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Abstract

Accurate genome assemblies are essential for biological research, but even the highest quality
assemblies retain errors caused by the technologies used to construct them. Base-level errors
are typically fixed with an additional polishing step that uses reads aligned to the draft assembly
to identify necessary edits. However, current methods struggle to find a balance between over-
and under-polishing. Here, we present an encoder-only transformer model for assembly
polishing called DeepPolisher, which predicts corrections to the underlying sequence using
Pacbio HiFi read alignments to a diploid assembly. Our pipeline introduces a method,
PHARAOH (Phasing Reads in Areas Of Homozygosity), which uses ultra-long ONT data to
ensure alignments are accurately phased and to correctly introduce heterozygous edits in
falsely homozygous regions. We demonstrate that the DeepPolisher pipeline can reduce
assembly errors by half, with a greater than 70% reduction in indel errors. We have applied our
DeepPolisher-based pipeline to 180 assemblies from the next Human Pangenome Reference
Consortium (HPRC) data release, producing an average predicted Quality Value (QV)
improvement of 3.4 (54% error reduction) for the majority of the genome.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2024. ; https://doi.org/10.1101/2024.09.17.613505doi: bioRxiv preprint 

mailto:awcarroll@google.com
mailto:bpaten@ucsc.edu
mailto:shafin@google.com
https://doi.org/10.1101/2024.09.17.613505
http://creativecommons.org/licenses/by/4.0/


Introduction

Faithful reconstruction of the genome is increasingly essential for scientists to understand the
underlying biology of any organism. Genome assembly, the process of digitally reconstructing a
genome, is accomplished by piecing together segments of DNA (called sequencing “reads”) and
obtaining a consensus. The past several years have seen a huge improvement in the quality of
genome assembly, driven by long-read sequencing technology, which produces reads that are
orders of magnitude longer than the short-read technologies that preceded them1,2. Assembly
algorithms have continued to advance alongside the improvements in sequencing, and it is now
becoming routine to produce automated, fully-phased, highly contiguous, and near-complete
genome assemblies1–6.

The quality of a genome assembly can be measured by an array of different metrics that assess
different aspects of the reconstruction. Contiguity metrics describe the cumulative length and
number of contigs of the assembly, while completeness metrics evaluate the extent of the
expected sequence present in the assembly1. For organisms with multiple copies of their
chromosomes (ploidy), fully resolving the haplotypes is a key component to accurate genome
assembly, and chromosome phasing metrics assess this7,8. Another critical set of metrics
evaluates the base-level accuracy of the assembled sequence7.

All sequencing technologies contain errors which are not completely random, but are influenced
by biases towards different genomic features. Even using a consensus approach, recurrent
errors in the reads can propagate into the assembly. Low complexity regions like homopolymers
and tandem repeats are particularly challenging for Oxford Nanopore Technologies (ONT)9 and
Pacific Biosciences (PacBio) long-reads10, and certain motifs such as those high in GC content
can cause dropout, a phenomenon particularly prevalent in short-reads like Illumina11,12. Small
errors can also be introduced by biases in the assembler, and different assembly algorithms
differ in their limitations and error characteristics4,5,13.

Base-level errors interfere with scientists' ability to make accurate conclusions from their data.
For example, they can disrupt functional elements, as in protein coding genes, leading to
frameshifts, missense, and nonsense mutations14–16. For projects like the Human Pangenome
Reference Consortium (HPRC)6 and Vertebrate Genome Project (VGP)17, whose goal is to
produce haplotype-resolved population-scale reference genomes for entire groups of species,
fixing errors is especially critical to avoid propagating mistakes to all the downstream analyses
that make use of them, for example, by proposing sequence variations that are in fact
errors16,18,19.

The process of removing these small-scale errors in draft assemblies is known as “polishing”.
Most methods for assembly polishing involve aligning reads back to the draft assembly to
identify potential sequence changes suggested by the reads. Some methods employ heuristic
algorithms, specialized models, or repurpose variant callers to identify polishing edits20–22. In
order to polish CHM13 (an effectively haploid cell line), the T2T consortium leveraged
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DeepVariant23 calls from multiple sequencing technologies and a careful filtering strategy to
avoid false positive polishing edits24,25. A major challenge for all polishing approaches is striking
a balance between overcorrecting and under-correcting assemblies, due to the complex nature
of sequencing and assembly error profiles.

Here we present a sequence-to-sequence (seq2seq) transformer-based method for assembly
polishing. Seq2seq transformer family models have been used to great success in many
applications including language processing, machine translation tasks, and conversational
AI26–28. Previously this model architecture was used in DeepConsensus to improve the quality of
PacBio High-Fidelity (HiFi) sequencing reads29. In this work, we demonstrate a new adaptation
of the transformer model for genome polishing called DeepPolisher, which takes HiFi
sequencing reads aligned to a draft assembly as input. Along with DeepPolisher, we have
developed a pipeline called PHARAOH for improving the phasing accuracy of HiFi read
alignments to diploid assemblies in falsely homozygous regions using ONT ultra-long (UL)
reads. In this work, we show that DeepPolisher with PHARAOH outperforms current polishing
approaches. Using an alignment-based measure of accuracy we demonstrate that
DeepPolisher reduces assembly errors by half, driven mostly by reductions in assembly
insertion-deletion (indel) errors. We applied our pipeline to 180 haplotype-resolved assemblies
from the next HPRC data release, and show substantial improvements in accuracy, increasing
the predicted quality value (QV) by 3.4 for most of the genome.
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Results

_______________________________________________________________________________________________
Figure 1: DeepPolisher pipeline overview.
The PHARAOH pipeline leverages phase block information from ONT UL reads to correct the haplotype
assignment of PacBio HiFi reads. The corrected alignment is passed to DeepPolisher, which is an
encoder-only transformer model that predicts the underlying assembly sequence and proposes
corrections in vcf format.
________________________________________________________________________________________________________
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Overview of the DeepPolisher pipeline
An overview of the DeepPolisher pipeline is shown in Figure 1. First, PacBio HiFi reads are
aligned to the diploid assembly with minimap230 or winnowmap31. For most of the genome, this
alignment step is sufficient to assign the HiFi reads to the correct haplotype. However, a
common error mode of modern assemblers is to mistakenly represent heterozygous sequence
as homozygous. When these regions of false homozygosity are longer than the HiFi read (up to
~ 25kb), the aligner cannot phase it, and will randomly assign it to a haplotype, preventing any
necessary polishing edits from being made there. To address this, we developed a pipeline
called PHARAOH (PHAsing Reads in Areas Of Homozygosity) which uses phasing information
from ONT reads greater than 100 kb to infer the correct haplotype for reads in long homozygous
regions (Methods). For the rest of the genome, the tool Secphase6 is used within the
PHARAOH pipeline to ensure correct read phasing by revisiting secondary alignments and
calculating a marker consistency score to determine whether the read should be relocated to
the other haplotype.

