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Summary 
Mendoza-Halliday, Major et al., 2024 (“The Paper”)1 advocates a local field potential (LFP)-based approach to 
functional identification of cortical layers during “laminar” (simultaneous recordings from all cortical layers) 
multielectrode recordings in nonhuman primates (NHPs). The Paper describes a “ubiquitous spectrolaminar 
motif” in the primate neocortex: 1) 75-150 Hz power peaks in the supragranular layers, 2) 10-19 Hz power 
peaks in the infragranular layers and 3) the crossing point of their laminar power gradients identifies Layer 4 
(L4). Identification of L4 is critical in general, but especially for The Paper as the “motif” discovery is couched 
within a framework whose central hypothesis is that gamma activity originates in the supragranular layers and 
reflects feedforward activity, while alpha-beta activity originates in the infragranular layers and reflects 
feedback activity. In an impressive scientific effort, The Paper analyzed laminar data from 14 cortical areas in 2 
prior macaque studies and compared them to marmoset, mouse, and human data to further bolster the 
canonical nature of the motif. Identification of such canonical principles of brain operation is clearly a topic of 
broad scientific interest. Similarly, a reliable online method for L4 identification would be of broad scientific 
value for the rapidly increasing use of laminar recordings using numerous evolving technologies. Despite The 
Paper’s strengths, and its potential for scientific impact, a series of concerns that are fundamental to the 
analysis and interpretation of laminar activity profile data in general, and local field potential (LFP) signals in 
particular, led us to question its conclusions. We thus evaluated the generality of The Paper’s methods and 
findings using new sets of data comprised of stimulus-evoked laminar response profiles from primary and 
higher-order auditory cortices (A1 and belt cortex), and primary visual cortex (V1). The rationale for using these 
areas as a test bed for new methods is that their laminar anatomy and physiology have already been 
extensively characterized by prior studies, and there is general agreement across laboratories on key matters 
like L4 identification. Our analyses indicate that The Paper’s findings do not generalize well to any of these 
cortical areas. In particular, we find The Paper’s methods for L4 identification to be unreliable. Moreover, both 
methodological and statistical concerns, outlined below and in the supplement, question the stated prevalence 
of the motif in The Paper’s published dataset. After summarizing our findings and related broader concerns, we 
briefly critique the evidence from biophysical modeling studies cited to support The Paper’s conclusions. While 
our findings are at odds with the proposition of a ubiquitous spectrolaminar motif in the primate neocortex, The 
Paper already has, and will continue to spark debate and further experimentation. Hopefully this countervailing 
presentation will lead to robust collegial efforts to define optimal strategies for applying laminar recording 
methods in future studies. 
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Evaluation of the FLIP method in new data sets. 
We applied The Paper’s main analytic strategy, Frequency-based Layer Identification Procedure (FLIP), to 
three data sets recorded from primary (A1) and belt (secondary) auditory cortex (2 monkeys) and V1 (2 
monkeys). These areas were chosen because: 1) their laminar field potential, current source density (CSD) 
and multiunit activity (MUA) profiles have been thoroughly characterized by a number of labs, 2) they exhibit 
robust sensory-evoked responses with laminar activation patterns that reliably identify the positions of the 
supragranular, granular and infragranular layers 2–7 and 3) there is general agreement across labs on this point 
3,8–11. The Paper contends that the crossing point between high and low frequency relative power gradients 
marks the location of cortical Layer 4 (L4). To identify this location, FLIP uses a linear regression approach, 
iterating over combinations of recording probe channels’ signals. The laminar region with the highest 
goodness-of-fit value (G) for low vs high frequency power regression lines with slopes of opposite signs 
determines the range of probe channels to be used as the “regression region” within which to search for the 
location where the power gradients cross. We encountered several problems with this approach. 

