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ABSTRACT

Cardiovascular diseases (CVDs) and pathologies are often driven by changes in molecular
signaling and communication, as well as in cellular and tissue components, particularly those
involving the extracellular matrix (ECM), cytoskeleton, and immune response. The fine-wire
vascular injury model is commonly used to study neointimal hyperplasia and vessel stiffening, but
it is not typically considered a model for CVDs. In this paper, we hypothesize that vascular injury
induces changes in gene expression, molecular communication, and biological processes similar
to those observed in CVDs at both the transcriptome and protein levels. To investigate this, we
analyzed gene expression in microarray datasets from injured and uninjured femoral arteries in
mice two weeks post-injury, identifying 1,467 significantly and differentially expressed genes
involved in several CVDs such as including vaso-occlusion, arrhythmia, and atherosclerosis. We
further constructed a protein-protein interaction network with seven functionally distinct clusters,
with notable enrichment in ECM, metabolic processes, actin-based process, and immune
response. Significant molecular communications were observed between the clusters, most
prominently among those involved in ECM and cytoskeleton organizations, inflammation, and cell
cycle. Machine Learning Disease pathway analysis revealed that vascular injury-induced
crosstalk between ECM remodeling and immune response clusters contributed to aortic
aneurysm, neovascularization of choroid, and kidney failure. Additionally, we found that
interactions between ECM and actin cytoskeletal reorganization clusters were linked to cardiac
damage, carotid artery occlusion, and cardiac lesions. Overall, through multi-scale bioinformatic
analyses, we demonstrated the robustness of the vascular injury model in eliciting transcriptomic
and molecular network changes associated with CVDs, highlighting its potential for use in

cardiovascular research.
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I. INTRODUCTION

An estimated 127.9 million Americans, or 48.6% of adults aged 20 and above, have some form
of cardiovascular disease (CVD) [1], including hypertension and atherosclerosis-associated
diseases such as peripheral vascular disease and coronary artery disease. A common etiology
of cardiovascular pathologies is the progression of neointimal hyperplasia into atherosclerosis [2],
which coincides with arterial stiffening [3] and can lead to cardiac ischemia/infarction, brain
ischemia, and thrombosis [4]. Procedures like embolectomy [5], vein grafting [6], balloon
angioplasty, and stenting [7] can damage the vessel wall, causing neointimal hyperplasia,
restenosis, or thrombosis. Fine-wire vascular injury models are commonly used [8-11] to study
the molecular mechanisms of neointimal hyperplasia [12-15]. Neointimal hyperplasia arises from
the migration, proliferation, and extracellular matrix (ECM) deposition of vascular smooth muscle
cells (VSMC) from the media into the intimal layer, leading to vascular wall thickening and further
exacerbating atheroprogression and CVDs. Vascular injury creates conditions that mimic various
aspects of CVD, including aberrant proliferation [16], migration [17], differentiation [18-20], ECM
synthesis [19], inflammation [21], and loss of cellular contraction [22]. A frequently overlooked
feature of the vascular injury model is increased vessel stiffening [23], a mechanosignal that may
accelerate neointimal hyperplasia [24-26]. Despite fostering various pathologies associated with
CVD in general, vascular injury is not typically used as a model for CVD outside of those that
exhibit neointimal hyperplasia and vascular stiffening. Expanding the use of vascular injury model
into studying CVD could uncover valuable insights into potential therapeutic targets for treating

this comorbidity.

Recent studies reveal a complex interaction between inflammation and the immune response in
CVD, suggesting that targeting this response could reduce atherosclerotic events [27, 28].
However, suppressing immune activity increases the risk of infections and other diseases. At the
site of vascular injury, macrophages regulate angiogenesis at the vessel wall but also contribute
to atherosclerosis by maladaptively promoting further plaque buildup through the accumulation of
cells, lipids, and ECM components, thereby worsening CVD [29, 30]. Changes in ECM stiffness
and remodeling, in response to vascular injury, have been shown to regulate the tissue repair
functionality of macrophages [31], indicating an intricate relationship between ECM modulation
and the immune system in CVD. Dissecting this interaction in the context of vascular injury can
reveal meaningful molecular targets, interactions, and mechanisms to be further studied as new

methods to manage CVD and its pathologies.
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87  While considerable knowledge exists on how the actin cytoskeleton regulates key components of
88 neointimal hyperplasia, including VSMC dedifferentiation [32, 33] and migration [34, 35], the
89  specific changes in the actin cytoskeleton associated with vascular injury remain poorly
90 characterized. Mechanical forces can influence the actin cytoskeleton via well-established
91 integrin-dependent mechanisms that transmit ECM stiffness into actin cytoskeletal arrangements
92 through focal adhesion complexes [36, 37]. Although ECM regulation post-vascular injury is well-
93  understood [25, 38-40], the interplay between ECM and the actin cytoskeleton and its contribution
94  to CVD remains elusive.

