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Abstract: Tai Chi (TC) practice has been shown to improve both cognitive and physical function
in older adults. However, the neural mechanisms underlying the benefits of TC remain unclear.
Our primary aims are to explore whether distinct age-related and TC-practice-related relationships
can be identified with respect to either temporal or spatial (within/between-network connectivity)
differences. This cross-sectional study examined recurrent neural network dynamics, employing an
adaptive, data-driven thresholding approach to source-localized resting-state EEG data in order to
identify meaningful connections across time-varying graphs, using both temporal and spatial features
derived from a hidden Markov model (HMM). Mann–Whitney U tests assessed between-group
differences in temporal and spatial features by age and TC practice using either healthy younger
adult controls (YACs, n = 15), healthy older adult controls (OACs, n = 15), or Tai Chi older adult
practitioners (TCOAs, n = 15). Our results showed that aging is associated with decreased within-
network and between-network functional connectivity (FC) across most brain networks. Conversely,
TC practice appears to mitigate these age-related declines, showing increased FC within and between
networks in older adults who practice TC compared to non-practicing older adults. These findings
suggest that TC practice may abate age-related declines in neural network efficiency and stability,
highlighting its potential as a non-pharmacological intervention for promoting healthy brain aging.
This study furthers the triple-network model, showing that a balancing and reorientation of attention
might be engaged not only through higher-order and top-down mechanisms (i.e., FPN/DAN) but
also via the coupling of bottom-up, sensory–motor (i.e., SMN/VIN) networks.

Keywords: resting state; electroencephalography; source localization; recurrent neural network
dynamics; healthy aging; mind–body practice; Tai Chi

1. Introduction

Given the global socioeconomic challenges posed by an aging population [1,2], there
is an urgent need to identify non-pharmacological interventions in order to mitigate age-
related multimorbidity and mortality estimates [3]. Aging affects a broad spectrum of
functions, including cognition (e.g., executive function, visuospatial processing, memory [4],
and fluid intelligence [5,6]) and physical performance (e.g., mobility, agility, strength, and
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balance [7]). These changes are underpinned by neural factors such as structural [8] and
functional [9,10] decline, as well as physical factors like the loss of skeletal muscle mass and
mitochondrial capacity [11]. Current trends exacerbate these concerns, as older adults tend
to exhibit higher levels of sedentary behavior [12] and lower levels of cognitive engage-
ment [13,14], with research indicating mixed results between different types of sedentary
behavior (i.e., passive vs. active) [15] and a heightened risk of cognitive decline [12].
Encouragingly, evidence suggests that physical and cognitive engagement, even when
adopted late in life, can have beneficial effects [16–19]. Furthermore, mind–body practices,
an umbrella term capturing practices that seek to deliberately integrate the training of
the mind and body (e.g., yoga, various forms of meditation, and Tai Chi), have received
increasing empirical support as a promising approach to promoting healthy aging and
mitigating age-related declines in cognitive and physical function [20–25].

Tai Chi (TC), a mind–body practice steeped in Chinese tradition and philosophy—
which is thus culturally rich—has shown preliminary evidence of enhancing cognitive and
physical function in older adults [23]. Similar to yoga (and its evidence basis on similar
outcomes [26]), TC practice offers a diverse range of approaches to systematically training
the mind and body in a holistic fashion. It encourages keen attention while executing
slow, deliberate movements that flow in a graceful, dance-like sequence. This mindful
movement, combined with controlled breathing exercises and elements of relaxation, makes
TC a multi-faceted intervention with the potential to address both cognitive and physical
aspects of aging [23,24]. Indeed, mounting evidence suggests that TC might be able to
mitigate age-related cognitive [23,27–29] and physical [24] decline. However, the neural
basis underlying these salutary effects remains in its infancy.

While the behavioral benefits of TC for older adults are becoming increasingly evi-
dent [23,24,28,30–32], the underlying neural mechanisms remain poorly understood [23,25,28].
Traditional neuroimaging approaches have provided valuable insights into brain structure
and function with regards to the possible effects of TC practice on brain structure and func-
tion [25]. However, these studies often lack the granularity needed to distinguish between
the effects of normal aging and those specifically attributable to TC practice. Specifically,
there is a tacit assumption in much of the literature that the plasticity induced via TC
practice will attenuate aging effects [25,33]. While some morphological findings lend some
support to this assumption [25], there is less clarity regarding functional changes [33–35].