First, FLIP does not reliably identify L4. Figures 1A-C show findings from a representative site in A1 
where current source density (CSD) and multiunit activity (MUA) profiles were used to identify the position of 
L4 (white lines), for comparison with FLIP-defined layer locations (Fig 1A). Based on laminar distributions of 
relative LFP power in the 75-150Hz and 10-19 Hz ranges for this site, time-locked to the stimulus and 
normalized to the channel with maximal power, the FLIP-defined laminar power gradient crossing falls outside 

Fig 1 – Frequency-based Layer Identification Procedure (FLIP) analysis in auditory and visual cortices. A) Representative tone-
evoked CSD and MUA profiles used to identify cortical layers in A1; Layer 4 is outlined in white. Laminar identification used 
methods established by prior studies. Specifically, the electrode array was positioned to straddle the region exhibiting 
significant (non-overlapping trial-wise confidence intervals between the pre- and post-stimulus periods) CSD activation. Layer 
4’s location was defined as the channel in the middle third portion of the active region with the earliest current sink onset, 
within 100 microns (+/- 1 channel in this case) of the peak amplitude MUA site.  B) Relative LFP power at each frequency, 
epoched -300 to 300 ms around stimulus onset, displayed as a color plot (left) with the associated goodness of fit (G) value 
generated by the FLIP algorithm; line plots (right) depict the laminar power gradients for alpha-beta (blue line, 10-20 Hz) and 
broadband gamma (red line; 75 - 150 Hz). The dashed lines indicate low and high frequency peaks picked by FLIP, and the 
power gradient crossing point. The yellow box indicates the FLIP-selected range of channels over which it conducts the 
regression. C) Goodness of fit (G-values) resulting from FLIP for A1, Belt, and V1. Values could be not significant (“n.s.”), 
negative (inverted motif), or positive. D) FLIP-defined power gradient crossing locations for the subset of sites with significant 
fits by FLIP, for A1, Belt cortex, and V1, binned into CSD/MUA-defined supragranular, granular, or infragranular compartments.   
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of (in this case below) L4 (Fig 1B). Quantification of FLIP-defined L4 locations for the subset of profiles it is 
able to fit (Fig 1C) and registered in the framework of the CSD/MUA-defined layer scheme at each site for our 
A1, auditory belt and V1 data sets (Fig 1D), shows that this finding is general across areas: for cases in which 
the FLIP algorithm could find a fit (64% overall), the power gradient crossing falls in L4 in only 29% of the 
cases overall (32% in A1, 40% in belt and 8% in V1). In the majority of cases (71%), the FLIP-defined power 
gradient crossing point falls in the infragranular layers. 

 Second, FLIP’s fitting process is variable and error prone. While FLIP was able to find an adequate 
‘fit’ for 64% of sites overall (comparable to The Paper’s findings), the values were highly variable across areas, 
with 73% of A1 sites and 71% of auditory belt sites, but only 50% of V1 sites (Fig 1C). Note that a similar 
degree of variability was also evident in the shared dataset accompanying The Paper (Table S-1). Note also, 
that in our data sets, FLIP finds 2 cases each in A1 and V1 where the G value is negative, implying that the 
laminar array penetrated cortex from the white matter surface, producing an “inverted” motif (Fig 1C) as 
reported in The Paper. Such inverted penetration is possible for peripheral V1 representations lying in the inner 
folds of the Calcarine Sulcus, and it produces clearly recognizable inversions of LFP, CSD and MUA profiles 
(see ref 3 Fig 4). However, this scenario is anatomically implausible for our data sets, since our A1 and V1 
samples came entirely from areas lying on flat, unfolded cortical planes, and electrode penetrations were all 
made through the pial surface of the cortex. Observation of these “motif inversion errors” raises concern about 
interpretation of motif inversions in The Paper (Supplement, Table 1).  
 