95
96 Bioinformatic analyses provide insights into the complex interplay often presented in diseases.

97  Once transcriptomic data is obtained, the goal is to understand how biological processes

98 modulate genes and vice versa. Analyses as such reveal how these genes are interrelated,

99 allowing us to establish a hierarchy of pathways that govern the broader biological processes.
100  Multi-scale network analysis can be performed [41, 42] using transcriptomic data [43] to interpret
101 how changes in gene regulation relate to protein-protein interactions (PPI) [44] and their impact
102 on disease progression [45, 46]. This approach also identifies associated biological processes
103  and diseases regulated by differentially expressed genes in a model system. While multi-scale
104  networks are diverse in nature, they generally integrate data to infer biological information across
105  different scales [42, 43, 45, 46]. Transcriptomics provides differential gene expression data from
106 a disease, which can be leveraged by the PPI scale to illuminate protein interactions
107  (communication and networks), as well as post-translational modification and degradation
108 relationships. These insights can then be related to pathways that initiate and drive disease
109  progression.

110

111 In this study, we performed multi-scale bioinformatic network analysis using microarray datasets
112 from injured femoral arteries and uninjured contralateral (control) femoral arteries in mice two
113  weeks post-injury to investigate how robust transcriptomic changes in response to vascular injury
114  could potentially affects CVDs. Through Ingenuity Pathway Analysis (IPA) of differentially
115  expressed genes (DEGs) found in our dataset, we identified significant activation of various CVDs
116  such as atherosclerosis, arrhythmia, and vaso-occlusion. Protein-protein interaction (PPI)
117  network formed from DEGs was used to identify seven clusters with distinct functions including,
118 ECM organization, metabolic and biosynthetic processes, immune-related processes, actin
119  organization, and cell proliferation, where most clusters exhibited dense communications with

120  each other. A closer analysis of the communication between the ECM remodeling and immune
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system or actin reorganization clusters further inferred the effects of vascular injury on modulating

the activation of aortic aneurysm, cardiac lesions, cardiac damage, and other diseases.

Il. Transcriptomic and multi-scale network analyses

A. Differential Gene Expression Analysis
To identify changes in gene expression in healthy and injured mouse arteries, we performed
differential gene expression analysis on previously published microarray datasets using the R

DESeq2 package [47]. Gene expression changes were calculated as follows:

Expression level in Injured Group
Fold Change =

Expression level in Uninjured Group

log, (Fold Ch )y =1 ( Expression level in Injured Group )
OB ange) = 1082 Expression level in Uninjured Group

The significance of the results was calculated using the Wald test [47] for p-value calculation and

false discovery rate:

n2

— — _ bPym
= var® p=Pxi=W) FDR(p@)) = ~5—

where B is the estimated coefficient from the regression model, Var(B) is the variance of the
estimated coefficient, x? is a chi-square distribution with 1 degree of freedom, m is the total

number of tests.

B. Identification of Differentially Expressed Genes
To identify differentially expressed genes (DEGSs) in response to vascular injury, the following
filtering criteria were applied. Genes (g) were classified as DEGs if they satisfied both of the

following conditions:

(i) FDR-adjusted p-value (g-value) threshold: q < 0.15
(i) log>(Fold Change) threshold: |log>(Fold Change)| = 0.5

Combining these conditions, genes (g) are considered significantly differentially expressed if:
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152

153 Significant(g) = (qg <0.15)A (|logz(FCg)| > 0.5)

154

155  The gene distribution was visualized using a volcano plot created with the Bioinfokit package in
156  Python. The R programming language’s ggplot2 package [48] was used to visualize the Principal
157  Component Analysis (PCA) plot, and covariance was calculated as follows:

158

159 Cov(X) = QAQ™! [42]

160

161  where Q is the matrix of eigenvectors and A is the diagonal matrix of eigenvalues.

