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ABSTRACT

Purpose

We previously developed an approach to calibrate computational tools for clinical variant
classification, updating recommendations for the reliable use of variant impact predictors to
provide evidence strength up to Strong. A new generation of tools using distinctive approaches
have since been released, and these methods must be independently calibrated for clinical
application.

Method

Using our local posterior probability-based calibration and our established data set of ClinVar
pathogenic and benign variants, we determined the strength of evidence provided by three new
tools (AlphaMissense, ESM1b, VARITY) and calibrated scores meeting each evidence strength.
Results

All three tools reached the Strong level of evidence for variant pathogenicity and Moderate for
benignity, though sometimes for few variants. Compared to previously recommended tools,
these yielded at best only modest improvements in the tradeoffs of evidence strength and false
positive predictions.

Conclusion

At calibrated thresholds, three new computational predictors provided evidence for variant
pathogenicity at similar strength to the four previously recommended predictors (and
comparable with functional assays for some variants). This calibration broadens the scope of
computational tools for application in clinical variant classification. Their new approaches offer

promise for future advancement of the field.
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INTRODUCTION

The classification of variants as pathogenic or benign by clinical genetic testing laboratories is a
key component of modern genomic medicine. The American College of Medical Genetics and
Genomics (ACMG) and the Association for Molecular Pathology (AMP) have made
recommendations to standardize the practice of clinical variant classification.” These
recommendations identified distinct sources of evidence regarding the pathogenicity or
benignity of a variant (e.g., genetic, functional, computational, case observation, and population
data), assigned strengths to them, and specified rules to combine evidence to classify a variant
into one of five classes: pathogenic, likely pathogenic, uncertain significance, likely benign or
benign. Within the Richards et al. ACMG/AMP recommendations, the PP3 and BP4 criteria
generally specified that evidence from computational tools (e.g., rule-based, statistical and/or
machine learning-based) was considered to be the weakest, i.e., Supporting evidence.
However, powerful, new variant impact predictors (VIPs) have rapidly emerged, with over 400
now developed.?

Recently, we undertook a rigorous quantitative calibration of computational tools, which
demonstrates that some tools could reliably provide higher levels of evidence strength.® Our
approach maps scores from a computational tool to local posterior probabilities, which in turn,
map to levels of evidential strength in the ACMG/AMP recommendations and their subsequent
adaptation into a point-based system using a Bayesian formulation: Indeterminate or 0 points,
Supporting or 1 point, Moderate or £2 points, Strong or 4 points, and Very Strong or 18
points.*® By applying this approach to 13 tools that predict the impact of missense variation, we
demonstrated that at certain score thresholds, four tools can provide Strong evidence for
pathogenicity and Moderate evidence for benignity: BayesDel,® MutPred2,” REVEL,® and
VEST4.° Based on our findings, ClinGen'® recommended modifications to the PP3 and BP4
criteria that stipulated consistent use of a single tool defined in advance (per laboratory or per

gene) with score thresholds calibrated to specific evidential strength levels up to Moderate
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benign (BP4_Moderate; -2 points) and Strong pathogenic (PP3_Strong; +4 points). Additional
context about these clinical recommendations is provided in Stenton et al.,” along with practical
guidance on their intended use and their implications for variant curation in disease-associated
genes.

Since then, advances in protein structure prediction, protein language models, and
assay technologies such as deep mutational scanning (DMS) and massively parallel reporter
assays (MPRAs), among others, have led to the emergence of new VIPs, with claimed
improvements in predictive performance when compared to existing tools.'*'® However, it is
unclear if these improvements in performance translate to the clinical context, in which
computational tools serve as one line of evidence for variant pathogenicity/benignity among
many. Furthermore, the objectives of these tools may vary, often focusing on the discovery of
novel variants in research studies rather than the assertion of clinical pathogenicity, and
predicting different notions of variant impact, e.g., distinguishing unobserved from observed
ones. Thus, default score thresholds for these tools do not necessarily correspond to those for
appropriate strength of evidence defined by the ACMG/AMP recommendations. Here, we
estimate thresholds for newer tools corresponding to evidential strength in these
recommendations, employing the same rigorous data sets and approaches. We also estimate
additional thresholds for the above four previously calibrated tools corresponding to the
ACMG/AMP point-based system for variant classification.> We then compare and contrast these
clinically performant methods against three recently published ones. Finally, we discuss our
findings in light of the development and use of computational tools in the clinical classification of

variants, reiterating the important role that we expect such tools to play in the future.