Consideration of the vFLIP method. 
The second quantitative algorithm used in The Paper is “vFLIP,” a frequency-variable version of FLIP. vFLIP 
first runs the FLIP process over a large space of potential frequency bands and picks the best fit bands instead 
of using preset frequency bands the way FLIP does. This approach produces a multiple comparison 
problem and the threshold used for vFLIP must be adjusted accordingly. The Paper does not specify the 
threshold used for vFLIP, but it states that vFLIP identifies 81% of penetrations showing “opposing gradients of 
10-19 Hz and 75-150 Hz power” across laminae, while FLIP identifies 64%. The determination of an 
appropriate threshold is critical, because vFLIP can find relatively high goodness of fit (G) values for random 
noise (Fig 2A). We analyzed data from noise simulations using vFLIP to determine the “G” threshold 
equivalent to the .265 threshold used for FLIP in The Paper (Fig 2B); this equivalent threshold corresponds to 
a single penetration p-value of approximately p<.03 for noise simulations and a false discovery rate of 
approximately .05 in the shared dataset that accompanies The Paper (see Supplement; 1.). When we applied 
this appropriate threshold, vFLIP identifies approximately 3% fewer penetrations than FLIP does (rather 
than 17% more) in that shared dataset. Notably, vFLIP findings agree with FLIP findings in only 49% of 
cases in the shared dataset (i.e., the data from figures 1-6 of The Paper). “49%” refers specifically to: 1) 
agreement between FLIP and vFLIP on whether a penetration is “fit” (identified as having opposing gradients), 
2) when both methods identify a particular penetration as fit, they specify the same (upright/inverted) 
orientation and 3) the electrode channels identified as the crossover by the two methods are within 200 
microns of one another; this “agreement” becomes only 56% if the criterion is lowered to 500 microns. 
Allowance for some variation in peak alpha-beta and gamma frequencies is a key strength of vFLIP. However, 
a significant factor in the divergence of FLIP and vFLIP results for the same data set is that vFLIP tends to find 
very narrow bands (the vast majority of bands are at the 10 Hz minimum allowed by the code) for both alpha-
beta and gamma (Fig S-1); this also has negative consequences for vFLIP’s wider use in the study of neuronal 
oscillations. 
 
Evaluation of vFLIP in new data sets. 
Application of vFLIP to our data sets re-iterates the critical problems seen with FLIP. First, like FLIP, vFLIP’s 
identification of Layer 4 is unreliable. For the 61% of penetrations overall that vFLIP is able to fit (Fig 2C), it 
correctly identifies Layer 4 in well under 1/2 of the cases in A1 (33%), auditory belt (22%) and V1 (42%), (Fig 
2D). Second, vFLIP incorrectly labels penetrations as “inverted” (Fig 2C). While FLIP was the primary 
analyses of the non-human primate data in The Paper, concerns about vFLIP are significant, as vFLIP was the 
primary method used for the interspecies generalization analyses.  
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Broader concerns about The Paper’s approach 
The specific analytic problems noted above connect to broader concerns about The Paper’s approach and its 
conclusions. We address two related and consequential concerns here and defer others to the supplement 
(4.1-4.5).  

First, The Paper used an image similarity metric to support the idea that results of vFLIP are equivalent 
both within and across species, however, this metric is meant to compare similarity of images based on human 
perceptual biases and is highly vulnerable to artifacts when it is used for comparing spectrolaminar motifs. 
Effects of systematically increasing the degree of blur in a pair of images on the image similarity metric used in 
The Paper suggests that values found in Figure 8 of The Paper are well within a pure noise range (Fig S-2). 

A second concern is that both FLIP and vFLIP analyze on LFPs recorded against a distant reference, a 
practice that is relatively imprecise in its spatial localization of signal origins, and thus, at odds with the 
objective of precisely locating L4 and differentiating activity in superficial versus deep layers of cortex11–13. 
Studies that localize field potentials using bipolar and CSD derivations 11,13,14  (Fig S-4; see also The Paper’s 
Supplemental Fig 9) outline a paradox: alpha/beta LFP power peaks in the infragranular layers, but the 
strongest generators (transmembrane currents that set-up the field potential distribution in the extracellular 
medium) are in the supragranular layers. Volume conduction effects with a distant reference pose the risk that 
LFP measures can mis-localize neural activity not only across cortical layers, but also across cortical areas15–
17. A search for a functional method that reliably identifies specific cortical layers, and that generalizes across 
areas should start with methods having the best available signal localization qualities (i.e., the highest spatial 
resolution). LFP quantification measures like FLIP and the image similarity metric used in The Paper produce 
increasing false positive rates as the spatial resolution of the measure decreases. While the thresholds used in 