162

163 C. Gene Ontology Enrichment Analysis

164  To explore the biological processes associated with upregulated and downregulated DEGs, gene
165 enrichment analysis was conducted using the g:GOSt function on the gProfiler web server
166  (https://biit.cs.ut.ee/gprofiler/gost) [49]. Given a list of genes G and subsets of upregulated DEGs

167  Gup.oecs and downregulated DEGs Gqown.pecs identified by the criteria:

168

169 Guppees = {9 € G| q < 0.15Alog,(FC,) = 0.5}
170 Gaownprcs = {9 € G | g < 0.15 A log,(FCy) < —0.5}
171

172  The gene enrichment analysis was then performed using Gup.pecs and Goownpecs tO test for

173  overrepresentation in various gene sets S:

174

175 Senriched1 = {Si |p— value(Si, Gup.DEGs) < a}
176 Senrichedz = {Si | p — value(S;, Gaown.prgs) < a}
177

178 where S is the set of all gene ontology (GO) terms being tested, S;is a particular GO term, p-
179  value(S;, Gpegs) is the statistical significance of the enrichment of S;in Gpegs, @ is the significance
180 threshold (a = 0.05). For visualization purposes, bubble plots representing the top 20 enriched
181 GO terms and KEGG pathways were generated using the SRplot online server.

182

183 D. QIAGEN Ingenuity Pathway Analysis
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184  Combined differential expression analysis results from both clusters 1 and 5, and clusters 1 and
185 3, were uploaded to the QIAGEN Ingenuity Pathway (IPA) software, using the expression log ratio
186  and p-adjusted values. IPA’s Core Analysis function was employed to investigate altered signaling
187  pathways in response to vascular injury. The Diseases & Functions and Pathways features were
188  used to identify significantly affected pathways and diseases (absolute activation z score = 2; -

189  log(Benjamin-Hochberg p-value = 2) as follows:

190
_i_M_N —-N_
191 z=_—= 5= J:W [50]
~ , , m
192 D, = krer%lgrrrll} {mln {(k)pk, 1}} [50]
193

194  Combining these conditions, a term (f) is considered significantly activated or inhibited if:

195

196 Significant(t) = (=log,o(P;) = 2) A (|z — score| = 2)

197

198  Additionally, Network Analysis feature was used to explore molecular interactions within the
199 combined clusters and their associated diseases and functions. Statistical values for the Network
200 Analysis were computed based on the p-score, derived from p-values and equal to -log10(p-
201  value). The "My pathway" tool was used to illustrate known relationships between molecules or
202  molecules to functions.

203

204  To study how molecular-level interactions lead to disease progression, IPA Machine Learning
205 Disease Pathways tool was used to identify similar regulatory patterns among the genes and
206  causally connected them with human diseases. The disease-to-molecule ratio (r) used in IPA

207  Machine Learning Pathways tool was calculated as follows:

208

209 = NpEGs
n

210

211 where npgq, is the number of DEGs from our dataset that was identified in the pathway, and n as
212  the total number of genes that IPA identified in that pathway.

213

214  E. Protein-protein interaction (PPI) network
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215 The STRING website was used to construct the PPI network, and the results were visualized
216  using the Cytoscape software [51]. The expression data for the DEGs were imported into the node
217  table to indicate expression levels using logz(fold-change) values and node color to indicate
218 intensity. Orphan and non-present intermediate protein entries were filtered out from the network.
219  K-means clustering tool on the STRING website was used to identify 7 functionally distinct
220 clusters within the PPl network, enrichment analysis for each cluster was conducted using the
221  gProfiler web server.

222

223 lll. RESULTS

224 A. Genome-wide analysis identifies transcriptomic changes related to CVD in mouse
225  femoral arteries post vascular injury

226  Toinvestigate the effects of vascular injury on transcriptional responses and biological processes,
227 we performed bioinformatic analyses (Fig. 1) on previously published microarray datasets
228  collected from injured and uninjured mouse femoral arteries [52, 53]. Expression values of 21,734
229 transcripts were identified, and the distinctions among samples (uninjured vs. injured) were
230 visualized in an unsupervised Principal Component Analysis (PCA) plot (Fig. 2A). The analysis
231  revealed two distinct clusters of samples, with and without vascular injury, suggesting vascular
232  injury may significantly influence the transcriptomic landscape. To identify differentially expressed
233 genes (DEGs) in our dataset, genes were filtered for g-values of < 0.15 and absolute log2(fold-
234  change) = 0.5. We identified 1,467 DEGs, with 696 upregulated and 771 downregulated. The
235 distribution of these DEGs was displayed in the volcano plot (Fig. 2B). To further explore the
236  impact of vascular injury on the biological processes associated with DEGs, we performed Gene
237  Ontology (GO) enrichment analysis. The top 20 biological processes categories enriched among
238 the downregulated DEGs were mainly related to various metabolic/energy and development