PHARAOH and Secphase allow us to provide improved read alignments as input to the
DeepPolisher model. DeepPolisher first partitions these alignments into 100 bp segments, then
represents them as a tensor object with auxiliary input features consisting of the base, whether
the base is a match or mismatch to the assembly, the base quality, and the mapping quality. The
tensor is provided to the encoder-only transformer neural network, which produces proposed
assembly corrections in vcf format. These can be applied to the unpolished assembly with
bcftools32 consensus (Figure 1). To train DeepPolisher we used a high accuracy assembly of
HG002 produced by the Q100 consortium33 (v0.9), training across chromosomes 1-19
(Methods). DeepPolisher can be run without PHARAOH if ONT UL reads are not available,
however assembly corrections in long stretches of false homozygosity will not be made.
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________________________________________________________________________________________________________
Figure 2: Comparison of DeepPolisher and alternate polishing methods against GIAB v4.2.1
benchmark for HG005
A) For each polishing method, GIAB v4.2.1 variant calling (assembly) errors are separated by indels
(darker shade) and single nucleotide variants (SNVs) (lighter shade), with the number of errors per
megabase to the right of each bar. B) Total GIAB variant calling (assembly) errors for different HiFi read
coverages, with indel errors represented in pink circles and SNV errors in yellow triangles. C) Total GIAB
variant calling (assembly) errors stratified by presence in tandem repeats (left), homopolymers > 7bp
(middle) and segmental duplications (segdups) (right), with SNV errors in lighter shades and indel errors
in darker shades.
________________________________________________________________________________________________________

Alignment based comparison of DeepPolisher and alternate polishing approaches
We compared the performance of DeepPolisher with existing polishing approaches for HiFi
reads: the Telomere-to-Telomere (T2T) consortium pipeline24, DeepVariant23 using HiFi
alignments, and NextPolish220. To test them, we ran the UL version of Hifiasm4 (which uses both
HiFi and ONT UL reads) to generate an assembly for a sample that was not included in our
training set (HG005). We polished it with each method, then called variants relative to GRCh38
using dipcall34, which enabled us to assess concordance with the Genome in a Bottle (GIAB)
v4.2.1 benchmark call set35 (Methods). This gives an alignment-based measure of polishing
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accuracy that spans approximately 80% of the HG005 genome, as defined by the GIAB
confident regions.

With DeepPolisher, we reduce the number of variant calling errors in the unpolished assembly
from 20,274 to 11,750, indicating a reduction in assembly error rate by 43% (8.14 errors per Mb
to 4.72 errors per Mb) (Figure 2A). This performance is reproduced on the held-out
chromosome (20) from HG002 (Supplementary Table 1A,1B). We also trained a DeepPolisher
model on a Verkko5 assembly using the same data. According to the GIAB variant calling
results, the Verkko assembly for HG005 starts out at a higher quality than Hifiasm (6.86 errors /
Mb), but after DeepPolisher we bring it to the same quality as Hifiasm after polishing at 4.87
errors / Mb (Supplementary Table 1E).

In comparison to DeepPolisher, the T2T polishing pipeline produces more conservative
improvements, with only 3,591 polishing edits passing their filters, leading to a removal of 372
errors (7.99 errors / Mb). Using DeepVariant to polish with HiFi alignments reduces assembly
errors to 13,724 (5.51 errors / Mb). We note that much of the difference in GIAB variant calling
performance between DeepVariant and DeepPolisher on HG005 is due to PHARAOH: polishing
the HG005 assembly with DeepVariant run on PHARAOH alignments produces a reduction to
11,508 assembly errors (4.62 errors / Mb). However, an important caveat is that DeepVariant
was trained on several GIAB samples including HG005, with only chr20-22 held out. Finally,
NextPolish2 removed 3,260 errors from the unpolished assembly (6.68 errors / Mb) (Figure 2A,
Supplementary Table 1C).

We tested DeepPolisher across a variety of coverages, and found that while 40x coverage
produces optimal reduction in variant calling errors, some assembly improvement can still be
obtained with as low as 10x coverage (Figure 2B). The DeepPolisher pipeline performance is
also reproducible across HiFi read versions other than what it was trained on (DeepConsensus
v1.2). This includes Sequel II, DeepConsensus v0.2, and Revio with DeepConsensus
v1.1(Supplementary Figures 1 and 2, Supplementary Table 2).

We stratified the GIAB variant calling errors by genomic region and found that the majority of
indel errors removed by DeepPolisher were in tandem repeats and homopolymers. The majority
of SNV errors that were not fixed by DeepPolisher were located within segmental duplications.
Some of these may be true errors, but others may be mapping artifacts or mistakes in the truth
set (Figure 2C).

To test how DeepPolisher impacts critical coding regions, we looked for nonsynonymous,
frameshift, or premature stop mutations in the HG005 assembly before and after polishing.
DeepPolisher removed two frameshifts, four nonsynonymous mutations, and one premature
stop codon (Supplementary Table 12).

We ran DeepPolisher directly on minimap2 alignments to assess the performance benefits of
the PHARAOH pipeline. DeepPolisher on PHARAOH alignments results in 1,915 fewer variant
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calling errors for HG002 (whole genome) and 519 less errors for HG005 (Supplementary Table
1B, 1G).