Figure 2 – Variable Frequency-based Layer Identification Procedure (vFLIP) analysis. A) Representative relative power map of 
1/f noise samples (30 channels, 1000 time points, 75 trials) displayed as a color plot (left) with the associated goodness of fit 
(G) value from vFLIP, 0.74. B) A histogram depicts the G-values produced by vFLIP when fit to 1/f noise 250 times. A red line 
depicts the statistical threshold used to attain a 5% False-discovery rate, which was then applied to the vFLIP results in 
auditory and visual cortices. C) as in Fig. 1, vFLIP cross locations determined by co-registration with CSD and MUA profiles for 
areas A1, Belt auditory cortex, and V1, and binned into supragranular, granular, or infragranular compartments.  D) as in Fig. 1, 
G-values for A1, Belt, and V1, which could be not significant (“n.s.”), negative (inverted motif), or positive.  
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The Paper are appropriate when spatial resolution is high, they are not adjusted for the lower spatial resolution 
of LFP measured against a distant reference. In the latter case the risk of false positive outcomes increases 
significantly (Fig S-3), leaving unclear the real, quantifiable percentage of laminar motifs that have the pattern 
referred to as “ubiquitous.” Note that the false positive rate is reduced with bipolar and CSD derivations.  
 
Going forward – in-silico experiments to inform and extend in-vivo findings. 
Near The Paper’s end, the authors discuss Neuronal Mass Modeling in an attempt to resolve the paradox 
between unipolar FP analysis and bipolar/CSD derivations18. However, the model does not seem to reproduce 
The Paper’s experimental data well. While the increasing relative LFP power gradient for the low-frequencies 
from superficial to deep was somewhat approximated by the model, the model does not reproduce the high-
frequency component of the LFP, which peaks in the granular instead of the supragranular layers (this is noted 
by the authors18). Furthermore, the model CSD shows a peak in the granular layers for both the slow and fast 
frequencies. This is in conflict with the CSD measure derived from the data, which shows a decreasing 
gradient from supragranular to deep for both the high and low frequencies. Since the model does not 
reproduce the experimental LFP/CSD patterns, the alternative to a volume conduction interpretation, proposed 
by The Paper, lacks support. These discrepancies may be due to limitations in the design of the model, for 
instance, its sparse neurobiological detail, which can be avoided by using publicly available, detailed 
biophysical models (see Supplement; 5.).  
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Arising from: Mendoza-Halliday, Major et al. Nature Neuroscience https://doi.org/10.1038/s41593-023-01554-7 
(2024).  
 
This supplement provides additional, in-depth explanation of points raised in the main text, as well as a more 
complete set of references. 
 
1. vFLIP does not find more sites with a significant fit than FLIP when an appropriate threshold is used 

The Paper1 does not state the threshold it used for vFLIP (the only threshold noted is .265 for FLIP), 
thus we sought to estimate an appropriate threshold for vFLIP to examine the performance of this algorithm. 
Because vFLIP runs FLIP many times iterating over different possible frequency ranges, there are a large 
number of multiple comparisons that we must take into account when determining the threshold for vFLIP. We 
estimated the threshold for vFLIP that was statistically equivalent to the .265 used for FLIP to appropriately 
compare the performance of vFLIP to FLIP. Accordingly, we first ran FLIP 10,000 times on randomly generated 
pink noise (10,000 simulations of 30 channels with 1000 timepoints and 75 trials of 1/f noise). We then passed 
this noise through the code that accompanied The Paper, which first uses FieldtripTM to generate the 
spectrolaminar pattern for this noise, then uses FLIP to determine if there was the “X” shaped pattern across 
channels for low and high frequency power. Across the 10,000 simulations, the .265 threshold of FLIP 
corresponded to a false positive rate (detection of the “X” pattern in noise) of approximately 2.3%, this 
corresponded to an estimated false discovery rate of less than 5% in the public dataset accompanying The 
Paper. 

To determine the threshold for vFLIP, we repeated this same estimation procedure 500 times (fewer 
simulations were used for vFLIP because vFLIP is computationally intensive and slow to run). The vFLIP 
threshold that gave the same false positive rate as FLIP was .76. Using this threshold on the shared data that 
accompanies The Paper, vFLIP detects 3% fewer penetrations as having the “X” pattern than FLIP, rather than 
17% more (as reported in The Paper). Therefore, the threshold used in The Paper was one that likely had a 
high false positive rate. Similar results were seen for FLIP and vFLIP in the new dataset reported in this 
Matters Arising work, where 64% of penetrations were detected by FLIP at a .265 threshold and 61% were 
detected by vFLIP at a .76 threshold. 
 