239 processes, including “generation of precursor metabolites and energy”, “energy derivation by

” LT

240  oxidation of organic compounds”, “system development,” “developmental process,” and “muscle
241 structure development” (Fig. 2C). Moreover, the top 20 biological process categories enriched
242 among the upregulated DEGs were primarily related to various biological regulation and cell
243  migration processes, including “positive regulation of biological process”, “response to stress”,
244  and “cell migration” (Fig. 2D).

245

246  Togaininsight into cardiovascular diseases transcriptomically associated with vascular injury, we
247  employed the Core Analysis function of QIAGEN Ingenuity Pathway Analysis (IPA) software on

248 the complete dataset of DEGs (both upregulated and downregulated). Using the IPA Diseases &
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249  Functions feature, particularly in the “Cardiovascular Disease” category, seven diseases and
250 functions terms were found to be significantly activated (a Z-score of = 2 is considered significant
251  activation[50], including “Vaso-occlusion” (activation z-score = 2.332), “Arrhythmia” (activation z-
252  score = 2.261), “Atherosclerosis” (activation z-score = 2.772). Two diseases and functions terms
253  were significantly inhibited (a Z-score of < 2 is considered significant inhibition [50] “Peripheral
254  arterial disease” (activation z-score = -2.608) and “Valvulopathy” (activation z-score = -2.401)
255  (Fig. 2E). Collectively, these findings indicate that vascular injury markedly alters transcriptomic
256  profiles, thereby modulates a diverse array of cellular behaviors and biological processes, all of
257  which could further the development of CVDs.

258

259  B. Multi-scale analyses identify molecular and functional networks

260 To integrate the topology information of identified DEGs, a protein-protein interaction (PPI)
261 network was constructed using STRING online database and visualized with Cytoscape software,
262  resulting in 1,188 nodes and 11,025 edges. Further, seven functionally distinct clusters within the
263 PPl network were identified using the STRING online k-means clustering tool (Fig. 3A). Cluster
264 1, consisting of 193 nodes and 533 edges (Fig. 3B), was associated with extracellular matrix and

265 development-associated biological processes, including “extracellular matrix organization,”

” o« ”

266  “extracellular structure organization,” “external encapsulating structure organization,” “system

”

267 development,” “tube development,” and “animal organ development” (Fig. 3C). Cluster 2,

268 comprising 177 nodes and 900 edges (Fig. 3D), was primarily associated with various metabolic

”

269 and biosynthetic processes, including “cellular respiration,” “generation of precursor metabolites

” W LT

270 and energy,” “nucleotide metabolic process,” “purine ribonucleoside triphosphate biosynthetic

271  process,” and “ATP biosynthetic process” (Fig. 3E). Cluster 3, consisting of 151 nodes and 1,728

272  edges (Fig. 3F), was mostly enriched in immune and inflammation-related biological processes,

” ” o«

273 including “immune system process,” “leukocyte activation,” “regulation of immune system

274  process,” “immune response,” and “lymphocyte activation” (Fig. 3G). Cluster 4, with 189 nodes

”

275 and 3,713 edges (Fig. 3H), was primarily associated with cell growth, including “cell cycle,” “cell

276 cycle process,” “mitotic cell cycle,” “cell division,” “nuclear division,” and “chromosome

277  organization” (Fig. 3I). Cluster 5, consisting of 216 nodes and 584 edges (Fig. 3J), was mostly

278  associated with actin cytoskeleton and muscle contraction-related biological processes, including

” ” o« ”

279 “actin filament-based process,” “muscle system process,” “muscle contraction,” “actin filament-

” ” W

280 based movement,” “actin cytoskeleton organization,” “cardiac muscle contraction,” and “heart
281  contraction” (Fig. 3K). Cluster 6, consisting of 89 nodes and 88 edges (Fig. 3L), was mostly

282  associated with various biological regulation processes, including “biological regulation,”
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283  “regulation of multicellular organismal process,” “regulation of biological process,” “regulation of

” o«

284  hydrolase activity,” “regulation of cell adhesion,” and “regulation of catalytic activity” (Fig. 3M).