Moreover, traditional static approaches often fall short in capturing the dynamic, time-
varying nature of neural activity [36,37]. Although various static and dynamic approaches
might be able to predict similar outcomes, represent similar information, and consequently
offer complementary approaches to studying the brain [38], they also tend to diverge and
capture distinctively meaningful patterns [39,40]. Static analyses’ primary limitation is
their insensitivity to temporal order, meaning that they only provide a snapshot of brain
function at a specific moment, potentially overlooking critical temporal fluctuations in neu-
ral communication. These fluctuations can be essential for understanding complex neural
processes, especially in practices like TC that involve continuous and adaptive interactions
between the mind and the body. Dynamic analysis, by contrast, allows researchers to
track these temporal changes, offering deeper insights into how such practices may lead to
functional improvements in the brain that unravel over time. This limitation is particularly
relevant when studying complex mind–body practices like TC, as failing to capture fluctua-
tions in neural communication may cause us to overlook key mechanistic insights into how
these practices induce functional changes that result in observable benefits [23,25,28,30,32].
By examining the dynamic nature of whole-brain/network-wide interactions and carefully
distinguishing age-related changes from TC-induced effects, we can better understand how
TC practice might modulate neural processes and ultimately lead to improved cognitive
and physical outcomes in older adults.

It is important to note that the brain likely employs multiple modes of communica-
tion [41], including amplitude coupling, phase coupling, and phase–amplitude coupling,
among others [42]. Each of these modes can be captured using different metrics, providing
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insights into various aspects of neural communication. In this study, we chose to focus
on amplitude coupling using a neuroelectric analog based on dipole magnitude. This
decision was motivated by the prevalence of amplitude-coupling measures in the existing
mind–body literature [22,25,26,43,44], allowing for easier comparison across studies. While
this approach may not capture all aspects of neural communication, it provides a robust and
well-established framework for investigating the effects of TC practice on brain connectivity
in older adults [25].

Recent advances in artificial intelligence (AI) offer promising new avenues for neu-
roimaging analysis, allowing researchers to uncover hidden patterns and temporal dy-
namics in brain-activity data [39,45]. In particular, unsupervised learning methods have
emerged as powerful tools for capturing meaningful fluctuations and connections within
these time-varying network configurations [46,47]. When these methods are applied to
high-temporal-resolution methods (e.g., magneto-/electroencephalography [M/EEG]),
transient brain states and their temporal dynamics can be revealed [48,49], providing a
more nuanced understanding of neural activity than traditional static analyses [36]. These
advanced techniques not only allow for a more comprehensive examination of brain dy-
namics but also offer the potential to better differentiate between age-related changes and
those specifically induced via TC practice.

In this study, we leveraged an innovative blend of computational approaches to
investigate the neural correlates of TC practice in older adults while carefully distinguishing
age-related effects from TC-induced changes. We deployed a probabilistic identification
of latent brain-state changes via a hidden Markov model (HMM) to extract and explore
recurrent neural network dynamics from source-localized, high-density resting-state EEG
data. In addition, we thresholded our time-varying graph dynamics using an adaptive,
multi-step, data-driven approach that autonomously determines the most appropriate
threshold for each network, agnostic to whether weak or strong connections are more
relevant, ensuring the retention of statistically significant connections while minimizing
spurious links. This decision was prompted by literature that acknowledges the importance
of weak connections in neural information processing [50] and cognitive function [51]. In
other words, this approach enhanced the robustness of our network analysis by preserving
meaningful connections based on their relative importance within the network structure,
rather than their absolute strength.

Our primary aims are to explore whether distinct age-related and TC-practice-related
relationships can be identified with respect to either temporal or spatial (within/between-
network connectivity) differences using features derived from an HMM using source-
localized, resting-state EEG data. We hypothesized that aging would be associated with
decreased within- and between-network connectivity, while TC practice would partially
mitigate these changes, particularly in networks associated with attention, affect, self-
related processing, and motor control. We remained agnostic as to what differences would
be observed in temporal features, given the paucity of research showing differences based
on age or TC practice. By employing this novel analytical approach, we sought to provide
a more nuanced understanding of how TC practice might modulate brain function in older
adults, potentially informing future interventions aimed at promoting healthy brain aging.