2. vFLIP tends towards very narrow frequency range selections in an overly broad parameter space. 

First, vFLIP’s relatively unrestricted search of the frequency band space usually results in selection of 
narrow (~10 Hz) frequency bands, indicating that vFLIP operates in a parameter space with numerous 
potential peaks and power gradient crossing points, many of which are likely spurious (see main text Fig. 2). 

Second, while allowance for some variation in peak alpha-beta and gamma frequencies is a strength of 
vFLIP analysis, “low” frequencies are allowed vary from 1-70 Hz, and “high” frequencies can vary from 30-150 
Hz, resulting in frequency selections that often deviate from an alpha/beta-gamma motif (Fig S-1).  

Notably, there are numerous cases where the “low” frequencies extend into the gamma band, and high 

frequencies extend well beyond the conventional gamma band of 30-60 Hz and into the 120-150 Hz high 
gamma band, that is likely representative of spiking rather than oscillatory activity. In fact, there are only a few 
cases in which the low/high frequencies are in the alpha-beta and gamma ranges respectively, contrary 
to The Paper‘s suggestion. Because vFLIP labels any “low” frequency as “alpha/beta,” and the authors don’t 

Fig S-1 - Automatically selected frequency bands from the vFLIP algorithm for each site in A) V1, B) A1, and C) Belt. “High” 
frequencies are orange, “low” frequencies are blue, and alpha/beta, gamma, and high gamma ranges are color-coded 
accordingly. 
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report what frequencies vFLIP selected, it’s unclear if the alpha/beta-gamma motif reported in the paper is 
actually gamma-high gamma, delta-gamma, etc. 
 
3. False positive rate of spatially imprecise LFP measures for FLIP and image similarity analysis.  
Key measures used in The Paper produce increasing false positive rates as the spatial resolution of the 
measure decreases. Critically, the thresholds used in The Paper are only appropriate when spatial resolution is 
high and are not adjusted for 
the lower spatial resolution of 
LFP measures using a 
distant reference. This 
leaves unclear what is the 
true, quantifiable percentage 
of laminar motifs that have 
the X-like pattern that the 
authors call “ubiquitous.” 

The SSIM image 
similarity metric used in The 
Paper to establish the 
similarity of spectrolaminar 
motifs suffers from reduced 
specificity with increased 
spatial blur. Fig S-2A shows 
the image similarity using 
SSIM for random noise with 

increasing blur. The image similarity rapidly increases even for random noise as the image is blurred more. Fig 
S-2B shows an example of two spectrolaminar plots taken from The Paper’s dataset that, even with opposite 
motifs, achieve an image similarity of .45, higher than the similarity for any of the within or across species 
comparisons in Figure 8i of The Paper.  

This is not a flaw in the SSIM method, rather the SSIM method is an inappropriate measure for 
determining if two spectrolaminar patterns match. SSIM was developed to evaluate whether a compressed 
picture would be judged similarly to the original by a human observer. It thus examines factors like local 

contrast, luminance, and structure and incorporates 
Weber’s law2. Therefore, for example, noise with greater 
blur does look more similar by eye even if the underlying 
data are not similar at all. For assessing the similarity of 
spectrolaminar patterns, however, this is not an 
appropriate measure. A measure such as mean squared 
error, or a non-parametric measure, might be appropriate. 

Fig S-3 evaluates the effects of volume conduction 
by implementing simulations to estimate the false positive 
rate as a factor of spatial resolution at the .265  

Fig S-2. Interpretability of the Image Similarity measure. A) Image similarity increases for the same examples of noisy images with increasing 
blur. Using SSIM the similarity between random noise images was calculated with increasing blur. The image similarity values below the 
examples in this panel reflect the average image similarity of 10000 pairs of random images unblurred and then blurred at 2 different 
amounts. B) Image similarity for relative power in two examples probes from the publicly available datasets from The Paper. These two 
probes were chosen as having strong positive and negative G. Despite the notable differences and near inverted profiles, the image similarity 
reaches a value of 0.45, which is higher than the similarity for within and across species comparisons reported in The Paper (figure 8i). 
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threshold that is used in The Paper for distant referencing, in comparison to bipolar and CSD derivations. Note 
that as spatial resolution decreases, false positive rate for the distant reference function increases rapidly. The 
same functions for bipolar and CSD derivations remain flat. 
 