285  Cluster 7, comprising 45 nodes and 33 edges (Fig. 3N), was enriched in various biological

” ”

286  processes, including “cellular response to stress,” “DNA damage response,” “regulation of viral

287  processes,” “nucleoside metabolic process,” and “viral process” (Fig. 30). The topological cluster
288 analysis provided significant insights into the distinct biological roles and processes enriched
289  within the protein interactome network, highlighting the extensive transcriptomic changes induced
290 by vascular injury.

291

292  C. Altered molecular communication due to vascular injury contributes to the development
293  of cardiovascular and other diseases

294  Abnormal remodeling of the actin cytoskeleton and ECM, as well as immune and metabolic
295  dysregulation, and cell overgrowth, ultimately promotes the development of CVDs [30, 54, 55].
296 Therefore, we assessed the interplay between functionally distinct clusters (Fig. 3A) and their
297 combined impact on disease progression by comparing each pair of clusters. Interestingly, the
298 data demonstrated that cluster 3, characterized by an enrichment of immune-related biological
299 processes, exhibited the most significant molecular communications with cluster 1, enriched in
300 ECM structure and organization, and cluster 4, enriched in cell growth (Fig. 4A). Additionally,
301 cluster 4 exhibited distinct molecular communications with cluster 2, enriched in metabolic and
302 biosynthetic processes (Fig. 4A). Cluster 1 also showed molecular communications with cluster
303 5, enriched in actin cytoskeleton and muscle contraction-related biological processes (Fig. 4A).
304

305 We next examined the consequences of molecular communications between cluster 1 (‘ECM
306  structure and organization”) and cluster 3 (“immune-related processes”), which had the most
307  significant interactions, using the Core Analysis function and the Machine Learning (ML) Disease
308 Pathways in IPA with the combined DEGs from these clusters. Our findings indicated that

309 pathological vascular conditions, which eventually promote cardiovascular and other diseases,

” ” i ” i«

310  such as “Aortic aneurysm,” “Arterial aneurysm,” “Neovascularization of choroid,” “Abdominal aorta

”

311 lesion,” “Abdominal aortic aneurysm,” and “Pathological dilation of abdominal aorta” were

312  predicted to be significantly activated (z-score > 4) (Fig. 4B). The data also showed significant

” ”

313  activation of other diseases such as “Kidney failure,” “Renal impairment,” “Acute respiratory
314 disorder,” “Acute lung injury,” and “Immune-mediated uveitis” (Fig. 4B). Additionally, results from
315  the ML Diseases Pathways function similarly showed that “Neovascularization of the choroid” had

316  the highest the disease-to-molecule ratio at 0.28 while “Aortic aneurysm,” “Arterial aneurysm,”
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317  and “Failure of kidney” also exhibited higher ratios of 0.22, 0.214, and 0.25, respectively (Fig.
318  4C), inferring the involvement of DEGs from cluster 1 and cluster 3 as key participants in disease
319  development. Furthermore, the ML Disease pathways identified key molecular players and their
320 interaction networks for the three most significant diseases shown in Figures 4B and 4C: aortic
321 aneurysm, arterial aneurysm, and failure of kidney (Figs. 4D-F). For example, in the aortic and
322  arterial aneurysm pathways shown in Figures 4D and 4E, ACTA2 and MYH11 genes [56-58],
323  whose mutations are known to be associated with these conditions, were significantly connected
324  with other DEGs within the networks and predicted to be activated in response to vascular injury,
325 linking them to aortic and arterial aneurysms. Similarly, in the failure of kidney pathway shown in
326 Figure 4F, AGT and PTGS2 genes, whose mutations are associated with kidney failure [59-61],
327  were predominantly connected with other DEGs and predicted to be activated in response to
328  vascular injury. Interestingly, AGT and PTGS2 genes were also involved in the disease pathways
329 for aortic and arterial aneurysms (Figs. 4D, E). The ML Disease generated networks also
330 predicted the activation states of disease-specific etiology. For instance, in Figure 4E, activation
331  of AGT gene is predicted to not only trigger arterial aneurysm, but also activate “Activation of
332 cardiac fibroblasts,” “Remodeling of artery,” and “Infiltration by neutrophils”. Similarly, in Figure
333  4F, AGT gene activation is predicted to drive “Apoptosis of renal tubule”, a key factor in kidney
334  failure. Taken together, our analysis demonstrates that abnormal remodeling of the ECM, along
335  with immune and metabolic dysregulation, promotes the development of cardiovascular and other
336 diseases by elucidating significant molecular communications between functionally distinct
337 clusters and identifying key molecular players and pathways associated with these conditions.
338

