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Abstract: We introduce a novel dual redox mediator synthesized by covalently linking ferrocene
dicarboxylic acid (FcDA) and thionine (TH) onto a pre-treated glassy carbon electrode. This unique
structure significantly enhances the electro-oxidation of dopamine (DA) and the reduction of hydro-
gen peroxide (H2O2), offering a sensitive detection method for both analytes. The electrode exhibits
exceptional sensitivity, selectivity, and stability, demonstrating potential for practical applications
in biosensing. It facilitates rapid electron transfer between the analyte and the electrode surface,
detecting H2O2 concentrations ranging from 1.5 to 60 µM with a limit of detection (LoD) of 0.49 µM
and DA concentrations from 0.3 to 230 µM with an LoD of 0.07 µM. The electrode’s performance was
validated through real-sample analyses, yielding satisfactory results.

Keywords: redox mediator; electro-oxidation; limit of detection; ferrocene; thionine

1. Introduction

The advancement of modern analytical techniques for human health management is
driven by the need to develop sustainable, reliable, and user-friendly systems for moni-
toring analytes in various matrices, including environmental samples, food commodities,
and biological fluids [1,2]. These techniques emphasize using environmentally friendly
materials and reduced reagent quantities to minimize chemical waste production.

Hydrogen peroxide (H2O2) is not only industrially significant but also a well-known
byproduct of numerous enzymatic reactions, making its accurate quantification critical
in food industries, environmental monitoring, and clinical applications [3]. As a typical
reactive oxygen species, H2O2 can induce oxidative stress damage to cells, including
neurons. The brain, with its high oxygen consumption, elevated polyunsaturated fatty acid
content, and relatively low antioxidant defenses, is particularly susceptible to oxidative
stress. Evidence suggests that oxidative stress may play a role in neurodegenerative
disorders characterized by the loss of dopamine (DA)-producing neurons [4]. Abnormal
DA levels are linked to diseases such as Parkinson’s, Alzheimer’s, senile dementia, and
schizophrenia [5,6]. Understanding the relevance or interplay between DA and oxidative
stress levels correlated with H2O2 levels is of significant interest [7].

Direct electrochemical detection of DA [8–16] and H2O2 [17–23] is well-known but typ-
ically requires sophisticated electrode design for optimization, stability, and reproducibility
over a wide concentration range. This is often achieved using nanomaterials, including
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conducting polymers [24,25], graphene [26–29], and redox mediators [30–34]. Early detec-
tion of DA and nitrophenol utilizing thionine (TH) as a redox mediator immobilized on
glassy carbon (GC) electrodes has been reported [35–38]. Recent studies have highlighted
the use of bi-mediators capable of detecting dual analytes. The complex form of nickel
hexacyanoferrate and TH on GC electrodes were used for the oxidation of gallic acid and
reduction of H2O2 [12,39], respectively, while the concept of bi- or dual-mediators for
electrochemical sensors has been rarely explored.

In this study, we developed a novel electrode with a complex dual redox mediator
consisting of ferrocene dicarboxylic acid (FcDA) directly linked to a TH unit. The dual
mediator was synthesized by covalently linking FcDA and TH, followed by immobilization
onto a pre-treated GC surface via hydrogen bonding interactions, resulting in the formation
of GC/TH−FcDA for electrochemical sensor applications, as shown in Scheme 1. We inves-
tigated the electrochemical behavior of GC/TH−FcDA for the electrocatalytic detection of
both DA and H2O2 by each electrochemically active moiety of FcDA and TH over a wide
potential range at a single electrode. GC/TH−FcDA exhibited stable and reproducible
sensing capabilities for dual analytes and can be extended for simultaneous detection of
multiple analytes through simple electrode design.
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Scheme 1. Electrochemical oxidation of DA and reduction of H2O2 on GC/TH−FcDA.