2. Materials and Methods
2.1. Subjects

This cross-sectional study recruited community-dwelling adults (healthy younger
adult controls [YACs], n = 15; healthy older adult controls [OACs], n = 15; and Tai Chi older
adult practitioners (TCOAs), n = 15) for a single-session experiment. The inclusion criteria
were as follows: right-handedness; young adults aged 18–30 and older adults over 65; the
absence of acute or chronic neurological disorders such as Parkinson’s disease, Hunting-
ton’s disease, stroke, epilepsy, and seizures; and no severe heart conditions, including heart
attack, heart failure, and angina. Further, the following inclusion criteria were applied to
select TC practitioners: (1) currently practicing TC (Y/N) and (2) having practiced TC for
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at least two hours a week in the past 16 weeks (Y/N). Subsequently, accumulated practice
hours were derived from the following questions: (3) “How long have you practiced Tai
Chi? in weeks or years.” and (4) “Currently, on average, how many hours do you practice
Tai Chi every week?”. From these questions, accumulated practice hours were calculated
as follows: total accumulated practice hours = weeks × hours per week. Participants were
excluded if they had a cognitive impairment (TICS-M score < 18), a physical disability or
the inability to walk independently without an assistive device, or severe chronic pain that
limited their physical function. For more details about the demographic information of our
cohort, please see Table 1. After providing written, informed consent, the participants were
asked to stand as still as possible for 1 min with their eyes closed and for 1 min with their
eyes open while high-density EEG data were collected in a controlled laboratory environ-
ment that provided a consistent (21.1–21.6 ◦C) temperature and lighting at approximately
1/3 the level of a typical office, ~150 lux. The study protocol and procedures were approved
by the Institutional Review Board of the University of Illinois Urbana-Champaign.

Table 1. Participants’ demographic characteristics.

Group N Sex (% F) BMI Age Accumulated Practice Hours

YACs 15 20.0% 23.8 ± 5.1 21.5 ± 2.33
OACS 15 20.0% 24.9 ± 4.9 72.9 ± 4.83

TCOAs 15 22.2% 22.9 ± 3.0 76.7 ± 5.62 1559 (4 yrs and 3 m) ± 1288 (3 yrs and 6 m)
All values reported represent means ± standard deviations; OACs = older adult controls; YACs = younger adult
controls; TCOAs = Tai Chi older adult practitioners. Accumulated practice hours = weeks × hours per week.

2.2. EEG Acquisition and Preprocessing

Please refer to Figure 1 for a visual summary of the entire pipeline outline below.
EEG data were recorded using a 64-channel (Ag/AgCl electrode material) active system
(ActiCHamp system, Brain Vision LLC, Morrisville, NC, USA) and a sampling rate of
1 kHz. The sensor placement was based on the 10-10 international system. The ground
electrode was initially set to the left mastoid, though it is worth noting that, during this
period, the lab’s data-collection methods varied between using only the left mastoid and
using an average of both the left and right mastoids. To ensure consistency across the entire
dataset, the data were re-referenced to a common average. Inter-electrode impedance was
kept below a threshold of 15 kΩ. To account for eye blinks, electrooculographic activity
was captured using two horizontally-placed electrodes in line with the outer canthus of
both eyes and a vertically placed electrode below the right orbit.
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Figure 1. A summary of the processing pipeline used. Panel (A) depicts the process through which raw data were pre-processed and prepared for source locali-
zation; Panel (B) displays the MRI template used for source localization, and it summarizes the processes through which the EEG signal underwent source recon-
struction/localization; Panel (C) shows a hidden Markov model from which temporal and spatial features were extracted. WN = within network; BN = between 
network; FC = functional connectivity. 