MATERIALS AND METHODS

Data sets, calibration procedures and post hoc analyses
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We applied the methods and data sets developed in Pejaver et al.® Specifically, we employed
the ClinVar 2019 data set for calibration and the ClinVar 2020 set for post hoc assessments of
tools and their thresholds. We used the gnomAD data set (v2.1.1) for both calibration and post
hoc assessments." We calibrated each tool using our local posterior probability-based
approach, and estimated score thresholds through bootstrapping, with the same parameters
and local likelihood ratio cutoffs as before. We adopted the same post hoc assessment pipelines
as in the Pejaver et al. study.

Selection of computational tools and processing of their outputs

We selected tools for this study using a purposive sampling strategy. Based on recency of
publication (within the past three years), the use of modern machine learning approaches (such
as protein language models), their performance in the “Annotate All Missense” challenge® in the
Critical Assessment of Genome Interpretation (CAGI),'® anecdotal feedback on interest in
adoption by the clinical genetics community, and the minimal need for access to original training
data, we chose four tools for calibration: AlphaMissense,’® ESM1b,' EVE,'? and VARITY"
(specifically, VARITY_R, the model trained on only rare variants). Important for this effort and
also for utility within the clinical genetics community, these tools make precomputed scores for
all possible single nucleotide or amino acid variants freely and publicly available, albeit in
slightly different formats and with gene/protein identifiers from different databases.

We developed customized mapping protocols for each tool to maximize the number of
variants in our data sets with scores. For AlphaMissense, we used three complementary
mapping approaches. First, we linked precomputed scores to our data sets using chromosomal
coordinates and Ensembl transcript identifiers as the key.?’ Second, to ensure that the correct
isoform was being considered, we undertook the mapping based on the Ensembl transcript
identifier and amino acid substitution. Third, we undertook an additional mapping based on
UniProt protein identifiers, using the corresponding mapping file provided by AlphaMissense.?'

For ESM1b, we mapped precomputed scores to our data sets using the provided UniProt
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identifiers (with and without isoform-specificity) and amino acid substitutions. For variants that
still remained unmapped, we used dobNSFP v4.4a% to reannotate our variant list with the most
up-to-date UniProt annotations, which were in turn used to map precomputed scores to our data
sets. For EVE, we first mapped variants using UniProt or Ensembl transcript identifiers and
amino acid substitution. We further matched all remaining unmapped variants to the UniProt
gene name and amino acid substitution. For VARITY, we first mapped precomputed scores to
variants in our data sets using UniProt protein identifiers, without consideration of the specific
isoform. We then mapped the remaining variants strictly using chromosomal coordinates.
Except for VARITY, none of these tools were explicitly trained on variants from ClinVar.?
However, for VARITY, the precomputed score for each variant was assigned by a version of the
model that did not include that variant in the training set. Therefore, no additional filtering of the

data sets against the training data set of each tool was performed.

RESULTS

Recently published tools can provide up to Strong evidence for pathogenicity

Our local posterior probability-based calibration approach enabled the estimation of score
thresholds for AlphaMissense, ESM1b, and VARITY _R that corresponded to distinct evidential
strength levels within the ACMG/AMP variant classification guidelines. We found that all three
tools were able to reach at least the Moderate level for benignity (with VARITY_R reaching
Strong) (BP4) and the Strong level of evidence for pathogenicity (PP3) (Table 1, Fig. 1A).
However, the score thresholds at which these were achieved were more stringent than the
thresholds recommended by the tool developers. In fact, the recommended thresholds for
AlphaMissense (0.564) and ESM1b (-7.5) do not meet the Supporting level of evidence for
pathogenicity or benignity, based on our calibration. Overall, all three tools exhibited similar
behavior to the four best-performing tools from our previous study, even when considering

newer intervals between Moderate and Strong according to the ACMG/AMP point-based system
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(Table 1). When we attempted to calibrate EVE, it nominally appeared to reach the Moderate
level of evidential strength for both pathogenicity and benignity. Score thresholds for Supporting
and Moderate were 0.684 and 0.845, respectively, for pathogenicity, and 0.137 and 0.209,
respectively, for benignity. However, EVE predictions were available only for a subset of genes
in our calibration set, leaving about half of the benign/likely benign variants unscored.
Furthermore, unscored genes showed a marked skew in ratio of pathogenic to benign variants.
Due to potential sampling bias, we lack confidence in the applicability of the measured
thresholds, rendering us currently unable to recommend their use in clinical variant
classification.