2. Materials and Methods
2.1. Reagents and Materials

All reagents used in this study were of analytical grade and purchased from Sigma-
Aldrich (St.Louis, MO, USA) without further purification. Double-distilled water (18.2 MΩ·cm),
obtained from a Millipore Milli-Q bio cell A10 water purification system (Merck, Darm-
stadt, Germany), was employed throughout the experiments. TH, FcDA, N-ethyl-N’-
(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC.HCl), hydroxybenzotriazole
(HOBt), DA, ascorbic acid (AA), uric acid (UA), disodium hydrogen phosphate, sodium
dihydrogen phosphate, and H2O2 were used as received. A phosphate-buffer solution (PBS,
0.1 M, pH 7) was prepared by mixing aqueous solutions of disodium hydrogen phosphate
and sodium dihydrogen phosphate. All electrochemical measurements were conducted at
ambient temperature. Before measurements, the electrolyte was purged with inert nitrogen
gas for 5 min to eliminate active oxygen interference.

2.2. Instrumentation

Electrochemical experiments were conducted using a CHI-430A potentiostat (CH
Instruments, Austin, TX, USA) with a standard three-electrode setup. The reference and
auxiliary electrodes consisted of an Ag/AgCl electrode saturated with KCl and a platinum
wire. The working electrodes were GC electrodes with a diameter of 3 mm, modified
with TH-FcDA to obtain GC/TH−FcDA. Fourier-transform infrared (FT-IR) measurements
were performed in AT-IR mode using a JASCO FT-IR-4600 instrument (Tokyo, Japan). The
surface morphology of materials was characterized by scanning electron microscopy (SEM,
JEOL JSM-7100, Tokyo, Japan).
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2.3. Preparation of TH-FcDA

TH was covalently linked to FcDA in a 2:1 molar ratio using EDC.HCl and HOBt as
cross-linking reagents [12], as depicted in Figure 1. FcDA (1 mM) and 2 mmol of EDC.HCl
were stirred for 2 h to activate the carboxylic acid (-COOH) groups of ferrocenes for o–
acylurea formation. Subsequently, 2 mM of HOBt was added to the reaction mixture and
stirred vigorously for another 2 h to facilitate ester formation. Then, 2 mmol of TH was
introduced, and the reaction mixture was stirred vigorously to promote the reaction of the
amine (-NH2) group in TH with the ester group, resulting in an amide bond formation. The
covalently bonded TH-FcDA material was precipitated, washed with ethanol to remove
unreacted precursors, and dried in a vacuum oven at 80 ◦C for 6 h and used for further
electrochemical measurements.
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Figure 1. Schematic illustration of the preparation process of the thionine-linked ferrocene dicar-
boxylic acid-modified GC electrode.

2.4. Modification of GC with TH-FcDA

The GC was surface-cleaned and polished prior to modification. The GC’s surface was
pre-treated using a chronoamperometric technique previously reported by our group [15,33,34].
The GC was immersed in 0.1 M PBS (pH 7) and subjected to a constant potential of +1.8 V
for 300 s. The TH-FcDA solution (5 mg/mL in dimethyl sulfoxide, 3 µL) was then drop-
casted onto the pre-treated GC surface and dried at ambient temperature. The modified
electrode (GC/TH−FcDA) was subsequently washed with water to remove any unbonded
material and dried under an inert atmosphere.

3. Results and Discussions
3.1. FT-IR and Morphology Studies

The chemical groups of FcDA, TH, and TH-FcDA were characterized via FT-IR, as
shown in Figure 2A. The spectra revealed the presence of the -COOH group in FcDA, the
NH2 group in TH, and the amide group in TH-FcDA. The IR bands at 758 and 897 cm−1

correspond to the aromatic C-H bending in all three materials. In FcDA, the bands at
1300 and 1672 cm−1 confirmed the presence of C-O and C=O stretching vibrations of the
-COOH group, respectively [40]. In addition, the IR band at 2926 cm−1 corresponds to the C-
H stretching in TH [41]. Furthermore, the peaks at 3130 and 3323 cm−1 verified the existence
of -NH2 group in TH. Conversely, the C=O stretching vibration shifted to 1606 cm−1 with
slight broadening owing to the at -CO-NH- bond formation in TH-FcDA. Therefore, the
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FT-IR analysis confirmed the formation of the TH-FcDA complex. The morphologies of
these materials were analyzed using SEM measurements. The FcDA showed an aggregated
and interconnected nanoparticle structure (Figure S1A). In addition, the TH revealed the
aggregated nanonetwork-like morphology (Figure S1B). As shown in Figure 2B, the TH-
FcDA exhibited a mixed structure with the combination of the interconnected and cluster
type of nanoparticle structure and cubic type structure. These structural variations between
the materials suggest the formation of TH-FcDA.
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3.2. Electrochemical Measurements