Figure 1. A summary of the processing pipeline used. Panel (A) depicts the process through which raw data were pre-processed and prepared for source
localization; Panel (B) displays the MRI template used for source localization, and it summarizes the processes through which the EEG signal underwent
source reconstruction/localization; Panel (C) shows a hidden Markov model from which temporal and spatial features were extracted. WN = within network;
BN = between network; FC = functional connectivity.
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Raw data were loaded into MNE-Python (Python version: 3.10.11; MNE version:
1.6.1) for further processing. A 50-Hz low-pass filter, a 1-Hz high-pass filter, and a notch
filter to remove power-line noise at 60 Hz and its harmonics were applied. Bad channels
(i.e., channels with excessive drift, with flat or excessive amplitude deflections, etc.) were
visually identified, marked, and saved for further processing. Independent component
analysis (ICA) was performed on the EEG data to identify and remove artifacts using
MNE-ICALabel [52] (for a detailed breakdown of the methodology used in ICALabel,
please see Pion-Tonachini et al., 2019 [53]). Before ICA fitting, the data were referenced
to a common average. A lower bound for the component number used to fit the ICA
was determined by fitting the data to a principal component analysis (PCA), and it was
determined to be 15. An upper bound was determined via explained variance, and it
was set to 99%. After ICA components were automatically labeled using 1 of 7 categories
(i.e., brain, muscle, eye, heart, line noise, channel noise, and other), components were
plotted and inspected using time series, an activity-power spectrum, and topographies.
Only the “brain” and “other” categories with a predicted probability of >70% were con-
sidered for signal reconstruction. Automatic component labeling was revised by trained
researchers (i.e., J.C. and M.H.) and corrected as needed. Subsequently, bad channels were
interpolated using the interpolate_bads function in MNE, which uses a spherical spline
method, projecting the sensor location onto a unit sphere and interpolating the “bad”
signal(s) based on the signal at the “good” locations [54]. Interpolated EEG data were
epoched into 1-s segments. After z-score normalization, a window-to-window threshold
of 6 standard deviations was set to remove unusually high amplitude values. Finally, the
preprocessed EEG data were saved for further analysis.

2.3. Source Reconstruction, Parcellation, and Source-Leakage Correction

A custom EEG montage was loaded and adjusted to match the electrode locations
of the MRI template used. Specifically, the FreeSurfer average template brain—based on
a combination of 40 MRI scans of real brains from healthy adults—was used. To ensure
alignment between EEG sensors and the MRI head model, a 3D model was plotted. First, the
forward solution was computed, creating a model of how the EEG signals are distributed in
the brain, given the electrode locations. Assumptions for the forward model computation
included the boundary-element method using a 5120 × 5120 × 5120 volume-conductor
model (i.e., brain, skull, and scalp), a minimum distance from the inner skull surface
of 5 mm, and a default transformation matrix and source-space estimates. Following
forward solution computations, a minimum-norm inverse method was used. An inverse
operator was created using the forward model and noise covariance matrix with depth
weighting and a loose dipole orientation. Exact low-resolution electromagnetic tomography
(eLORETA) [55] was then applied, for which the dipole orientation was discarded and only
dipole-magnitude information was retained.

The inverse solution files were utilized in conjunction with a specific brain atlas—the
Schaefer atlas with 100 parcels divided into 7 networks [56] (i.e., visual [VIN], somato-
motor [SMN], dorsal attention [DAN], ventral attention [VAN], limbic [LIN], frontopari-
etal [FPN], and default mode network [DMN])—to parcellate brain activity into distinct
groups of brain regions with similar network organization to other commonly used atlases
(e.g., Yeo’s 7-network atlas [57]). This approach facilitates the grouping of source-space
EEG data into anatomically and functionally relevant areas, as defined by the atlas. Fol-
lowing the extraction of inverse solutions for each hemisphere and epoch, these were then
batch-processed to align with the parcels of the chosen atlas. For both hemispheres, the
source estimates were loaded in manageable batches to ensure computational efficiency.
The source-estimate files were read sequentially, and their respective time courses were
mapped onto the 100-parcel Schaefer atlas. By employing the extract_label_time_course
method, the mean activity within each parcel was computed, with careful consideration
given to flipping the sign of the time-course data in a manner consistent with the dominant
direction of the underlying source space. This step not only ensures that the extracted signal
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reflects the true neural activity but also corrects for potential source leakage—whereby
signals from neighboring regions may contaminate the activity of a given parcel.