________________________________________________________________________________________________________
Figure 3: K-mer based comparison of DeepPolisher and alternate polishing approaches for HG005
A) Top panels display QV scores for each polishing method. Bottom panels depict total error k-mers,
divided by error k-mers induced by polishing (dark blue) and error k-mers unchanged after polishing
(green). Left panels show results for the GIAB confidence regions, right panels whole genome. B) Switch
(x axis) and hamming (y axis) error rates for each polishing method. C) Comparison of DeepVariant and
DeepPolisher for 8 HPRC samples. Left and middle panels show Hap1 (x axis) and Hap2 (y axis) QV for
8 HPRC samples, with an arrow connecting the unpolished QV (pink) to the QV after polishing with
DeepVariant (blue) and DeepPolisher (yellow). Left panel is within the GIAB confidence regions, middle
panel whole genome. Right panel shows number of polishing edits from DeepPolisher (yellow) and
DeepVariant (blue). Lighter shades indicate edits not inducing error (FP) k-mers, darker shades show
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edits that induce error k-mers. D) Number of error k-mers unchanged by polishing with DeepPolisher
falling into sequence annotation categories.
________________________________________________________________________________________________________

K-mer based comparison of DeepPolisher and alternate polishing methods
K-mer based methods assess the accuracy of an assembly using an alignment-free approach7.
To compare the k-mer and alignment based assessments we first restricted the k-mer
assessment to just the assembled sequence contained within the GIAB high confidence
regions, which span ~80% of the HG005 assembly (Methods). K-mer methods generally report
a quality value (QV), a log base 10 scaled measure of assembly error, with higher values
indicating more accurate assemblies. We find that DeepPolisher improves the k-mer based
assembly QV by 1.8, equivalent to a 34% reduction in errors, which is approximately consistent
with the quantity of improvement suggested by the GIAB variant calling performance (Figure
3A, Supplementary Table 6). Out of all the polishing methods compared, DeepPolisher
induces the least amount of error k-mers to the assembly (Figure 3A). NextPolish2, which uses
Illumina k-mers in its algorithm for assembly polishing, produces the highest QV improvement,
yet with the trade-off of inducing the highest number of new error k-mers to the assembly. The
introduction of new error k-mers likely lies behind the increase in switch and hamming error rate
produced by NextPolish2 (.03% and .06% respectively). In contrast, the other polishing methods
manage to reduce switch and hamming error rates (Figure 3B).

To compare the performance of DeepVariant and DeepPolisher on samples that were
completely held out from training in both methods, we applied both tools to the same PHARAOH
alignments for eight of the HPRC samples, and assessed their QV. For all samples,
DeepPolisher produces a higher QV improvement (avg. 3.95 QV, 60% error reduction) within
the confidence regions compared with DeepVariant (avg 2.26 QV, 41% error reduction) (Figure
3C). In addition, the percentage of edits inducing error k-mers is more than twice as high for
DeepVariant (average 9%) than DeepPolisher (average 4%) (Figure 3C).

K-mer based assessments underestimate assembly error rates
Relative to alignment-based metrics like those used in the GIAB assessment above,
k-mer-based QVs are unbiased by alignment and easy to assess. However, k-mer based
methods lack an underlying ground truth, instead relying on consistency between assembly and
sequencing technology. This results in a potential limitation where results could be consistent
but not correct due to technology-specific sequencing bias. Because k-mer based quality
metrics are agnostic to the sequence context outside of the k-mer window, they also are limited
in their ability to capture errors in repetitive sequence or in regions with a loss of heterozygosity.

For the unpolished HG005 assembly within the confident regions, we see a QV estimate of
66.97 using Illumina k-mers (k-31), suggesting 0.811 errors / Mb, while the GIAB analysis
suggests the same assembly has ~10x more errors per Mb (8.14) (equivalent to a QV of 50.9)
(Supplementary Table 6). Using shorter k-mer sizes or a hybrid k-mer set built with both
Illumina and HiFi reads as suggested by McCartney et. al24 led to substantially more inflated
estimates of accuracy (0.258 and 0.201 errors / Mb, respectively) (Methods, Supplementary
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Table 6). In order to explore the source of this difference in error rate, we performed a manual
analysis investigating the concordance between the errors reported by the QV and the GIAB
variants for HG005 after polishing with DeepPolisher (Methods, Supplementary Table 13). We
found that error k-mers reported by QV were almost always validated by errors reported using
GIAB, indicating that most of the QV errors within the confident regions are likely true. However,
for 35% of the cases examined, the QV did not flag the pre- nor post-polishing sequence as an
error. Because it is impossible for both versions of the assembly sequence to be correct, we
attribute this to the fact that k-mer based quality estimates often miss errors in repetitive
sequences, due to their presence in the “truth” k-mer set coming from other regions of the
genome. Therefore, we conclude that non-unique sequence is likely the cause of the
underestimated error rates in QV metrics.

K-mer based methods identify residual errors in unpolished sequence
Looking at the k-mer QV whole genome we found little difference between the unpolished
assembly and the four different polishing methods, with all QV scores in the range of 50.56 -
50.84. This is because the vast majority of the error k-mers leading to this QV score are
unchanged after polishing (97.3% for DeepPolisher) (Figure 3A). Investigating these
unchanged error k-mers, we found that 41% have greater than 70% GC content, and when we
plotted the distribution of their GC content we saw a clear bias relative to randomly permuted
k-mers (Methods, Supplementary Figure 4). This indicates that the observed GC bias11,12 in
short reads is likely inducing a substantial number of falsely reported errors. However, this still
leaves a majority of these error k-mers that may be real, unaddressed errors. Indeed, we find
that 22.8% of predicted error k-mers are located in regions with less than 5x coverage of HiFi
data. These regions were likely bridged by ONT sequence in the assembly stage, and therefore
have a higher error rate, but are inaccessible to DeepPolisher due to the lack of HiFi read
coverage. Additionally, we found that 36% of the unchanged error k-mers overlapped simple
and low-complexity repeat annotations, with 10% overlapping homopolymers greater than 10
bp. These regions tend to have higher error rates in HiFi reads10,36, which makes it likely these
are true errors that DeepPolisher was unable to fix. Together, these observations indicate that
while the residual predicted error k-mers contain many false positives, the k-mer based methods
are identifying significant sequence outside of GIAB high-confident regions that are erroneous
and unchanged by our current polishing methods (Figure 3D, Supplementary Table 7).
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________________________________________________________________________________________________________
Figure 4: Polishing results for 180 HPRC assemblies
A) Hap1 QV (x axis) and Hap2 QV (y axis) in the confidence regions for 180 HPRC samples from the
second release. For each sample, unpolished QV is in blue with an arrow pointing to the polished QV. B)
The same as A) but for whole genome QV. C) Switch (x axis) and hamming (y axis) error rate for the 107
samples with trio data. Unpolished in pink with an arrow pointing to polished in yellow.
________________________________________________________________________________________________________