The cyclic voltammetric (CV) behaviors of GC, GC/FcDA, GC/TH, and GC/TH−FcDA
were investigated in a 0.1 M PBS at pH 7 with a scan rate of 50 mV/s, and the results
are presented in Figure 3. The ferrocene oxidation and reduction peaks (Epa and Epc,
respectively) were observed at 0.28 and 0.21 V, respectively, with a ∆Ep of 70 mV for
GC/FcDA. In comparison, the redox peaks for the formation of TH to leuco–TH were
located with Epa and Epc of −0.21 and −0.18 V, respectively, with ∆Ep of 30 mV for GC/TH.
In the redox complex of the TH-FcDA-modified GC, the ferrocene redox peak shifted
negatively, and the current also increased, indicating the TH-mediated redox reaction of
FcDA. The TH redox peak current increased in the GC/TH−FcDA electrode compared to
the GC/TH electrode (∆Ep = 10 mV) with the ∆Ep of 40 mV. This can be attributed to the
improved charge transfer properties of the linked moieties resulting from the hydrogen
bonding interactions between the -NH2 groups of TH and –COOH functionalities of GC, as
schematically presented in Figure 1.

Figure 4A illustrates the CV response of GC/TH−FcDA in 0.1 M PBS at pH 7, with
DA concentrations varying from 0.3 to 4.5 mM and H2O2 concentrations from 3 to 22 µM.
The results demonstrate a linear increase in the anodic peak current density (Jpa) within the
redox potential of FcDA (0.16 V) upon adding DA, with a linear regression equation of Jp
(mA/cm2) = 9.40 [DA] (mM) + 7.01 and a correlation coefficient, R2 = 0.9983 (Figure S2A1).
The reduction peak current of TH also increases as the concentration of DA increases in
successive CV measurements. This is likely due to the polymerization of DA onto the
electrode surface. Additionally, a linear increase in cathodic peak current density (Jpc)
was observed at −0.2 V with increasing H2O2 concentrations, corresponding to a linear
regression equation of Jp (µA/cm2) = 2.07 [H2O2] (µM) + 14.08 (R2 = 0.9993) (Figure S2A2).
These demonstrate the low LoDs of 2.77 and 1.37 µM for DA and H2O2, respectively. [12,38]
These CV findings suggest that the oxidation of DA to dopamine-o-quinone occurs at FcDA
moieties, while the reduction of H2O2 to H2O and ½O2 occurs at TH moieties (Scheme 1).
This was further confirmed using density functional theory (DFT), as detailed in Section 3.5.

Moreover, the different pulse voltammetry (DPV) response of GC/TH−FcDA in
0.1 M PBS at pH 7 with DA concentrations ranging from 0.3 to 230 µM and H2O2 from