Following the initial extraction of the label time courses from the source estimates, the
data underwent down-sampling to align with a target frequency of 250 Hz using an anti-
aliasing, low-pass filter to prevent the introduction of artifacts. Further, a Hilbert transform
was applied to extract the amplitude envelope, representing the instantaneous amplitude of
the EEG signal within each parcel. The orthogonalization of the analytic signal’s amplitude
envelopes was achieved using QR decomposition. Due to the potential for high correlation
between neural signals, the QR decomposition algorithm inherently provides a degree
of regularization, enhancing numerical stability during the orthogonalization process. If
any label pairs were found to be collinear—indicating that source leakage was present—
the orthogonalization process aimed to rectify this by creating a set of signals that are
orthogonal, meaning they are statistically independent of one another. The procedure used
was “symmetric orthogonalization”, ensuring that the contribution from one parcel did not
erroneously appear in another due to source leakage. This ensured the generation of robust
and truly orthogonal components, serving as a solid foundation for subsequent analyses of
network dynamics and functional connectivity (FC) [58,59].

2.4. Hidden-Markov-Model-Derived Recurrent State Dynamics

In this study, a hidden Markov model (HMM) was used to identify discrete, recurrent
states within EEG source-localized data. This approach rests on the premise that EEG
time-series data can be abstracted into a finite sequence of hidden states, each representing
distinct patterns of brain connectivity that reoccur over time. HMMs require an a priori
selection of states, often named K, to balance model complexity and fit. Previous studies
have used either (1) a variational Bayes approach, which approximates the posterior
distribution over model parameters and the optimal number of states by minimizing the
Kullback–Leibler divergence between the variational distribution and the true posterior
distribution [46,48,60,61] or (2) the a priori selection of states with replication to ensure
consistent results [62,63].

To determine the optimal number of states, the variance of the orthogonalized data
features was computed, and a small fraction of the maximum variance was set as a lower
limit to ensure numerical stability. The data underwent PCA for dimensionality reduction to
enhance computational efficiency, retaining 95% of the variance. A range of potential states,
informed by the previously cited literature, was explored using the Akaike information
criterion (AIC) and Bayesian information criterion (BIC) to balance model complexity and
fit. The search was repeated for each participant, and the average between AIC and BIC
was used to determine the optimal state number for HMM fitting across all participants.
The exploration revealed an optimal state count of ~7 for the eyes-closed and eyes-open
conditions. These results are consistent with previous EEG and MEG studies using an
HMM in which state numbers ranged between 3 and 16 states [48,49,60–66].

To elucidate the dynamic nature of the EEG-derived brain states, we computed several
temporal and spatial features from the HMM state sequences. The temporal features in-
cluded the fractional occupancy, mean lifetime, and mean interval length for each identified
state, as well as the transition probability between states. Fractional occupancy quantified
the proportion of the total observation time each state occupied, offering insights into
the predominance of each state. The mean lifetime, or dwell time, was calculated as the
average duration a sequence remained in a particular state before transitioning, reflecting
the stability of the state. The mean interval length provided an average measure of the
temporal gaps between consecutive appearances of a state, highlighting the recurrence
rate of each state. Lastly, transition probability leveraged state-sequence information to
calculate the likelihood of transitioning from one state to another (as well as including
self-transition probability).

Spatial variables were extracted for each hidden state by computing FC features within
and between predefined neural networks. These analyses were predicated on amplitude-
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coupling correlation matrices derived for each HMM state. Importantly, while the initial
data were epoched into 1-s windows, the HMM’s state identification process effectively
re-windowed the data based on the duration of each identified state. This means that the
FC matrices were computed over time windows defined by the duration of each state, not
the original 1-s epochs. Within-network connectivity was then calculated by averaging
the functional connections among regions within the same network for each state-defined
window. Similarly, between-network connectivity was calculated by averaging connections
between regions belonging to different networks for each state-defined window. Lastly,
to consider the potential influence of changes in FC during state transitions, within- and
between-network transition magnitudes were calculated by extracting the difference in FC
between consecutive states, weighted by the probability of transitioning between those
states. The extraction of these spatial features, rooted in the HMM-derived state durations,
allows for a more nuanced understanding of how different brain regions dynamically
interact within and across distinct functional networks during specific brain states and
while transitioning between them, shedding light on the underlying recurrent neural
network dynamics.