Polishing the HPRC release 2 assemblies
We applied our polishing pipeline to 180 HPRC assemblies made available as part of the
second HPRC data release. Within the confident regions (81.4% of the genome on average),
and consistent with our analysis of HG005, we noted an average QV improvement of 3.4 (54%
reduction in errors), with the average unpolished QV of 66.66 moving to an average of 70.05
after polishing (Figure 4A). Whole genome, we improved the QV by 0.306 points on average
(Figure 4B; 7% reduction in errors), owing to the presence of the lower quality ONT-only
regions that cannot be polished with the current model, and regions subject to sequencing bias
as previously discussed. Polishing improved phasing accuracy for all 111 samples that
contained trio data: on average it reduced switch error by 0.039 and hamming errors by 0.037
(Figure 4C).

Removing additional errors with Element data
Element Biosciences Avidity short-read data has gained popularity recently for its high accuracy
in tandem repeats and homopolymers. We tested whether further polishing with Element data
after DeepPolisher could fix residual errors. Because of the challenges associated with phasing
short read data, we restricted our initial experiment to polishing just homozygous locations. In
order to obtain potential homozygous edits, we aligned 50x Element cloudbreak reads37 to each
haplotype of the HG002 and HG005 polished assemblies. We ran DeepVariant on each
alignment, and selected just the homozygous-alternate calls with a GQ greater than 7. This
approach removed 9% (1,182) of the remaining variant calling errors after polishing with
DeepPolisher for HG002, and 5% (600) for HG005, a promising number of errors removed
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given the relatively low number of polishing edits applied (5,586 for HG002 and 8,795 for
HG005) (Supplementary Table 11).

Discussion:

Rapid advancements in long-read sequencing and assembly algorithms in recent years are
ushering in a new era of population-scale, T2T genome assembly projects6,17,38. Many of these
assemblies are being used as reference genomes, making it important that the sequences be
highly accurate. To remove the remaining errors in these sequences, deep learning approaches
are a promising way to model sequencing bias in regions like homopolymers and
low-complexity repeats. In this work, we developed a new polishing tool called DeepPolisher, an
encoder-only transformer model, that takes in HiFi reads aligned to a diploid assembly, and
predicts the underlying sequence. Accompanying this, we introduced a pipeline called
PHARAOH (PHAsing Reads in Areas of Homozygosity) that ensures read alignment inputs to
DeepPolisher are assigned to the correct haplotype, and phases potential polishing edits in long
homozygous assembly regions.

Using an alignment based assessment of assembly accuracy measured against the GIAB
v4.2.1 benchmarking variant calls, we demonstrate that DeepPolisher reduces assembly errors
by approximately half, largely driven by reductions in indel errors, across the large majority of
sequence that is mappable by HiFi sequencing. While alignment-based assessments of
high-quality benchmark sets are close to a gold standard, current benchmarks do not cover the
full genome and are dependent on accurate alignment. To get around these issues we also
assessed assembly quality with k-mer methods. Comparing k-mer methods to the
alignment-based assessment within the same genomic regions predicted similar percentage
reductions in errors, which is consistent and reassuring, but also revealed that the k-mer
methods miss around 90% or more of residual errors. While some of these may be false
positives in the alignment benchmark, our manual analysis suggests that most are simply
missed by the k-mer methods due to their limitations regarding modeling repeat k-mers that are
likely often enriched in assembly errors. We would therefore urge users to recognize this and
note that such QV estimates are likely overly optimistic because they have a high false negative
rate.

However, k-mer methods also reveal large numbers of predicted errors in regions that remain
untouched with the current iteration of DeepPolisher and are located outside of the regions
assessed by the alignment based benchmarks. While nearly half of these predicted errors may
be false positives caused by GC content bias, it is probable that many are real. We attribute a
quarter of these errors to regions of HiFi coverage dropout where ONT was primarily used
during the assembly stage. We plan to expand the DeepPolisher model to work on ONT reads
in the future, to address this fraction of errors. Around a third of the residual errors lie in
homopolymers and tandem repeats, sequences that are challenging even for highly accurate
HiFi reads. We experimented with using Element Biosciences data to fix these errors and
demonstrate that we can remove a minority of errors using the approach. However, Element
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reads are currently relatively short, preventing accurate mapping across repetitive sequence
and limiting phasing. We predict the remaining class of errors will be challenging to fix.

To resolve the limitations of current alignment and k-mer based approaches to assessing
base-level assembly accuracy, the Q100 project33 aims to create a “perfect” genome assembly
to be used as a benchmark for assembly methods. While achieving a completely perfect
assembly will be challenging, the direct comparison of a draft assembly to an assembly
benchmark will help expand the alignment-based assessment of assembly quality to more
difficult regions of the genome than are covered by the GIAB confidence regions. In the future,
we hope that genome benchmarks for more samples will be produced, to expand the training
and testing sets to multiple genomes for models like DeepPolisher.

Despite the difficulties inherent in assessing the performance benefits of the DeepPolisher
model, we demonstrate that it provides the best balance between over and under-polishing for
high-quality assembly projects like the HPRC. We have applied the DeepPolisher and
PHARAOH pipeline to the next release of HPRC assemblies, and demonstrate consistent
improvements to quality value across all samples, which will be critical for downstream
applications of this new reference dataset. Next, we aim to experiment with DeepPolisher on
non-human species, to expand its utility to high quality genomes outside of humans, which may
be useful for projects like the VGP17 and T2T primates consortium39.