4. Additional Broad Concerns: 
4.1. Conflation of oscillatory with sensory-evoked activity. The Paper attributes the reported motif to a laminar 
organization of alpha and gamma oscillations 3,4. Despite the focus on oscillatory activity, the Paper does not 
explicitly isolate oscillations from evoked responses. As described in The Paper, normalized relative power is 
calculated based on the -0.5 to 0.5 s interval around the onset of a stimulus. As such, the estimated relative 
power change does not distinguish between oscillations and evoked responses5–8. Fig S-4A depicts LFP 
spectrograms and power spectra in three  channels in the supragranular, granular, and infragranular layer (2, 
6, and 12, respectively) from The Paper’s publicly shared data sets.  

For the low frequencies, power was normalized to the mean in the -1 to 1 s interval, and for the high 
frequencies, power was normalized to the -1 to -0.25 s interval before stimulus onset. Evidently, the onset of 
the stimulus (indicated by the dashed line) is followed by a broad band high-frequency response in the 
gamma/BHA-band, as well as a low-frequency stimulus-evoked responses at 3 to 6 Hz. However, sustained 
gamma-range oscillations are not observed in any of the channels, which undermines claims about 
“oscillations,” and poses problems for subsequent work seeking to model the motif using gamma-specific 
mechanisms. The pre-stimulus period shows high power in the 15 to 20 Hz band, which is conventionally 
termed the beta-band. Alpha oscillations (8 – 12 Hz) appear to be absent in the recording. The spectrograms 
show a strong overlap between channels, indicating volume conduction due the distant reference of the LFP. 
Fig S-4B depicts the Current Source Density (CSD) power spectra and demonstrates that the broadband 
response appears to be strongest in the supragranular layers, while the pre-stimulus beta activity is strongest 
in the granular layers. Stimulus-evoked and beta-band activity are attenuated in the infragranular channels.  

In sum, the spectral analyses show that the spectrolaminar motif does not account for a contamination 
of oscillatory dynamics by evoked responses, and that the presence of ongoing oscillations in the alpha- and 
gamma-bands is not established. Numerous dedicated methods have been proposed that resolve oscillatory 
contributions to brain operations by: 1) identifying individual/local peak frequencies actually present in the data 
rather than blindly averaging over predefined bands9, 2) implementing tools to separate rhythmic and non-
rhythmic contributions10,11, 3) eliminating spurious oscillatory activity due to harmonics and non-sinusoidal 
properties12,13, 4) characterizing transient burst events14, and 5) parametrizing cycle-by-cycle dynamics15,16. In 
general, traditional spectral methods used without such controls do not provide an accurate picture of 
underlying oscillatory dynamics11. 
 
4.2. Conflation of Broadband High frequency Activity (BHA) with band-limited (30-60 Hz) gamma. Band-limited 
gamma oscillations (30 – 60 Hz) have been linked to coordinated interaction of pyramidal neurons and 
inhibitory interneurons17,18. Short bursts of activity in the higher 70-150 Hz range known as “high gamma” 19,20 
or “broadband high frequency activity” (BHA) 21,22, contains a mixture of ripple (90-130 Hz) frequencies along 
with more wideband, transient (non-oscillatory) activity. BHA has further been shown to correlate strongly with 
multiunit activity 19,21–23, while band-limited gamma oscillations are associated with irregular firing patterns, also  
24. Moreover, gamma oscillations and BHA have been shown to play distinct roles in perception and cognition 
25,26. Due to the differences in the underlying mechanisms of gamma oscillations and BHA it is crucial to study 
these activities in isolation.  
 