Table 1. Estimated threshold intervals for all tools in this and our previous study according to the
ACMG/AMP recommendations for sequence variant interpretation. The intervals correspond to the
three pathogenic, one indeterminate, and three benign intervals (Very Strong not shown as it was never
reached) in the current guidelines. The ACMG/AMP guidelines are expected to transition to a point-based
system,® and the numbers in parentheses in the header indicate point values corresponding to each
evidential strength interval in this system. Although the 2015 guidelines do not include a strength level
between Moderate (2 points) and Strong (4 points), intervals for the 3-point strength of evidence are also
reported, as 3-point evidence will be recommended for future editions of the guidelines. A “~” implies that
the given tool did not meet the posterior probability (likelihood ratio) threshold for that strength. All
methods calibrated in this study are indicated in bold. For the remaining methods, all intervals are the
same as those reported in our previous study,® with additional columns for the interval corresponding to
the Indeterminate range and £3 points as per the point-based system.

Benign (BP4) Pathogenic (PP3)
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Method Strong -3) Moderate | Supporting (0) Supporting | Moderate (+3) Strong
(-4) (-2) (-1) (+1) (+2) (+4)
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Clinical calibration shows modest improvements over existing computational predictors
We assessed the validity of our calibration by using the score thresholds estimated in Table 1 to
group variants from the ClinVar 2020 (not used in calibration) and gnomAD data sets, while also
comparing them to the four previously calibrated tools (Fig. 1B and 1C). For the ClinVar 2020
set, we calculated likelihood ratios within each interval defined by these thresholds, reflective of
true and false positive rates for the classification of pathogenic variants. All tools met or
exceeded (or, for benignity, were less than) the expected likelihood ratio values corresponding
to each interval. The only exception to this was that some of the previously calibrated tools did
not meet the thresholds for the 3-point intervals (Fig. 1B). VARITY_R and AlphaMissense
resulted in higher likelihood ratios in the interval corresponding to Strong for PP3 than the four
previously calibrated tools. However, it is unclear to what extent this is driven by the small
number of variants in this interval relative to other intervals. No variant in the ClinVar 2020 set
received an ESM1b score of -24.0, effectively capping the maximal strength achieved by
ESM1b at Moderate in practice. For the gnomAD set, we calculated the proportion of variants
lying within each interval to assess how evidential strength is distributed for each tool in variants
from the population (Fig. 1C). VARITY_R and AlphaMissense behaved as expected, in a
manner similar to the four previously calibrated tools, with the proportion of variants in the
Strong interval for pathogenicity being within the estimated prior probability of pathogenicity
(0.0441). However, AlphaMissense classified the smallest proportion of variants as being within
all three pathogenic intervals (0.125), slightly lower than REVEL (0.133). It is unclear if this
results from AlphaMissense being trained on variants from gnomAD as a proxy for

