
SVbyEye: A visual tool to characterize structural variation among whole-genome
assemblies

David Porubsky1, Xavi Guitart1, DongAhn Yoo1, Philip C. Dishuck1, William T. Harvey1, Evan E.
Eichler1,2

Affiliations:

1. Department of Genome Sciences, University of Washington School of Medicine, Seattle,
WA, USA

2. Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA

Correspondence to: porubsky@uw.edu

Abstract:

Motivation
We are now in the era of being able to routinely generate highly contiguous (near
telomere-to-telomere) genome assemblies of human and nonhuman species. Complex
structural variation and regions of rapid evolutionary turnover are being discovered for the first
time. Thus, efficient and informative visualization tools are needed to evaluate and directly
observe structural differences between two or more genomes.

Results
We developed SVbyEye, an open-source R package to visualize and annotate
sequence-to-sequence alignments along with various functionalities to process alignments in
PAF format. The tool facilitates the characterization of complex structural variants in the context
of sequence homology helping resolve the mechanisms underlying their formation.

Availability and implementation
SVbyEye is available at https://github.com/daewoooo/SVbyEye.

Introduction:

Informative and efficient visualization of genomic structural variation (SV) is an important step to
evaluate the validity of the most complex regions of the genome, helping us to develop new
hypotheses and draw biological conclusions. With advances in long-read sequencing
technologies, such as HiFi (high-fidelity) PacBio (Wenger et al. 2019) and ONT (Oxford
Nanopore Technologies) (Deamer and Branton 2002), we are now able to fully assemble even
the most complex regions of the genome, such as segmental duplications (Vollger et al. 2022),
acrocentric regions (Guarracino et al. 2023), and centromeres (Logsdon et al. 2024) into
continuous, highly accurate linear assemblies—also known as telomere-to-telomere (T2T)
assemblies (Jarvis et al. 2022; Nurk et al. 2022). A large part of our understanding of the
evolution of complex biological systems comes from comparative analyses, including direct
visual observations (Paparella et al. 2023; Yoo et al. 2024).
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The challenge with these analyses is that many large-scale structural changes between
genomes are mediated by large, highly identical repeat sequences that are not readily
annotated by existing software. This necessitates the development of visualization tools to
complement T2T comparative studies. We developed SVbyEye for three purposes: 1) to directly
characterize structurally complex regions, including insertions, duplications, deletions and
inversions, by comparison to a linear genome reference; 2) to place these changes in the
context of sequence homology by characterizing associated sequence identity; and 3) to define
the breakpoints, including the length and orientation of homologous sequence mediating the
rearrangement. SVbyEye is inspired by the previously developed tool called Miropeats (Parsons
1995) and brings its visuals to the popular scripting language R and visualization paradigm
using ggplot2 (Wickham 2009).

Materials and Methods:

SVbyEye uses as input DNA sequence alignments in PAF (Pairwise mApping Format) format,
which can be easily generated with minimap2 (Li 2018). In principle, however, any
sequence-to-sequence aligner that can export alignments in standard PAF format should be
sufficient. We note, however, that we tested our tool only using minimap2 alignments. Such
alignments can be read using the ‘readPaf’ function. Subsequently, imported alignments can be
filtered and flipped into the desired orientation using ‘filterPaf’ and ‘flipPaf’ functions,
respectively,

Visualization modes
There are four visualization modes offered by SVbyEye: visualization of pairwise alignments,
alignments between more than two sequences, alignments within a single sequence, and
whole-genome alignments.

The main function of this package, called ‘plotMiro’, serves to visualize pairwise sequence
alignments in a horizontal layout with the target (reference) sequence at the top and the query
at the bottom (Fig. 1A). The user has control over a number of visual and alignment processing
features. For instance, users can color sequence alignments by their orientation or percentage
of matched bases (Supplementary Notes).

SVbyEye also allows visualization of alignments between more than two sequences. This can
be done by aligning multiple sequences to each other using so-called all-versus-all (AVA) or
stacked alignments and submitting them to the ‘plotAVA’ function. In this way, alignments are
visualized in subsequent order where the alignment of the first sequence is shown with respect
to the second and then second sequence to the third and so on (Fig. 1B). Many of the same
parameters from ‘plotMiro’ also apply to ‘plotAVA’ as well. We illustrate a use of binning PAF
alignments into defined bins (by setting a parameter ‘binsize’) and coloring them by the
percentage of matched bases—a useful feature to reflect regional or pairwise differences in
sequence identity (Fig. 1C).

To accommodate visualization of regions that are homologous to each other within a single
sequence, we implemented the ‘plotSelf’ function. This function takes PAF alignments of a
sequence to itself and visualizes them in a so-called horizontal dotplot (Fig. 1D). Such
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visualization can tell us a relative orientation, identity, and size of intrachromosomally aligned
regions, an important feature of segmental duplications that predispose intervening sequence to
recurrent rearrangements (Itsara et al. 2012; Coe et al. 2014; Porubsky et al. 2022). We note
that self-alignments can also be visualized as arcs or arrowed rectangles connecting aligned
regions (Supplementary Notes).