4.3. Inadequate consideration of the “State of the art” established by prior work. Contrary to statements in the 
Introduction of The Paper, at least 12 papers have analyzed laminar activity profiles across multiple cortical 
areas in monkeys 5,27–37 and in humans38. Interestingly, the Halgren paper38 proposes a cortical feedback role 
for alpha operating as a traveling wave through pyramidal neuron connections in the supragranular layers, 
which is a distinctly different mechanism from that advocated by The Paper. Bollimunta et al 39 utilize two terms 
that could be helpful here: (1) alpha generator, which refers to the active transmembrane current flow region, 

Fig S-3 Increase in false positive rates for FLIP as a function of blur (volume conduction). Each point reflects 10,000 
simulations of 30 channels with 1000 timepoints (simulating 1 second of data sampled at 1000 Hz) and 75 trials of 1/f pink 
noise (no patterns should be detected as these are random patterns) at each datapoint convolved with a 1-d blurring kernel to 
approximate volume conduction in the channel direction. For a distant reference, the false positive rate increases to over 60% 
with increasing blur. Bipolar referencing reduces the increase in false positives and Laplacian re-referencing keeps the false 
positive rate below 10% across these levels of blur. 
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and (2) alpha pacemaker, which is the alpha generator that drives the other alpha generators. Though the 
generators appear in superficial (largest), middle and deep layers 37, the alpha pacemaker is in the deep layers 
in V2 and V4. Another important methodological point evident from prior studies is that CSD profiles must be 
analyzed on a single-case basis. Averaging across CSD profiles from different penetrations requires that the 
laminar profiles be perfectly aligned, which is rarely possible. Thus, averaging destroys information, produces 
circumscribed artifacts and yields physiologically implausible CSD profiles (see Fig 7 and Extended Fig 7). 
Findings from the earlier papers cited above, along with the large number of laminar recording studies focusing 
on single visual 40–46, somatosensory 37,47–50, auditory 6,30,36,51–66 and motor/prefrontal areas 67–70 collectively 
comprise a broader State-of-the-Art context in which to evaluate new ideas about cortex-wide motifs.  
 
4.4. Ambiguous anatomical reconstructions. The Paper provides single examples of histological sections from 
several cortical areas to illustrate methods by which key physiological findings (e.g., “gamma power peak” and 
laminar power function crossing points) are localized to specific layers in the cortex. Each example is followed 
by drawings that illustrate summary interpretations presumably based on viewing of the entire set of 
histological section from all penetrations and lesions. Several concerns arise from this presentation.  

The broadest concern is that in chronic recording studies, a penetration by an electrode like those 
used here usually leaves a prominent glial scar31,44,71, and such scars are not apparent at the sites that The 

Fig S-4 Oscillatory dynamics in the gamma- and alpha-bands are not established in The Paper. Spectrograms and spectra of 
the LFP, A) and Current Source Density (CSD, B) for three channels in the supragranular (2), granular (6), and infragranular 
layers (12), recorded from ventrolateral prefrontal cortex (vlPFC; publicly shared data from The Paper). Spectrograms are 
shown for the -1.75 to 1.75 s interval, with the stimulus onset at 0 seconds (dashed line). The spectra were calculated by 
averaging over the -1 to 0.25 s and 0 to 0.5 s intervals. For the low frequencies, power was normalized to the average power 
at each frequency in the channel, and for the high frequencies, power was normalized to the baseline intervals. A) The high-
frequency spectrogram in the LFP demonstrates a broadband evoked response at 50 – 150 Hz following the onset of the 
stimulus. The evoked potential is indexed by the power increase in the 0 to 10 Hz band. The stimulus evoked activity is 
present in all trials, albeit strongest in the supragranular channel 2. The stimulus is preceded by high power in the beta-band 
(15-20 Hz) that is visible in all channels, but strongest in channel 6 and 12. B) CSD calculated from the LFP. Stimulus-evoked 
responses in both high and low-frequency ranges appear strongest in the supragranular channel 2. The pre-stimulus beta-
band activity is strongest in the granular layer and disappears in the deep layers. 
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Paper represents as the electrode’s position (white circles mark probe channels) in Fig. 4a,b and Extended 
Data Fig. 4 in The Paper. Possible electrode scars are sometimes visible (e.g., Extended data Fig 4b) but not 
at the site and angle of the indicated probe location. The absence of a clear glial scar marking the electrode 
track suggests that the section used for illustration is not at the center of the electrolytical lesion, however, the 
reader cannot evaluate the quality, position and extent of lesions, as the critical adjacent sections are not 
provided. As such, the histology provides anecdotal rather than unequivocal evidence for laminar localization 
of key physiological features. A more quantitative supplementary presentation of all sections showing evidence 
of lesions and electrode tracks could alleviate this concern.  

