Students to Bio-Inspiration and Biomimetic Design: A Workshop Experience. Int. J. Technol.
Des. Educ. 2011, 21, 471–485. [CrossRef]

186. Dressler, F.; Magazine, O.A. Bio-Inspired Networking: From Theory to Practice. IEEE Commun. Mag. 2010, 48, 176–183. [CrossRef]
187. Tang, Z.; Wang, Y.; Podsiadlo, P.; Kotov, N. Biomedical Applications of Layer-by-Layer Assembly: From Biomimetics to Tissue

Engineering. Adv. Mater. 2006, 18, 3203–3224. [CrossRef]
188. Berends, S. VDI Vergibt International Bionic Award|VDI. Available online: https://www.vdi.de/news/detail/nachwuchswissen-

schaftler-gewinnen-mit-autonom-navigierendem-roboter (accessed on 17 May 2024).
189. AskNature. The Beak That Inspired a Bullet Train. Biological Strategy. Available online: https://asknature.org/strategy/beak-

provides-streamlining/ (accessed on 29 February 2024).
190. Gurave, P.M.; Nandan, B.; Srivastava, R.K. Fish-Gill Inspired Multifunctional Nanofibrous Membrane for Efficient Demulsification

and Pollutant Sorption. J. Membr. Sci. 2023, 683, 121850. [CrossRef]
191. Biomiméticos. Applied Biomimicry. Essential Principles of Biomimicry. Available online: https://biomimesisaplicada.wordpress.

com/2013/06/10/principios-esenciales-de-la-biomimesis/ (accessed on 29 June 2023).
192. Benyus, J.M. Biomimicry; William Morrow & Co: New York City, NY, USA, 2009.
193. McDonough, W.; Braungart, M. Cradle to Cradle: Remaking the Way We Make Things; Farrar, Straus and Giroux: New York, NY,

USA, 2002.
194. Graedel, T.E.; Allenby, B.R. Industrial Ecology; Prentice Hall: Upper Saddle River, NJ, USA, 2003.
195. Blount, E.; Clarimón, L.; Cortés, A.; Riechmann, J.; Romano, D. Industria Como Naturaleza: Hacia La Producción Limpia; Los Libros

de la Catarata: Madrid, Spain, 2003.
196. Bogatyrev, N.; Bogatyreva, O. TRIZ-Based Algorithm for Biomimetic Design. Procedia Eng. 2015, 131, 377–387. [CrossRef]
197. Cao, G.; Tan, R.; Zhang, R.; Jiang, P. Study on conceptual design process model based on effects. China Mech. Eng. 2005, 16,

82–827.
198. Rosa, F.; Cascini, G.; Baldussu, A. UNO-BID: Unified Ontology for Causal-Function Modeling in Biologically Inspired Design. Int.

J. Des. Creat. Innov. 2014, 3, 177–210. [CrossRef]
199. LabManager. Design Intelligence Lab. Biologically-Inspired Design. Available online: https://dilab.gatech.edu/biologically-

inspired-design/ (accessed on 16 March 2024).
200. Bhatt, A.N.; Majumder, A.; Chakrabarti, A. Analyzing the Modes of Reasoning in Design Using the SAPPhIRE Model of Causality

and the Extended Integrated Model of Designing. Artif. Intell. Eng. Des. Anal. Manuf. 2021, 35, 384–403. [CrossRef]

https://doi.org/10.1115/1.4006145
https://doi.org/10.1098/rsta.2010.0195
https://doi.org/10.1057/jcb.2010.22
https://doi.org/10.1111/j.1708-8240.1999.tb00371.x
https://www.ncbi.nlm.nih.gov/pubmed/10337285
https://doi.org/10.1002/j.0022-0337.2001.65.12.tb03493.x
https://www.ncbi.nlm.nih.gov/pubmed/11780652
https://doi.org/10.1088/1748-3182/2/4/S02
https://www.ncbi.nlm.nih.gov/pubmed/18037722
https://doi.org/10.1007/s10798-010-9132-6
https://doi.org/10.1109/MCOM.2010.5621985
https://doi.org/10.1002/adma.200600113
https://www.vdi.de/news/detail/nachwuchswissen-schaftler-gewinnen-mit-autonom-navigierendem-roboter
https://www.vdi.de/news/detail/nachwuchswissen-schaftler-gewinnen-mit-autonom-navigierendem-roboter
https://asknature.org/strategy/beak-provides-streamlining/
https://asknature.org/strategy/beak-provides-streamlining/
https://doi.org/10.1016/j.memsci.2023.121850
https://biomimesisaplicada.wordpress.com/2013/06/10/principios-esenciales-de-la-biomimesis/
https://biomimesisaplicada.wordpress.com/2013/06/10/principios-esenciales-de-la-biomimesis/
https://doi.org/10.1016/j.proeng.2015.12.417
https://doi.org/10.1080/21650349.2014.941941
https://dilab.gatech.edu/biologically-inspired-design/
https://dilab.gatech.edu/biologically-inspired-design/
https://doi.org/10.1017/S0890060421000214