339 D. Changes in ECM constituents and actin cytoskeleton leads to the progression of
340 cardiovascular diseases

341  We further investigated the implications of molecular communication between cluster 1 (“ECM
342  structure and organization”) and cluster 5 (“actin cytoskeleton”), using the same methods as
343  shown in Figure 4. Of particular interest, our findings unveiled significant and differential

344  activations of several cardiovascular diseases, including “Cardiac damage,” “Occlusion of the
345  carotid artery,” “Cardiac lesions,” and “Congestive heart failure” (Fig. 5A). These activations can
346  arise from pathological changes in ECM structure and organization and actin cytoskeleton
347  induced by vascular injury. Additionally, results from the ML Diseases Pathways function showed
348 higher disease-to-molecule ratios of 0.192 for Cardiac damage, 0.138 for Occlusion of carotid
349  artery, and 0.098 for Cardiac lesion (Fig. 5B). Additionally, the ML Disease pathways identified

350 critical molecular players and their communication networks for three significant cardiovascular
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351 diseases shown in Figures 5A and 5B: cardiac damage (Fig. 5C), occlusion of the carotid artery
352  (Fig. 5D), and cardiac lesions (Fig. 5E). For example, in the cardiac damage and lesion pathways
353 shown in Figures 5C and 5E, DMD, SGCA, SGCB, and SGCG genes [62, 63] associated with
354  these conditions, were significantly connected with other DEGs and predicted to be inhibited in
355 response to vascular injury, linking them to cardiac impairment. Interestingly, in response to
356  vascular injury, PTK2, COL1A2, and FN1 genes, known to be associated with cardiac fibrosis,
357  were densely connected with other DEGs, and their predicted activation link them to cardiac
358 lesion. Additionally, in the occlusion of carotid artery pathway shown in Figure 5D, S100AS8,
359 ITGB2, and PTGS2 genes, associated with carotid artery disease [64-67], were predicted to be
360 activated in response to vascular injury. Overall, these robust integrated analyses demonstrate
361  that vascular injury-induced extracellular matrix and actin cytoskeletal alterations profoundly
362 impact diverse cardiovascular diseases.

363

364

365 IV. DISCUSSION

366 In this work, we focused on the biological and molecular scale communications underlying CVD
367  progressions in response to vascular injury. By utilizing bioinformatic sequencing analyses and
368 IPA disease machine learning approaches, we identified complex interactions between DEGs that
369 lead to alterations in biological components, including the actin cytoskeleton, immune system,
370 and ECM. Furthermore, our analysis predicts that interactions among these biological processes
371 and components collectively contribute to the development of various cardiovascular pathologies.
372 Based on the transcriptomic changes revealed by our multi-scale bioinformatic analyses, we
373  suggest expanding the use of vascular injury model as a suitable option to investigate not only
374  neointimal hyperplasia and vessel stiffening, but also a range of other CVDs.

375

376  From our DEG list, the IPA Disease and Function feature identified seven CVDs significantly
377 activated in response to vascular injury, including but not limited to vaso-occlusion,
378  atherosclerosis, and arrhythmia. To explore the translational changes due to vascular injury, we
379  constructed a PPI network based on the DEG list and identified functionally distinct clusters within
380  the network. Although distinct, the seven PPI clusters displayed great communications with each
381  other, most significantly between cluster 1 (ECM structure and organization) and cluster 3
382  (immune-related processes). IPA Disease ML Pathway analysis predicted that crosstalk between
383  these clusters could lead to diseases such as aortic aneurysm, arterial aneurysm, and kidney

384  failure. Our ML analysis also revealed disease-specific networks with key molecular players and
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385 etiology. Notably, activation of AGT and PTGS2 gene, known to be associated with kidney failure
386 [59-61], also appeared to influence the aortic and arterial aneurysm networks (Fig. 4D-F).
387  Furthermore, interactions between ECM changes and actin cytoskeletal reorganization were
388 linked to cardiac damage, carotid artery occlusion, cardiac lesions, and congestive heart failure.
389 These findings underscore the pivotal roles of ECM and actin cytoskeleton organization
390 alternations in driving vascular pathologies, highlighting the potential relevance of these cellular
391 processes for therapeutic strategies.