1.5 to 60 µM is shown in Figure 4B. The calibration curve for the electrochemical detection of
DA and H2O2 using the GC/TH−FcDA demonstrated a good linear relationship between
the peak currents and the concentrations, spanning 0.3 to 230 µM for DA and 1.5 to
60 µM for H2O2 (Figure S2B). The electrode exhibited a linear regression equation of Jpa
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(µA/cm2) = 0.59 [DA] (µM) + 29.84 with an R2 of 0.9997 and an estimated sensitivity of
0.59 µA/µM/cm2, indicating the high electrocatalytic activity towards the oxidation of DA
at 0.16 V. The LoD was determined to be 0.07 µM, which is lower than previously reported
values for similar electrodes (Table S1A) [12–19]. Furthermore, for H2O2 detection, the
electrode demonstrated a sensitivity of 0.68 µA/µM/cm2 with a linear regression equation
of Jpc (µA/cm2) = 0.68 [H2O2] + 57.23 with R2 = 0.9996 and an LoD (S/N = 3) of 0.49 µM,
exceeding earlier findings (Table S1B) [12,21–27].
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Figure 5(A1,A2) presents the CV response of GC/TH−FcDA in 0.1 M PBS at pH 7,
featuring both 10 µM of DA and H2O2, with scan rates ranging from 10 to 300 mV/s. The
voltammograms reveal that both the Jpa and Jpc, corresponding to the redox potential of
FcDA moieties at 0.15 V, indicative of DA oxidation, increase with the square root of the
scan rate. These observations suggest that the DA oxidation process is diffusion-controlled,
consistent with findings reported in an earlier study [38]. Similarly, the Jpc for the reduction
of H2O2 increased with the scan rate, which showed linear behavior between Jpc and the
square root of the scan rate, indicating a diffusion-controlled reduction reaction of H2O2,
aligning with previous reports [19].
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Figure 5. CV response of GC/TH−FcDA in 0.1 M PBS (pH 7) in the presence of (A1) 10 µM DA and
(A2) 10 µM H2O2 at different scan rates (10–300 mV/s). DPV response of GC/TH−FcDA in 0.1 M
PBS at different pHs (5–9) in the presence of (B1) 10 µM DA and (B2) 10 µM H2O2.

DPV measurements were conducted on GC/TH−FcDA to evaluate the influence of
supporting electrolyte pH on DA oxidation and H2O2 reduction, as depicted in
Figure 5(B1,B2). The Jpa for DA oxidation increased gradually from pH 5 to 7, followed
by a decline from pH 7 to 9 (Figure 5(B1)). The Epa shifted negatively with increasing pH
from 5 to 9, described by the linear regression equation Epa = -0.065pH + 0.595 (R2 = 0.995)
(Figure S3A). This result suggests that the stoichiometry for the DA oxidation reaction
involved two electrons and two protons [42]. Again, the Jpc for H2O2 reduction increased
with increasing pH from 5 to 7, then decreased from pH 7 to 9 (Figure 5(B2)). The Epc also
shifted negatively with rising pH from 5 to 9, quantified by the linear regression equation
Epc = -0.078pH + 0.078 (R2 = 0.993) (Figure S3B). The number of electrons and protons
involved in the H2O2 reduction was determined to be two [19]. The Jpa for DA oxidation
and Jpc for H2O2 reduction reached their maximum at pH 7 (0.1 M PBS), establishing pH 7
(0.1 M PBS) as the optimal supporting electrolyte pH for sensing DA and H2O2.

3.3. Interference Study

The detection of DA (10 µM) and H2O2 (10 µM) in the presence of a 100-fold excess of
various analytes, including UA, AA, glucose, lysine, cysteine, and catechol, was investi-
gated, and the obtained DPV results are displayed in Figure 6. An additional oxidation
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peak at 0.21 V was noted, signifying the oxidation of UA. Importantly, this peak did not
interfere with the DA oxidation, attributed to a potential difference of 0.05 V between the ox-
idation processes of DA and UA. These findings confirm that excess concentrations of other
analytes did not affect the detection of DA, and none of the above analytes interferes with
the detection of H2O2, demonstrating the good selectivity of the GC/TH−FcDA sensor.
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3.4. Real-Sample Analysis, Reproducibility, and Stability

To examine the practical applicability of the proposed GC/TH−FcDA sensor, a real-
sample analysis was conducted. Human urine samples were pre-treated and stored at
4 ◦C prior to analysis [38]. H2O2 was detected in commercial milk samples. Both DA and
H2O2 detections were performed using the standard addition method [39]. Five repetitive
experiments were conducted for each sample, and recovery measurements were also
performed using the standard addition method. The recovery results for DA ranged from
99.8% to 100.08%, while for H2O2, recoveries ranged from 99.2% to 101.0%, as delineated
in Table 1. These results substantiate the excellent recovery performance and practical
applicability of the developed electrode material.