Biomimetics 2024, 9, 523 30 of 30

201. Chakrabarti, A.; Sarkar, P.; Leelavathamma, B.; Nataraju, B.S. A Functional Representation for Aiding Biomimetic and Artificial
Inspiration of New Ideas. Artif. Intell. Eng. Des. Anal. Manuf. 2005, 19, 113–132. [CrossRef]

202. Piñatex—Ananas Anam. Available online: https://www.ananas-anam.com/sales-sampling/ (accessed on 17 March 2024).
203. SNEAKERS BY PIÑATEX® X ZARA—Beige. ZARA United States. Available online: https://www.zara.com/us/en/sneakers-

by-pinatex--x-zara-p15357010.html (accessed on 17 March 2024).
204. Zygote Quarterly. Showing Biologically Inspired Design Using Case Studies, News, and Articles Which Are Exemplary in Their

Impact on the Field, Rigorous in Their Methodology, and Relevant to Today’s Reader. Available online: https://zqjournal.org/
(accessed on 16 March 2024).

205. Global Design Challenge—Biomimicry Institute. Available online: https://biomimicry.org/globaldesignchallenge/ (accessed on
16 March 2024).

206. Applied Biomimetics Marine Hydrodynamics. Available online: https://www.abmhydro.com/ (accessed on 16 March 2024).
207. Nanophotonics|Maxwell Centre. Nanophotonics. Available online: https://www.maxwell.cam.ac.uk/research-and-impact/

nanophotonics (accessed on 16 March 2024).
208. Maxwell Centre. Available online: https://www.maxwell.cam.ac.uk/ (accessed on 16 March 2024).
209. Material Pathways. Available online: https://materialpathways.dk/ (accessed on 16 March 2024).
210. Biomimicry Design Toolbox. Available online: https://toolbox.biomimicry.org/ (accessed on 16 March 2024).
211. Biomimicry 3.8—Innovation Inspired by Nature. Available online: https://biomimicry.net/ (accessed on 16 March 2024).
212. International Society of Bionic Engineering. Available online: https://www.isbe-online.org/ (accessed on 16 March 2024).
213. Biomimetics. An Open Access Journal from MDPI. Available online: https://www.mdpi.com/journal/biomimetics (accessed on

16 March 2024).
214. Journal of Biomimetics, Biomaterials and Biomedical Engineering. Available online: https://www.scientific.net/JBBBE/Details

(accessed on 16 March 2024).
215. DesignLens: Life’s Principles—Biomimicry 3.8. Available online: https://biomimicry.net/the-buzz/resources/designlens-lifes-

principles/ (accessed on 16 March 2024).
216. Qian, P.Y.; Cheng, A.; Wang, R.; Zhang, R. Marine Biofilms: Diversity, Interactions and Biofouling. Nat. Rev.Microbiol. 2022, 20,

671–684. [CrossRef]
217. Mr. Trash Wheel. Available online: https://www.mrtrashwheel.com/technology/ (accessed on 16 March 2024).
218. Tunabot. Available online: https://www.imnovation-hub.com/es/ciencia-y-tecnologia/tunabot-robot-aprende-nadadores-

veloces/?_adin=02021864894 (accessed on 16 March 2024).
219. Ren, Z.; Hu, W.; Dong, X.; Sitti, M. Multi-Functional Soft-Bodied Jellyfish-like Swimming. Nat. Commun. 2019, 10, 2703. [CrossRef]
220. Biomimicry Institute. Biomimicry Toolbox. The Biomimicry Design Process. Available online: https://toolbox.biomimicry.org/

methods/process/ (accessed on 16 March 2024).
221. Protégé. Available online: https://protege.stanford.edu/ (accessed on 16 March 2024).
222. AskNature. Biomole. Available online: http://biomole.asknature.org/ (accessed on 17 March 2024).
223. Biomimicry Institute. Biomimicry Toolbox. Evaluate: Nature’s Unifying Patterns-Design Checklist. Available online: https:

//toolbox.biomimicry.org/es/ (accessed on 17 March 2024).
224. Scales Protect Skin. Available online: https://asknature.org/strategy/scales-protect-skin/ (accessed on 17 March 2024).
225. Scales Manipulate Flow. Available online: https://asknature.org/strategy/scales-manipulate-flow/ (accessed on 17 March 2024).
226. Ridged Surfaces Resist Biofouling. Available online: https://asknature.org/strategy/ridged-surfaces-resist-biofouling/ (accessed

on 17 March 2024).
227. Antifouling Coating Inspired by Corals. Available online: https://asknature.org/innovation/antifouling-coating-inspired-by-

corals/ (accessed on 17 March 2024).
228. Nature Curiosity: Why Do Snakes Shed Their Skin?|Forest Preserve District of Will County. Available online: https://www.

reconnectwithnature.org/news-events/the-buzz/nature-curiosity-why-do-snakes-shed-their-skin/ (accessed on 17 March 2024).
229. Limb Shedding Assists Escape. Available online: https://asknature.org/strategy/limb-shedding-assists-escape/ (accessed on 17

March 2024).
230. Badarnah, L. Form Follows Environment: Biomimetic Approaches to Building Envelope Design for Environmental Adaptation.

Buildings 2017, 7, 40. [CrossRef]
231. Maidin, S.; Romlee, W.F.A.; Mohamed, A.S.; Ung, J.W.H.; Akmal, S. Tools to Incorporate Biomimetic into Product Design—A

Review. J. Adv. Manuf. Technol. 2018, 12, 189–202.
232. Qamar, I.P.S.; Stawarz, K.; Robinson, S.; Goguey, A.; Coutrix, C.; Roudaut, A. Morphino: A Nature-Inspired Tool for the Design of

Shape-Changing Interfaces. In Proceedings of the DIS’20: 2020 ACM Designing Interactive Systems Conference, Eindhoven, The
Netherlands, 6–10 July 2020; pp. 1943–1958.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1017/S0890060405050109
https://www.ananas-anam.com/sales-sampling/
https://www.zara.com/us/en/sneakers-by-pinatex--x-zara-p15357010.html
https://www.zara.com/us/en/sneakers-by-pinatex--x-zara-p15357010.html
https://zqjournal.org/
https://biomimicry.org/globaldesignchallenge/
https://www.abmhydro.com/
https://www.maxwell.cam.ac.uk/research-and-impact/nanophotonics
https://www.maxwell.cam.ac.uk/research-and-impact/nanophotonics
https://www.maxwell.cam.ac.uk/
https://materialpathways.dk/
https://toolbox.biomimicry.org/
https://biomimicry.net/
https://www.isbe-online.org/
https://www.mdpi.com/journal/biomimetics
https://www.scientific.net/JBBBE/Details
https://biomimicry.net/the-buzz/resources/designlens-lifes-principles/
https://biomimicry.net/the-buzz/resources/designlens-lifes-principles/
https://doi.org/10.1038/s41579-022-00744-7
https://www.mrtrashwheel.com/technology/
https://www.imnovation-hub.com/es/ciencia-y-tecnologia/tunabot-robot-aprende-nadadores-veloces/?_adin=02021864894
https://www.imnovation-hub.com/es/ciencia-y-tecnologia/tunabot-robot-aprende-nadadores-veloces/?_adin=02021864894
https://doi.org/10.1038/s41467-019-10549-7
https://toolbox.biomimicry.org/methods/process/
https://toolbox.biomimicry.org/methods/process/
https://protege.stanford.edu/
http://biomole.asknature.org/
https://toolbox.biomimicry.org/es/
https://toolbox.biomimicry.org/es/
https://asknature.org/strategy/scales-protect-skin/
https://asknature.org/strategy/scales-manipulate-flow/
https://asknature.org/strategy/ridged-surfaces-resist-biofouling/
https://asknature.org/innovation/antifouling-coating-inspired-by-corals/
https://asknature.org/innovation/antifouling-coating-inspired-by-corals/
https://www.reconnectwithnature.org/news-events/the-buzz/nature-curiosity-why-do-snakes-shed-their-skin/
https://www.reconnectwithnature.org/news-events/the-buzz/nature-curiosity-why-do-snakes-shed-their-skin/
https://asknature.org/strategy/limb-shedding-assists-escape/
https://doi.org/10.3390/buildings7020040

	Introduction 
	Methodology 
	Results 
	Bibliometric Analysis 
	Biomimetics: Analysis of the Fundamentals and Available Framework 
	Evaluation of the Applicability of the Biomimetic Procedure 

	Discussion 
	Conclusions 
	References