Specific concerns arise from the illustrations The Paper presents: 1) Lesions indicating the depth 
of the alpha/beta power peak in V1 and PMD are in the white matter. As The Paper itself notes, this may be 
due to volume conduction from proximal areas. This localization deviates from the proposed motif, but it also 
underscores the risks (see 3. above) inherent to the relatively poor spatial specificity of the LFP. 2) Most of the 
five areas used for histological verification deviate in some way from the proposed motif (Fig 4 and Extended 
data Figs 3 and 4). In LPFC, only 3-4/10 cases (30-40%) indicate power gradient crossings in L4. In PMD, the 
gamma power peak is depicted in L4 and the crossover is depicted in L5/6. In MST only 1 of the 2 cases 
provided depicts a power gradient crossing that is arguably in L4.  
 
5. Physiologically realistic models to support laminar electrophysiology 
To explain the inconsistencies between the laminar CSD and LFP profiles, the authors refer to previous 
computational work featuring a Neural Mass Model (NMM) that was developed based on a previously reported 
spectrolaminar motif in frontal cortex3. The NMM consists of two built-in alpha and gamma oscillators, 
constrained to produce band-limited dynamics at 10 and 40 Hz, respectively. However, neither the data 
presented in The Paper, nor in the referenced publication show band-limited peaks at 10 or 40 Hz (see above). 
While the NMM publication uses these band-limited frequencies to calculate the relative power gradient, FLIP 
and vFLIP select a wide range of frequencies to calculate the relative power for the slow and fast frequencies 
(see above). The model further relies on the assumption that the slow and fast oscillations are each generated 
by one single pyramidal population. However, in vivo, pyramidal populations exist across all layers and 
generate a wide range of frequencies. Similarly, model synaptic input and return currents are located at the 
apical tuft and basal dendrites, whereas in biology these currents can be spread throughout the dendritic tree 
72.  Overall, the discrepancies between the NMM and the data indicate that the NMM may be ineffective at 
localizing the generators of the transmembrane currents responsible for the observed LFP/CSD patterns. 

To accurately resolve laminar origins of LFP/CSD neuronal oscillations in an unbiased manner we 
propose instead  constructing “informed” biophysical models utilizing detailed implementations of known 
cortical microcircuitry, multiple populations of excitatory (pyramidal IT, PT, CT, stellate) and inhibitory 
interneurons (SOM, PV, VIP, NGF, etc.), arrayed in realistic laminar cortical architecture, with precisely 
configured synaptic connection probabilities/locations, realistic dendritic morphologies, ion channel and 
synaptic time constants 73,74. Ideally also for dynamics like the alpha rhythm, models would include 
thalamocortical circuitry73,75. These approaches create biophysical models that can simulate laminar 
LFPs/CSDs, using them to delineate population-level origin of neuronal oscillations73,76,77. Findings based on 
these approaches have demonstrated that LFP/CSD signals depend strongly on dendritic locations of 
synapses and show the importance of supragranular layers and inputs from other brain structures in creating 
alpha76,78–80. In the long run, these data-driven approaches will better complement empirical studies in 
resolving the laminar sources of neuronal dynamics including oscillations. 

 
Table S1 – significant FLIP fits from The Paper are not ubiquitous   
 

   Penetra-
tions 

# of sites 
with the 
motif 

# of sites 
with in-
verse motif 

No detect 
 

% sites 
with the 
motif 

% of sites 
with in-
verse motif 

% no de-
tect 

STUDY 
1 

        

PFC 79 64 4 11 
 

81.0 5.1 13.9 

V4 109 63 13 33 
 

57.8 11.9 30.3 

7A 41 37 1 3 
 

90.2 2.4 7.3 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.09.18.613490doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.18.613490
http://creativecommons.org/licenses/by-nc-nd/4.0/


FEF 51 14 26 11 
 

27.5 51.0 21.6 
         

         

STUDY 
2 

        

PFC 234 59 67 108 
 

25.2 28.6 46.2 

MST 145 86 27 32 
 

59.3 18.6 22.1 

LIP 86 49 11 26 
 

57.0 12.8 30.2 

MT 112 47 40 25 
 

42.0 35.7 22.3 
  

total 857 419 189 249 
 

48.9 22.1 29.1 
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