392

393

394 V. CONCLUSION

395 In conclusion, our study offers a multi-scale level understanding of the intricate regulatory
396 mechanisms governing cardiovascular disease progressions in the context of vascular injury.
397 From genomic level to protein and biological levels, we offered novel insights into the
398 transcriptomic rewiring and molecular networks in response to mouse vascular injury. These
399 findings pave the way for further investigations into the development of targeted therapeutic
400 interventions aimed at modulating ECM, immune response, cytoskeletal dynamics, ultimately
401  contributing to the management and prevention of cardiovascular pathologies.
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419 FIGURE LEGENDS

420 Figure 1. Overview of the multi-scale bioinformatics analysis workflow.

421

422  Figure 2. Structure and function of genome-wide transcriptomic changes due to vascular
423  injury. (A) Principal Component Analysis (PCA) plot for the entire transcriptome list displays the
424  correlations and variances among the samples. (B) Volcano plot illustrates the distribution of
425  differentially expressed genes (DEGS) in response to femoral artery fine-wire injury. Green dots
426  represent statistically downregulated genes (771 downregulated DEGs identified) and red dots
427  represent statistically upregulated genes (696 upregulated DEGs identified). Bubble plots depict
428  the top 20 enriched biological processes for significantly (C) downregulated and (D) upregulated
429 DEGs. (E) Cardiovascular Disease terms were predicted by IPA to be activated in response to
430  vascular injury.

431

432  Figure 3. K-means clustering analysis and GO enrichment. (A) Network displays 7 clusters
433  within the protein-protein interaction network (1,188 nodes and 11,025 edges) of DEGs based on
434  k-means clustering. (B-C) Interaction network of cluster 1 (193 nodes and 533 edges) and its
435 associated biological processes including extracellular matrix organization, extracellular structure
436 organization, and external encapsulating structure organization. (D-E) Interaction network of
437  cluster 2 (177 nodes and 900 edges) and its associated biological processes including cellular
438 respiration, aerobic respiration, and generation of precursor metabolites and energy. (F-G)
439 Interaction network of cluster 3 (151 nodes and 1,728 edges) and its associated biological
440 processes including immune system process, positive regulation of multicellular organismal
441 process, and cell activation. (H-l) Interaction network of cluster 4 (189 nodes and 3,713 edges)
442  and its associated biological processes including cell cycle, cell cycle process, and mitotic cell
443  cycle. (J-K) Interaction network of cluster 5 (216 nodes and 584 edges) and its associated
444  biological processes including actin filament-based process, muscle system process, and muscle
445  contraction. (L-M) Interaction network of cluster 6 (89 nodes and 88 edges) and its associated
446  biological processes including biological regulation, regulation of multicellular organismal
447  process, and regulation of biological process. (N-O) Interaction network of cluster 7 (45 nodes
448 and 33 edges) and its associated biological processes including cellular response to stress, DNA
449  damage response, and regulation of viral process.

450

451  Figure 4. Inter-cluster analysis of diseases and pathways associated with cluster 1 and 3.

452  (A) Matrix correlation heatmap illustrates molecular communications between each pair of
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453  functionally distinct clusters. (B) IPA Core Analysis on cluster 1 and 3 DEGs showing differential
454  changes in various Machine Learning (ML) Disease Pathways. (C) Bar plot shows the disease-
455  to-molecules ratio of differentially and significantly changed ML Disease Pathways. Interaction
456  networks display molecular communications and functionalities leading to changes in ML Disease
457  Pathways of (D) aortic aneurysm, (E) arterial aneurysm, and (F) failure of kidney.

458

459  Figure 5. Diseases and pathways associated with cluster 1 and 5. (A) IPA Core Analysis on
460 cluster 1 and 5 DEGs showing differential changes in various ML Disease Pathways. (B) Bar plot
461 shows the disease-to-molecules ratio of differentially and significantly changed ML Disease
462  Pathways. Interaction networks display molecular communications and functionalities leading to
463 changes in ML Disease Pathways of (C) cardiac damage, (D) occlusion of carotid artery, and (E)
464  cardiac lesion.
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