Code availability

DeepPolisher code is available publicly on GitHub through
(https://github.com/google/deeppolisher). PHARAOH is implemented in a pipeline available on
GitHub (https://github.com/miramastoras/PHARAOH) Scripts for analysis and benchmarking are
available on GitHub (https://github.com/miramastoras/DeepPolisher_manuscript). Code used to
generate the HPRC assembly data release 2 may be found at
(https://github.com/human-pangenomics/hprc_intermediate_assembly)

Data availability

All data used to generate and polish the assemblies was downloaded from the HPRC at
(https://s3-us-west-2.amazonaws.com/human-pangenomics/index.html?prefix=working/HPRC_
PLUS/). A list of the specific files used in each step may be found at
(https://github.com/miramastoras/DeepPolisher_manuscript/blob/main/assembly/hifiasm_HG002
_HG005.md). The HPRC release 2 assemblies and their associated data may be found at
(https://github.com/human-pangenomics/hprc_intermediate_assembly/tree/main/data_tables)
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Methods:

Assembly
To create HG002 and HG005 Hifiasm assemblies for training and testing DeepPolisher, we ran
Hifiasm (UL) v0.19.5 in trio mode with default parameters. To create HG002 and HG005 Verkko
assemblies for training and testing DeepPolisher, we ran Verkko v2.0 in trio mode with
--correct-overlap-batches 64 and --screen human and otherwise default parameters. As input
we used 40x HiFi DeepConsensus v1.2 and 40x ONT UL >100kb reads from the HPRC. The
ONT reads for the HG005 and HG002 samples were sequenced using R9.4.1 flow cells and
basecalled using Guppy software (HG005 with version 5.0.7 and HG002 with version 6.0.6). For
phasing assembly haplotypes in the trio mode, both assemblers needed k-mer databases that
were created from parental short reads, and Verkko required k-mer databases from the child’s
short reads. For Hifiasm we used yak and for Verkko we used meryl to create the related k-mer
databases. For HG002, we used the 300x parental and child illumina data from the HPRC to
create input yak and meryl databases (using default settings for both), and 100x illumina data
for HG005 parental and child databases.

DeepPolisher development and training
DeepPolisher uses an encoder-only transformer model to predict potential errors present in a
haplotype-resolved genome assembly. The framework of DeepPolisher is adopted from our
previous work DeepConsensus29. The input to DeepPolisher is an alignment file where the
reads are aligned to the correct haplotype assembly. Then it performs the following steps to
identify potential errors:

1. make_images: In the make_images step:
○ DeepPolisher takes a 25kb window of the assembly and tries to find potential

positions where there could be an error. This is done by comparing the reads to
the assembly. If at any position, there are more than two reads containing a
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sequence that does not match the assembly (mismatched base, insertion or
deletion), we pick that position to be a potential error site.

○ The positions that are within 50 bp or closer are grouped together to create a
window that does not exceed 100 bp sequence.

○ For each window, we take alignment features (base, base quality, mapping
quality, match or mismatch) and create a tensor-like representation of the window
that potentially contains assembly errors.

○ This tensor-like representation of the alignment is then fed to the
transformer-model for prediction.

2. inference: In the inference step, we take the tensor-like representation of the 100 bp
window with potential sequencing errors and use that as an input to the encoder-only
transformer model. The model predicts a sequence based on the read alignments. We
then compare the predicted sequence to the assembly and any difference between the
predicted sequence and the assembly is reported in a vcf format file which would
indicate potential errors in the assembly. These vcf edits can be applied to the assembly
after DeepPolisher in a separate step using bcftools32 consensus -H2.

We trained DeepPolisher on the HG002 Hifiasm assembly taking the HG002-T2T-v0.933 as the
truth. We took HiFi reads aligned to the Hifiasm assembly using the PHARAOH pipeline. Then
we aligned the Hifiasm diploid assembly to HG002-T2T-v0.9 assembly to create an
assembly-to-truth alignment, which we use as the truth sequence for training the model. During
training, the predicted sequence is compared against the truth sequence and the loss is
calculated via the alignment loss function we introduced in our previous work DeepConsensus29.
We use a similar approach to train a model for Verkko assembly, where we use the Verkko
assembly for training.

PHARAOH pipeline
The first step in the PHARAOH workflow involves aligning all HiFi reads to the diploid assembly
using minimap2 with parameters “-L --eqx --cs -c -k19 -x map-hifi”. Next, we identify stretches of
homozygosity in the assembly by aligning the two haplotype fasta files to each other with
minimap2 using the parameters “-L --eqx --cs -c -x asm5”. The resulting paf file is passed into a
python script
(https://github.com/mobinasri/secphase/blob/main/programs/src/find_homozygous_regions.py)
which parses the cigar string to return stretches of 100% identical sequence greater than 20,000
bp (the average length of HiFi reads). Next, the reads within the homozygous regions are
extracted and aligned separately to the maternal and paternal haplotypes using minimap2 with
parameters “-L --eqx --cs -c -k19 -map-hifi”. All reads with gap-compressed mismatch ratio
exceeding 0.02 are removed to avoid calling spurious variants in reads too diverged from the
assembly. DeepVariant is then used to detect heterozygous variants in these alignments, and all
variants with a genotype quality less than 10 are filtered out. We align ONT UL reads greater
than 100,000 bp separately to each haplotype assembly using minimap2 with parameters `--cs
--eqx -L -Y -map-ont`. These UL alignments are passed to WhatsHap40, which is used to phase
the heterozygous variants called by DeepVariant in homozygous regions.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2024. ; https://doi.org/10.1101/2024.09.17.613505doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?l2KyYV
https://www.zotero.org/google-docs/?GZEZUI
https://www.zotero.org/google-docs/?KTu2rW
https://www.zotero.org/google-docs/?1jDQ3Z
https://doi.org/10.1101/2024.09.17.613505
http://creativecommons.org/licenses/by/4.0/


In order to reassign reads to the correct haplotype assembly using the phased variants from
WhatsHap, we added a new mode to the tool Secphase. From WhatsHap we have phased
variants grouped into phase blocks. Each phase block contains two haplotypes, and Secphase
picks the haplotype with a higher number of reference alleles (in other words, the one that is
more similar to the assembly sequence) covered by that phase block. Secphase then retains
the variants with alternative alleles in the selected haplotype of the phase block. Next, a variant
block is created around each selected variant. The minimum block size can be set as a
parameter (default = 100) and the actual size is adjusted to be twice the variant size if the
minimum block size is smaller than twice the variant size. Overlapping variant blocks are
merged, so a single block may encompass multiple variants. Each variant block, defined in
assembly coordinates, is then projected onto the read coordinates. A single read may have
multiple alignments, typically one per assembly haplotype, with each alignment having its own
projected blocks. To create non-overlapping blocks crucial for distinguishing assembly
haplotypes, all projected variant blocks are merged on the read coordinates. These merged
blocks serve as proxies to compare haplotypes. The variants are then applied to the assembly
haplotypes, effectively "pseudo-polishing" the assembly only in the created blocks. The
pseudo-polished sequence of each haplotype is then compared against the read sequence
within each variant block, with edit distances calculated using the Edlib41 library. The edit
distances across all merged variant blocks are summed for each alignment. The haplotype with
the lower total edit distance is selected as the correct haplotype for the related read.