2.5. Adaptive Thresholding of Neural Network Graphs

Seeking to identify spurious weak and strong connections, an adaptive thresholding
approach was deployed that incorporated (1) edge-weight aggregation, (2) bootstrapping,
(3) determination, and (4) the application of an optimal α filter. Each step was as follows:

Edge weight aggregation : W = UGi∈G

{
Wjk

∣∣∣(j, k, Wjk

)
∈ E(Gi)

}
(1) Where G is the set of all windowed graphs, Gi is a single windowed graph from this

set, E(Gi) represents the set of edges in Gi, and Wjk is the weight of an edge between
nodes j and k.

Bootstrapping : W = {w1, w2 · · ·wn} ; Bi =
{

w′
1, w′

2 · · ·w′
n
}

f or i = 1, 2 · · · num iterations

(2) Let W be the set of all aggregated edge weights from the windowed graphs, where
n is the total number of aggregated edge weights. For each bootstrap iteration, i,
a bootstrap sample, Bi, is created by randomly sampling N weights from W with
replacement. Last, the median ( M) is taken, and it serves as a statistically robust
measure of the central tendency of the edge weights. The number of iterations
for the bootstrapping was set to 10,000 to strike a balance between robustness and
computational feasibility.

Computing αoptimal iteratively : αoptimal = argmin(α ∈
[αstart, αend]|abs(di f f (mean(Cw(G f iltered(α)), f or all windows w)))).

(3) First, correlation matrices were converted to NetworkX graphs. Subsequently, the
optimal α filter was determined by evaluating a range of α values and selecting
the one that minimized the absolute difference in average connectivity across the
filtered graphs. To minimize the search space and thus reduce the search time, a
golden-section algorithm was implemented to find the αoptimal . The golden-section
search algorithm is a technique for finding the minimum (or maximum) of a unimodal
function by successively narrowing the range of values inside which the extremum
is known to exist. It works by dividing the interval and evaluating the function
at two points, c and d, which are determined by the golden ratio. If f (c) < f (d),
the search interval becomes [a, d]; otherwise, it becomes [c, b]. This process iterates
until the interval is sufficiently small. The optimal α was determined as follows: Let
[αstart, αend] be the range of α values to be tested (for us αstart = 0.001, αend = 0.10),
and let G f iltered(α) be the graph filtered using a given α value. For each window w,

the mean connectivity Cw

(
G f iltered(α)

)
of the filtered graph is calculated.
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Application of α filter : G f iltered =
{
(u, v) ∈ E

∣∣∣(w(u, v)/M)2/∑(w(u, k
)

/M)}2 ≥ α, k ∈ V, (u, k) ∈ E

(4) To pinpoint meaningful connections within the network, the algorithm employs a
disparity filter by evaluating a spectrum of alpha thresholds. Each edge’s weight
is normalized against the median derived from bootstrapped samples, ensuring
uniformity in edge-weight distribution. The disparity filter then examines the relative
contribution of an edge’s weight to the total weight of connections for a given node.
This approach allows for the identification of significant connections by applying a
thresholding operation through which an edge is retained if its normalized weight’s
square, when compared to the sum of squares of all connected edges to that node,
meets or exceeds the alpha threshold. Consequently, this method adeptly discerns
vital connections, whether inherently weak or strong, by assessing their significance in
the context of the node’s overall connectivity. The optimal alpha threshold is chosen
at the point where the difference in average FC between the input graphs stabilizes
or is minimal, ensuring that only connections with substantial relative contributions
are preserved and enhancing the network analysis’s fidelity. Finally, this optimal
threshold is then applied across the dataset, refining the network representation for
subsequent analyses.