To allow for a full overview of whole-genome assembly with respect to a reference, SVbyEye
offers ‘plotGenome’ function. With this function whole-genome alignments can be visualized to
observe large structural rearrangements, such as large para- and pericentromeric inversions
between the chimpanzee and human genomes (Fig. 1E).

Figure 1: Example of SVbyEye visualization modes.
A) The plot depicts a minimap alignment of a 1.7 Mbp region from chromosome 17q21.31 of two human sequences:
HG01457 haplotypes (query) vs. T2T-CHM13 reference (target). Segmental duplication (SD) pairwise alignments are
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shown (top) (connected by horizontal line) colored by their sequence identity with gene annotation (KANSL1 exons)
depicted below as annotated in the UCSC Genome Browser. Minimap2 alignments are shown as gray (forward ‘+’
orientation) and yellow (reverse ‘-’ orientation) polygons between query (bottom) and target (top) sequences.
Duplicon annotations as defined by DupMasker (Jiang et al. 2008) are indicated for both query and target sequences
by colored arrowheads pointing forward or backward based on their orientation. An SV embedded within the SDs
between query and target sequences (≥1 kbp) is highlighted as blue (insertion) and red (deletion) outlines facilitating
breakpoint definition. B) A “stacked” SVbyEye plot depicting the 17q21.31 region for two chimpanzee haplotypes
followed by three human haplotypes from T2T-CHM13 and HG01457. Each sequence is compared to the sequence
immediately above and clearly defines a 750 kbp inversion between chimpanzee and human flanked by inverted
repeats. A larger 900 kbp inversion polymorphism is also identified in human mediated by inverted SDs. C) The plot
shows the same alignments as in B but with a “% identity grid” colored by the percentage of matched bases per
10-kbp-long sequence bin. Human inversion shows significant divergence indicating a deeper coalescence of the
17q21.31 region (Zody et al. 2008). D) A ‘horizontal dotplot’ visualization that shows self-alignments of HG01457
(haplotype 2) indicating the size (black line), the orientation (inverted=yellow and gray=direct; top panel), and the
pairwise identity (colored grid; bottom panel). The largest and most identical segments are preferred sites for
non-allelic homologous recombination (NAHR) breakpoints. E) A T2T view of six chimpanzee chromosomes (query,
bottom) aligned to human syntenic chromosomes (T2T-CHM13, target, top). This view readily defines the extent of
paracentric and pericentric inversions.

Alignment processing and annotation functionalities
SVbyEye has the ability to break PAF alignments at the positions of insertions and deletions and
thereby delineate their breakpoints. This is done by parsing alignment CIGAR strings if reported
in the PAF file. Thus, by setting the minimum size of insertions and deletions to be reported, one
can visualize SVs as red (deletions) and blue (insertions) outlines (Fig. 1A). For further
interrogation users can also opt to report alignments embedded insertions and/or deletions in a
data table format using the ‘breakPaf’ function.

An important feature of SVbyEye is its capability to annotate query and target sequences with
genomic ranges such as gene position, position of segmental duplications, or other DNA
functional elements. This is done by adding extra annotation layers on top of the target and/or
query alignments using the ‘addAnnotation’ function (Supplementary Notes). Annotation
ranges are visualized as either a rectangle or an arrowhead. Arrowheads are especially useful
for conveying an orientation of a genomic range. Similar to PAF alignments, annotation ranges
can also be colored by a user defined color scheme (Fig. 1A). If there is a need to highlight
specific PAF alignments between a query and a target, one can do so with the ‘addAlignments’
function that adds selected alignment(s) over the original plot highlighted by a unique outline
and/or color (Fig. 1A).

There are several other useful functionalities that come with SVbyEye, for instance, lifting
coordinates from target to query and vice versa provided by the ‘liftRangesToAlignment’
function. Users can also subset alignments from a desired region on a target sequence using
the ‘subsetPaf’ function. Lastly, there is a possibility to disjoin PAF alignments at regions where
two and more alignments overlap each other with the ‘disjoinPafAlignments’ function to provide
exact boundaries of duplicated regions (Fig. 1A).

Conclusion:

We developed SVbyEye, a data visualization R package, to facilitate direct observation of
structural differences between two or more sequences. SVbyEye provides several visualization
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modes depending on the desired application. It offers ample ways to annotate both query and
target sequences along with many functionalities to process alignments in PAF format. A more
detailed package documentation along with code examples can be found at:
https://htmlpreview.github.io/?https://github.com/daewoooo/SVbyEye/blob/master/man/doc/SVb
yEye.html.
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