non-pathogenic variants.
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Figure 1. Local posterior probability curves and comparison with previously calibrated tools. (A)
Pairs of curves for AlphaMissense, ESM1b and VARITY_R. For each tool, the curve on the left is for
pathogenicity (red horizontal lines) and the curve on the right is for benignity (blue horizontal lines). The
horizontal lines represent the posterior probability thresholds for Supporting, Moderate, Strong, and Very
strong evidence as per current ACMG/AMP guidelines. A horizontal line representing the 3-point strength
of evidence is also shown. The black curves represent the posterior probability estimated from the ClinVar
2019 set. The gray curves represent one-sided 95% confidence intervals (in the direction of more
stringent thresholds), calculated from 10,000 bootstrap samples of this data set. The points at which the
gray curves intersect the horizontal lines represent the thresholds for the relevant intervals. (B) The
likelihood ratios within each interval on the independent ClinVar 2020 set. Darker colors indicate higher
values for pathogenicity and lower values for benignity (because these are positive likelihood ratios). The
limits for the color gradients are asymmetric, with ranges set between zero and one for benignity, and one
and 100 for pathogenicity. A gray rectangle is introduced at the center for comparability with (C). (C) The
percentage of variants predicted to be within the interval in the gnomAD set. Blue and red distinguish the
evidential strength intervals for benignity from pathogenicity, respectively, with the indeterminate interval
colored gray. The color gradient corresponds to the value in the cells, regardless of color. Darker colors
indicate higher proportions. A white cell without a value indicates that the tool did not reach thresholds
corresponding to that interval. The indeterminate interval also included variants without any scores.
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DISCUSSION
In this study, we calibrated three recently published computational tools to be usable within the
ACMG/AMP guidelines for clinical variant classification and found that all tools reach evidential
strength levels that are clinically useful. However, their recommended (default) thresholds did
not meet even the Supporting level of evidence for variant pathogenicity. Furthermore, these
three recent tools largely behaved similarly to four tools that we previously calibrated, and at
best offer modest improvements in the strength of evidence that can be applied while minimizing
the number of false positive predictions in the Supporting and Moderate categories. We also
extended our previous study to include intervals corresponding to three points, in light of the
point-based system to weight evidence that will be recommended in the next version of the
ACMG/AMP standards. We did not calibrate methods that incorporate allele frequency as an
explicit or strong implicit feature for two reasons. First, use of a predictor incorporating allele
frequency will limit use of lines of evidence depending upon allele frequency, such as BA1, in
variant classification. In practice, this means such methods are impractical to use in most clinical
classification pipelines. Second, methods using allele frequency (AF) need to be calibrated
distinctly for different AF thresholds (or once for the most stringent AF group), for which we
currently lack sufficient data.™

This calibration shares the limitations of our previous study, including those related to the
representativeness of data, potential circularities, estimation of prior probabilities, applicability
and variability for specific genes and diseases.>?* Of particular note, the gap in time between
data set construction and the publication of some of these tools meant that there would
invariably be irreconcilable differences among gene, protein and/or variant identifiers in our data
sets compared to the files with precomputed scores for each tool. We expect this to be a major
issue only if the differences in missing data were non-random, which was not the case here

(average proportion of missing-at-random scores < 10%). For example, EVE' was excluded
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because predictions were available only for a subset of genes in our calibration set, specifically
leaving about half of the benign/likely benign variants in our data set unscored, and thus
potentially introducing sampling bias.

The development of more advanced computational predictors of variant impact has often
been motivated by the idea that no computational method can yet “be relied on alone for genetic
diagnosis.”® However, this is an inappropriate and unachievable benchmark for utility, because
no single source of evidence other than high allele frequency—computational or otherwise—can
presently be the sole criterion to determine the role of a variant in disease. Clinical standards for
the classification of rare genetic variants always require the integration of multiple lines of
evidence. This is a fundamental principle, integral to the ACMG/AMP clinical classification
framework." As such, AlphaMissense authors’ assertion that it classifies “32% of all missense
variants as likely pathogenic” employs the term “likely pathogenic” in a manner inconsistent with
that used in clinical variant classification.

Historically, computational tools have been trained or calibrated to predict various
proxies for variant pathogenicity that do not necessarily meet these clinical standards. As a
consequence, their utility in clinical variant classification was initially limited to providing
Supporting evidence. Our calibration provides a means to reconcile this misalignment of
developers’ and clinical perspectives by providing data-driven, tool-specific guidance on use in
clinical variant classification. We found that the AlphaMissense and ESM1b developers’
proposed thresholds did not achieve a Supporting degree of evidence, and our calibration
recommends a higher threshold to reach Supporting. Our calibration also finds that for even
higher thresholds, AlphaMissense and VARITY_R can reach Moderate and Strong pathogenicity
evidence for some variants. This underscores the importance of independent calibration of
methods used in clinical variant classification, just as critical assessments (such as CASP? and
CAGI"™) have revealed how developers’ subtle knowledge of their methods and data

inadvertently influence the results of their own assessments. Together with the ability to provide
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Supporting and Moderate benign evidence, we recommend these calibrated tools as potential
alternatives alongside the previously recommended tools.

Our results continue to suggest increasingly important roles for computational predictors
of variant impact in the interpretation of genomic data for clinical diagnosis and screening. The
initial releases of this new generation of tools performed comparably to the best predecessors,
suggesting potential for their future improvement. Moreover, the distinct approaches may offer
independent information valuable for metapredictors. Relative to most other lines of evidence,
computational tools have an outsized role because they can be readily applied to every relevant
genomic variant. The continued development of enhanced in silico variant impact prediction

methods augurs promising advances in clinical variant classification.
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