2.6. Statistical Analyses

Based on limited literature using similar approaches [35], we anticipated a large ef-
fect size (rank biserial r ≈ 0.75). To achieve 95% power with α = 0.05, a total sample
size of 42 participants was needed (computed using G*Power, version 3.1.9.7). Trending
significance (p ≤ 0.10) was also reported. All analyses were conducted using Python
(version 3.10.11). Mann–Whitney U tests assessed between-group differences in tempo-
ral and spatial features by age and TC practice, with FDR correction for Type 1 errors.
Groups were strictly separated to avoid estimate inflation from repeated observations
(age effects: OACs vs. YACs; practice effects: OACs vs. TCOAs). Data normality
was assessed using the Shapiro–Wilk test, Q–Q plots, histograms, and boxplots. Ho-
moscedasticity was assessed using Levene’s test and scatterplots. Normality and variance
tests were performed on original variables and residual/predictor plots. A two-tailed
approach with α = 0.05 determined statistical significance. Outliers were identified us-
ing z-scores and IQR-based rules and qualitatively examined to decide on exclusion or
transformation. All scripts generated for this manuscript can be found at the follow-
ing link: https://github.com/cernajonathan15/Tai-Chi-Practice-Buffers-Aging-Effects-in-
Functional-Brain-Connectivity-/tree/5ff84a08d52a5506b09506c66d1239116a6db8eb/Manu
script%20Scripts (accessed on 30 June 2024).

3. Results

Age effects: The analysis showed significant age-related differences in both within-
network and between-network mean connectivity. All networks, except for the LIN, had
significantly lower within-network FC in older adults, with only the DMN, VAN, and
VIN surviving FDR correction. Similarly, all network pairs had significantly lower FC in
older adults compared to younger adults, even after FDR correction. Older adults also
showed a trend towards a greater between-network transition magnitude for the DAN-LIN,
though it did not survive FDR correction, possibly indicating a greater FC needed for equal
communication. For detailed within-network and between-network mean connectivity
results, see Tables 2 and 3.

https://github.com/cernajonathan15/Tai-Chi-Practice-Buffers-Aging-Effects-in-Functional-Brain-Connectivity-/tree/5ff84a08d52a5506b09506c66d1239116a6db8eb/Manuscript%20Scripts
https://github.com/cernajonathan15/Tai-Chi-Practice-Buffers-Aging-Effects-in-Functional-Brain-Connectivity-/tree/5ff84a08d52a5506b09506c66d1239116a6db8eb/Manuscript%20Scripts
https://github.com/cernajonathan15/Tai-Chi-Practice-Buffers-Aging-Effects-in-Functional-Brain-Connectivity-/tree/5ff84a08d52a5506b09506c66d1239116a6db8eb/Manuscript%20Scripts
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Table 2. Within-network mean connectivity differences based on age and practice.

Older Adults Younger Adults Dependent Variables Median1 Median2 Median Diff U-Statistic p-Value FDR-Adjusted p-Value Rank Biserial Correlation (r)

OACs vs. YACs

DMN 0.054 0.060 −0.006 49 8.97 × 10−3 * 2.38 × 10−2 * −0.56
DAN 0.053 0.058 −0.005 59 2.79 × 10−2 * 6.55 × 10−2 −0.48
FPN 0.055 0.060 −0.005 61 3.44 × 10−2 * 7.77 × 10−2 −0.46
LIN 0.055 0.060 −0.005 82 2.13 × 10−1 * 3.72 × 10−1 −0.27

SMN 0.055 0.059 −0.004 57 2.25 × 10−2 * 5.50 × 10−2 −0.49
VAN 0.054 0.059 −0.005 49 8.97 × 10−3 * 2.38 × 10−2 * −0.56
VIN 0.054 0.060 −0.007 52 1.28 × 10−2 * 3.26 × 10−2 * −0.54

No Practice Practice Dependent Variables Median1 Median2 Median Diff U-Statistic p-Value FDR-Adjusted p-Value Rank Biserial Correlation (r)

OACs vs. TCOAs

DMN 0.054 0.069 −0.015 13 4.02 × 10−5 * 1.40 × 10−4 −0.88
DAN 0.053 0.069 −0.015 26 3.61 × 10−4 * 9.17 × 10−4 * −0.77
FPN 0.055 0.070 −0.014 27 4.22 × 10−4 * 1.03 × 10−3 * −0.76
LIN 0.055 0.070 −0.015 37 1.87 × 10−3 * 4.06 × 10−3 * −0.67

SMN 0.055 0.069 −0.014 25 3.08 × 10−4 * 8.17 × 10−4 * −0.78
VAN 0.054 0.069 −0.015 30 6.71 × 10−4 * 1.52 × 10−3 * −0.73
VIN 0.054 0.069 −0.015 30 6.71 × 10−4 * 1.52 × 10−3 * −0.73

Within-network comparisons by age: OACs vs. YACs and practice OACs vs. TCOAs. *, p < 0.05. OACs = older adult controls; YACs = younger adult controls; TCOAs = Tai Chi older
adult practitioners; DMN = default mode network; DAN = dorsal attention network; FPN = frontoparietal network; LIN = limbic network; SMN = somatomotor network; VAN = ventral
attention network; VIN = visual network.