In the PHARAOH pipeline, this new variant mode of Secphase is used for the homozygous
regions > 20 kb containing a potential heterozygous polishing edit, and the original marker mode
is used for the rest of the genome. After reassigning reads to the new location determined by
Secphase, we remove alignments with a gap-compressed mismatch ratio exceeding 0.002,
producing the final alignment for input to DeepPolisher. PHARAOH is implemented as a wdl
workflow, and is publically available at https://github.com/miramastoras/PHARAOH. The tool
Secphase may be found at https://github.com/mobinasri/Secphase. The entire pipeline for
running PHARAOH and DeepPolisher may be found at
https://github.com/human-pangenomics/hpp_production_workflows/tree/master/polishing.

DeepPolisher GQ filter optimization
We selected four HPRC samples (HG01975, HG04115, HG02129, HG01993) with varying QV
improvements after polishing (Supplementary Table 10) to optimize a set of GQ filters for
DeepPolisher. First, we annotated the error k-mers in the assemblies by whether they were
induced, fixed or didn’t change with polishing. To accomplish this we first aligned each
haplotype of the unpolished assembly to the corresponding haplotype of the polished assembly
with minimap2 and parameters -x asm5 -L --eqx --cs -c. We took the polished assembly
*_only.bed file produced by Merqury (which contains the assembly coordinates for the error
k-mers), merged the k-mers with bedtools42 merge -c 1, and projected them to the unpolished
assembly using the script
https://github.com/mobinasri/flagger/blob/main/programs/src/project_blocks_multi_thread.py.
This allowed us to have the polished assembly error k-mers in unpolished assembly
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coordinates. We then subtracted the polished projected error k-mer bed file from the raw error
k-mer bed file with bedtools subtract -A to extract the error k-mers fixed by polishing. We
performed the reverse to obtain the error k-mers induced by polishing. Finally, we used bedtools
intersect to produce the error k-mers unchanged by polishing, which were common to both bed
files. To annotate the polishing edits by whether they induced, fixed, or didn’t change error
k-mers, we intersected the polishing vcf with the error k-mer bed files labeled in the previous
step.

We found that the majority of DeepPolisher edits inducing error k-mers were 1bp insertions or
deletions (Supplementary Figure 4). Based on this observation, we tested three filtering
scenarios: 1) A single GQ filter for all variants, 2) a GQ filter for 1bp insertions and a separate
one for the remaining edits, and 3) a separate GQ filter for 1bp insertions, 1bp deletions, and for
all other edits. We combined the annotated polishing edits from all four samples, and for each of
these scenarios, we swept the GQ filter cutoff from 0 to 25 and calculated the estimated QV
improvement using the formula -10*log10(error_k-mer_after/error_k-mer_before). We found the
optimal GQ cutoff to be GQ 20 for 1 bp insertions, GQ 12 for 1 bp deletions, and GQ 5 for all
other variants (Supplementary table 10). All DeepPolisher results shown in the paper have this
filter applied unless otherwise stated. Detailed code for this analysis may be found at
https://github.com/miramastoras/DeepPolisher_manuscript/blob/main/paper_analysis/Optimizing
_GQ_filters.md.

Implementing alternate polishing methods
We adapted the T2T polishing pipeline described in McCartney et. al24 for diploid assemblies to
compare against DeepPolisher. We aligned 40x HiFi DeepConsensus v1.2 reads from the
HPRC for both cell lines to the diploid Hifiasm assemblies with winnowmap v2.03 and
parameters --cs --eqx -L -Y -I8g -map-pb. We aligned ONT R9 40x reads from the HPRC to the
diploid Hifiasm assembly using winnowmap v2.03 and parameters --cs --eqx -I8g -Y -L -p0.5
-map-hifi. We also aligned 30x Illumina data to the diploid Hifiasm assembly with bwa-mem
v.0.7.17 and default parameters. HiFi and Illumina bam files were merged with samtools, and
DeepVariant v1.6.1 with parameter –model-type=HYBRID_PACBIO_ILLUMINA was used to call
variants. PEPPER-Margin-DeepVariant was used to call variants for the ONT alignments. All
GQ and VAF filters described in McCartney et al24. were applied. Merfin mode -polish was also
used to further filter polishing edits. Edits were applied to the assembly with bcftools consensus
-H1.

We used the same 40x HiFi DeepConsensus v1.2 winnowmap read alignments described
above as input to NextPolish2 and DeepVariant. For NextPolish2, 30x Illumina data from the
HPRC was first pre-processed with the tool fastp43 with parameters -f 5 --cut_front --cut_tail as
suggested by the authors. The preprocessed data was then used to create a yak k=21 and k=31
database as input to NextPolish2, using default settings. NextPolish2 was run with default
settings. DeepVariant v1.6.1 was run with default settings and flag --model_type=PACBIO. For
DeepVariant, bcftools consensus -H1 was used to apply edits to the original assembly. All code
used to implement alternate polishing methods is available at
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https://github.com/miramastoras/DeepPolisher_manuscript/blob/main/paper_analysis/alternate_
polishing_methods.md

Measuring GIAB variant calling performance
To assess the accuracy of the assemblies against the GIAB v4.2.1 benchmark set, we first ran
dipcall34 with default settings against GRCh38 obtained from
(https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/references/GRCh38/). We
next ran the tool hap.py44 to calculate performance metrics of the dipcall vcf file against the
GIAB v4.2.1 benchmark vcf.