Table 1. Estimation of DA in diluted human urine samples. Estimation of H2O2 in milk samples.

Sample
No

Spiked
(µM)

Found
(µM) * Recovery (%) RSD

(%)

1 10 9.98 ± 0.02 99.8 0.2
2 50 50.04 ± 0.04 100.08 0.08
3 100 99.89 ± 0.11 99.89 0.11

Sample No Spiked (µM) Found (µM) * Recovery (%) RSD (%)

1 5 4.96 ± 0.04 99.2 0.8
2 10 10.10 ± 0.10 101 0.99
3 20 20.09 ± 0.09 100.45 0.44

* Average three-replicate measurements.

As depicted in Figure S4, the GC/TH−FcDA demonstrated excellent reproducibility
with a relative standard deviation (RSD%) of 0.35% and 0.07%, estimated from 30 consec-
utive CV scans performed in 10 µM H2O2 and DA 0.1 M PBS pH 7, respectively. For a
long-term stability study, the GC/TH−FcDA sensor was stored in an airtight container
when not in use for 20 days and retained 90% of its initial response. These findings confirm
the stability of the electrode and its capacity to resist interference from repeated use cycles.
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3.5. Density Functional Theory (DFT) Studies

The geometries and corresponding properties of the computed structures were ana-
lyzed using the B3LYP/6-31G (d,p) [43] level of theory with the GAUSSIAN 09 software
and visualized with GaussView (5). No imaginary modes were observed in the frequency
analysis, confirming that all structures are stationary points. The corresponding geometric
coordinates are tabulated in Table S2 [44]. Figure 7 presents the electrostatic potential (ESP)
map of TH-FcDA and its interactions with DA and H2O2. The DA molecule interacts with
TH-FcDA through a potential π-π interaction site on both DA and FcDA molecules. The
ESP map of the two materials reveals that the net positive density of TH-FcDA is localized
on one side of the FcDA, while the net negative density on DA is oriented towards the
aromatic ring, suggesting possible repulsion of DA on the TH side due to the positive
charge density at the edges. Additionally, H2O2 demonstrates an electrostatic interaction
with TH, primarily utilizing the oxygen groups at the positive end of TH.
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4. Conclusions

This research successfully developed a highly stable dual redox mediator by covalently
linking FcDA and TH onto a GC electrode. The electrochemical investigations elucidated
the roles of FcDA and TH moieties in facilitating the oxidation of DA and reduction of H2O2,
respectively. Carboxylation of the GC surface enhanced the immobilization of the redox
mediator, resulting in high stability and a reproducible sensing response under neutral pH
conditions. The electrode exhibited a notable sensing performance for DA, with a detection
range from 0.3 to 230 µM, a sensitivity of 0.59 µA/µM/cm2, and a LoD of 0.07 µM (S/N
= 3). Additionally, the electrode enabled effective sensing of H2O2, displaying in a range
from 1.5 to 60 µM, with a sensitivity of 0.68 µA/µM/cm2 and an LoD of 0.49 µM (S/N = 3).
Notably, the sensor was validated by detecting DA and H2O2 in diluted urine and milk
samples, demonstrating its potential for practical applications in biosensing.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/bios14090448/s1. Figure S1. SEM images of (A) FcDA, and (B) TH. Figure
S2. Linear plot for different concentrations of DA (A1, B1) and H2O2 (A2, B2) measured from Figure 4.
Figure S3. Linear plot for different pH in the detection of DA (A) and H2O2 (B) measured from
Figure 5(B1,B2). Figure S4. Reproducibility and Stability of GC/TH−FcDA electrode in the presence
of H2O2 (A1,A2) and DA (B1,B2). Table S1. A. Comparison of analytical parameters for DA detection
at GC/TH−FcDA. B. Comparison of analytical parameters for H2O2 detection at GC/TH−FcDA.
Table S2. Cartesian coordinates of the molecules.

https://www.mdpi.com/article/10.3390/bios14090448/s1
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