For HG002, we restricted the hap.py analysis to regions within the GIAB high confidence subset
that were also validated by the T2T Q100 v1.0.133 assembly. To create this subset, we ran
dipcall34 on the T2T v1.0.1 assembly against GRCh38 using minimap parameters
-z200000,10000 (in order to align across larger SVs and more divergent regions like the MHC).
We next intersected the HG002 high confidence bed file provided by GIAB with the bed file
produced by dipcall in the previous step, to produce a bed file of high confidence regions that
are alignable between GRCh38 and T2T v1.0.1. We ran hap.py on the output vcf of dipcall vcf
containing variants between T2T v1.0.1 and GRCh38 against the GIAB v4.2.1 vcf, restricting the
analysis to the high confidence regions that are alignable between GRCh38 and T2T v1.0.1 by
passing that bed file in with parameter -f. Using bedtools subtract we removed 50 bp
surrounding any FP or FN designated variants produced in that hap.py run from the GIAB high
confidence bed file, in order to remove regions that were not concordant with the T2T v1.0.1.
830 total variants were subtracted, and 63.7% of them were located within the GRCh38
segmental duplications track. Code for this analysis may be found at
(https://github.com/miramastoras/DeepPolisher_manuscript/blob/main/paper_analysis/GIAB_trut
hset.md).

To create the final bed file to use with hap.py -f in benchmarking the HG002 assemblies, we
intersected the bed file containing regions concordant between the Q100 T2T v1.0.1 assembly
and GIAB v4.2.1 (described in the previous paragraph) with the bed file produced from the
dipcall output of the unpolished assembly to GRCh38. For HG005, we repeat this step but with
the original HG005 high confidence bed file provided by GIAB. For all hap.py runs we used the
options --pass-only --no-roc --no-json --engine=vcfeval, and the GIAB v3.3 stratifications to
obtain performance statistics per genomic region.

Stratifying QV by whole genome and within GIAB confidence regions
For QV calculations we ran Merqury and Yak with default settings, using ~30x coverage Illumina
data for all samples. For trio samples, we used Yak trioeval along with parental Illumina data to
calculate switch and hamming rates. In order to assess QV just within the confidence regions,
we first took an intersection of the GIAB high confidence regions for HG002 and HG005 using
bedtools to define a subset of high confidence regions that isn’t genome-specific. We aligned
each haplotype assembly to GRCh38 with minimap2 and parameters -x asm5 -L --eqx --cs -c.
We then used the script
https://github.com/mobinasri/flagger/blob/main/programs/src/project_blocks_multi_thread.py to
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lift over the GIAB confidence regions bedfile from GRCh38 to the assembly. Next, we used
bedtools getfasta with default settings to extract only the sequence found within this bed file,
and passed it to Merqury and Yak for QV calculation. In order to count the number of error
k-mers induced, fixed, or unchanged after polishing, and obtain the polishing edits which were
the cause of inducing, fixing, or failing to change the error k-mers, we performed the same
annotation procedure described under the section “DeepPolisher GQ filter optimization”. To
transform QV value into an estimate of error per megabase, we used the formula (10^(-QV /
10))* 10^6). This procedure is implemented in a wdl workflow publicly available at
https://github.com/miramastoras/DeepPolisher_manuscript/blob/main/wdl/workflows/hprc_polish
ing_QC.wdl.

Manual investigation of concordance between GIAB variant calls and Illumina QV
We performed a manual investigation of the concordance between the GIAB variant call errors
and the Illumina QV reported errors for HG005 (polished by DeepPolisher) within the high
confidence regions using IGV45. In order to obtain bed tracks for viewing the GIAB variant call
errors in respect to the raw assembly coordinates, we used bcftools32 isec to obtain the
intersections, unions and complements between the raw and polished vcfs output by hap.py
(these vcfs contain variants relative to GRCh38 labelled by true-positive, false-positive or
false-negative). We used the tool vcf2bed from BedOps46 to convert the vcf files to bed format,
expanded the intervals by 10 base pairs on each side to enable projecting of the indels over to
the raw assembly coordinates with the script
https://github.com/mobinasri/flagger/blob/main/programs/src/project_blocks_multi_thread.py.
For viewing the QV errors in IGV, we took the *_error.bed file (containing the locations in the
assembly of the error k-mers) produced by Merqury using Illumina k-mers of size 31, and used
the procedure described in “DeepPolisher GQ filter optimization” to annotate the polishing vcf
by whether the edits induced, fixed, or failed to change the error k-mers, as well as label the
error k-mers by whether they were fixed, induced or unchanged by polishing.

We used the files described above to randomly select 10 GIAB errors induced by DeepPolisher,
10 GIAB errors fixed by DeepPolisher, 10 polishing edits inducing error k-mers, and 10 polishing
edits removing error k-mers. We carefully evaluated all 40 examples in IGV alongside the
PHARAOH read alignments. For the GIAB errors we looked at both haplotypes to understand if
one or both alleles was considered an error, and in two cases there was a polishing edit made
to both haplotypes for a given GIAB error, so edits on both haplotypes were assessed. For all 42
polishing edits, we recorded the error status in both GIAB and QV. All details for the 42 edits
may be found in Supplementary Table 13.

In summary, out of 42 polishing edits manually inspected, there were 3 cases where GIAB
indicated the edit induced an error while the QV indicated that it fixed an error. For 24 / 42
polishing edits, the QV and GIAB metrics both agreed on whether the edit fixed or induced an
error. For 15 / 42 polishing edits, the QV reported no error k-mer in either the pre- or
post-polishing sequence, indicating that both were correct according to the QV metric. Since it is
impossible for both versions of the sequence at a given location to be correct, this 33% of
inspected edits likely falls in non-unique sequence, where either the pre- or post-polishing
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sequence is found elsewhere in the genome, so the QV failed to flag it as false. This proportion
may also be caused by noise from sequencing errors in the Illumina reads. In addition, all but 2
of the 42 edits examined were found within long tandem repeats or homopolymers, which are
more likely to be non-unique in the genome. We propose that this category accounts for the
much lower error rate reported by the QV than by the GIAB analysis within the high confidence
regions. Because all of the QV reported errors we examined were corroborated as false by
GIAB (and there were only 3 cases where QV indicated an error was fixed while GIAB indicated
it was induced), we conclude that the majority of the QV errors within the confidence regions are
most likely true errors.

Comparing different methods for estimating QV
We compared several different methods for calculating QV on our HG005 Hifiasm assembly and
found them to be highly variable (Supplementary Table 6). Merqury7 and Yak8 typically report
values 2-3 QV points apart (approximately a 2x difference in error rate). We found that using
k-mers of size 31 led to more conservative scores than k of 21 (between 2-4 points lower,
equivalent to an approximately 50% difference in error rate). These longer k-mers can capture
differences in longer repeats, which likely accounts for the higher predicted error rates. We also
tested Merqury with a hybrid of HiFi and Illumina k-mers following the approach suggested in
McCartney et. al24. We found that the hybrid k-mer database led to QV scores around 10 points
higher (a predicted order of magnitude lower error rate) than when we used just Illumina. While
using hybrid k-mers may remove some Illumina-specific bias, specifically known issues with
GC-bias11,12, we observed that it introduces too many HiFi-specific sequencing errors to the
“truth” k-mer space, and so reduces the apparent error rate by masking true errors. We also
experimented with using Element cloudbreak37 short read k-mers to calculate QV, and found it
predicted double the error rate relative to Illumina (Supplementary Table 6). However, we
found the same impact of GC bias on the error k-mers calculated by Merqury QV as was
described for Illumina. (Supplementary Figure 4). Given that Element data was not available
for the HPRC samples, and to be conservative, we report Merqury QV with Illumina k-mers of
size 31 for this paper unless otherwise stated.

Characterizing the context of unchanged error k-mers
After obtaining the error k-mers unchanged by polishing as described in the section
“DeepPolisher GQ filter optimization”, we sought to establish how many were located within
coverage dropouts. We ran the tool mosdepth with parameter --quantize 0:5:10:150: on the
PHARAOH alignment to obtain locations with less than 5x coverage, then bedtools intersect to
obtain the error k-mers unchanged by polishing within those regions. To obtain the number that
were within simple or low complexity repeats, we ran dipcall with default parameters to align the
HG005 raw assembly against CHM13, then the script
https://github.com/mobinasri/flagger/blob/main/programs/src/project_blocks_multi_thread.py to
project the repeat annotations produced for T2T-CHM13 at https://github.com/marbl/CHM13 to
HG005 coordinates. We then used bedtools intersect with the unchanged error k-mers and the
projected repeat annotations. To calculate the GC content of all error k-mers we used bedtools
nuc. To obtain regions in the HG005 raw assembly with homopolymers >10bp, we used a
custom python script which may be found at
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https://github.com/miramastoras/DeepPolisher_project/blob/main/quantify_error_kmers_HG005.
md, and bedtools intersect.

Gene impact analysis
We annotated the HG002 and HG005 assemblies before and after polishing with the
Comparative Annotation Toolkit (CAT2.0)47 using the transMap and liftoff modules based on the
GENCODE v46 gene annotations for hg38 as the reference. For these annotation sets, we
identified the locations of frameshifts by iterating over the coding sequence of every transcript
and looking for gaps in the alignment. If the gap length was not a multiple of 3 or if the length
was longer than 30bp, the gap was determined to be a frameshift. To identify the number of
nonsense mutations that would cause early stop codons in the annotation sets, we iterated
through each codon in the coding sequence and looked for an early stop codon before the
canonical stop codon at the end of the transcript. To identify the number of missense or
nonsynonymous mutations that would cause a change in the amino acid sequence produced,
we iterated through each codon, and for codons that were different from the canonical sequence
in hg38, checked if the substitution of the nucleotide caused a change in the amino acid
produced.

Element polishing
We obtained 50x element data for HG002 and HG005 from Carroll et. al37 and aligned all reads
to each polished haplotype assembly separately. We used DeepVariant v1.6.1 with
--model_type=WGS to call variants. We selected only homozygous alt PASS variants with
genotype quality greater than 7, and applied them to the assembly with bcftools consensus -H
2. Code used in this analysis is located at
https://github.com/miramastoras/DeepPolisher_manuscript/blob/main/paper_analysis/element_p
olishing.md.
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Supplementary figures:

________________________________________________________________________________________________________
Supplementary Figure 1: HG002 chr20 GIAB variant calling performance for other HiFi read
versions, across different coverages. Total GIAB variant calling (assembly) errors for different HiFi
read coverages, with indel errors represented in pink circles and SNV errors in yellow triangles
________________________________________________________________________________________________________
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________________________________________________________________________________________________________
Supplementary Figure 2: HG005 data performance across multiple coverages and read
technologies. A) Bar plots represent number of error k-mers (left y axis) for HiFi Sequel DCv1.2 at
different read coverages, with the corresponding QV plotted on the right y axis for whole genome (left
panel) and for the confidence regions (right panel) B) The same for HiFi Sequel CCS data. C) Total GIAB
variant calling (assembly) errors for different HiFi read coverages, with indel errors represented in pink
circles and SNV errors in yellow triangles
________________________________________________________________________________________________________
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________________________________________________________________________________________________________
Supplementary Figure 3: Optimizing GQ filters for DeepPolisher
A) Count of error (FP) k-mers per polishing edit size, with error k-mers fixed by polishing edit in yellow and error
k-mers induced by polishing edit in blue. B) Counts of error (FP) k-mers per genotype quality of polishing edit,
excluding insertions and deletions of length 1, and for C) the same for only insertions of length 1, and D) for
deletions of length 1.
________________________________________________________________________________________________________

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2024. ; https://doi.org/10.1101/2024.09.17.613505doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.17.613505
http://creativecommons.org/licenses/by/4.0/


________________________________________________________________________________________________________
Supplementary Figure 4: Percent GC content of error k-mers unchanged by polishing and
randomly permuted k-mers. Frequency of merged error k-mer regions per varying GC contents. In
yellow shows the actual observed error k-mers produced by Merqury, in blue are randomly permuted
k-mers of the same size across the genome. Top panel is for Illumina, bottom panel for Element
cloudbreak.
________________________________________________________________________________________________________
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