Table 3. Between-network mean connectivity differences based on age and practice.

Older Adults Younger Adults Dependent Variables Median1 Median2 Median Diff U-Statistic p-Value FDR-Adjusted p-Value Rank Biserial Correlation (r)

OACs vs. YACs

DAN-DMN 0.054 0.061 −0.0069 40 2.82 × 10−3 * 1.31 × 10−2 * −0.64
DAN-FPN 0.053 0.063 −0.0102 39 2.46 × 10−3 * 1.31 × 10−2 * −0.65
DAN-LIN 0.054 0.065 −0.0118 36 1.62 × 10−3 * 1.31 × 10−2 * −0.68
DAN-VAN 0.053 0.061 −0.0077 36 1.62 × 10−3 * 1.31 × 10−2 * −0.68
FPN-DMN 0.053 0.061 −0.0073 46 6.19 × 10−3 * 1.89 × 10−2 * −0.59
LIN-DMN 0.054 0.063 −0.0096 44 4.79 × 10−3 * 1.72 × 10−2 * −0.61
LIN-FPN 0.053 0.067 −0.0140 46 6.19 × 10−3 * 1.89 × 10−2 * −0.59

SMN-DMN 0.053 0.061 −0.0078 40 2.82 × 10−3 * 1.31 × 10−2 * −0.64
SMN-DAN 0.052 0.062 −0.0100 36 1.62 × 10−3 * 1.31 × 10−2 * −0.68
SMN-FPN 0.053 0.062 −0.0086 40 2.82 × 10−3 * 1.31 × 10−2 * −0.64
SMN-LIN 0.054 0.062 −0.0080 35 1.40 × 10−3 * 1.31 × 10−2 * −0.69
SMN-VAN 0.053 0.061 −0.0081 39 2.46 × 10−3 * 1.31 × 10−2 * −0.65
VAN-DMN 0.054 0.060 −0.0062 47 7.02 × 10−3 * 2.04 × 10−2 * −0.58
VAN-FPN 0.053 0.061 −0.0075 45 5.45 × 10−3 * 1.85 × 10−2 * −0.60
VAN-LIN 0.053 0.061 −0.0079 36 1.62 × 10−3 * 1.31 × 10−2 * −0.68
VIN-DMN 0.053 0.061 −0.0080 41 3.23 × 10−3 * 1.31 × 10−2 * −0.64
VIN-DAN 0.053 0.060 −0.0073 36 1.62 × 10−3 * 1.31 × 10−2 * −0.68
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Table 3. Cont.

Older Adults Younger Adults Dependent Variables Median1 Median2 Median Diff U-Statistic p-Value FDR-Adjusted p-Value Rank Biserial Correlation (r)

OACs vs. YACs

VIN-FPN 0.054 0.064 −0.0101 37 1.87 × 10−3 * 1.31 × 10−2 * −0.67
VIN-LIN 0.054 0.065 −0.0109 44 4.79 × 10−3 * 1.72 × 10−2 * −0.61

VIN-SMN 0.053 0.062 −0.0092 34 1.22 × 10−3 * 1.31 × 10−2 * −0.70
VIN-VAN 0.053 0.061 −0.0084 41 3.23 × 10−3 * 1.31 × 10−2 * −0.64

OACs vs. TCOAs

DAN-DMN 0.054 0.069 −0.015 13 4.02 × 10−5 * 1.40 × 10−4 * −0.88
DAN-FPN 0.053 0.068 −0.015 11 2.80 × 10−5 * 1.40 × 10−4 * −0.90
DAN-LIN 0.054 0.069 −0.015 12 3.36 × 10−5 * 1.40 × 10−4 * −0.89
DAN-VAN 0.053 0.069 −0.016 14 4.81 × 10−5 * 1.40 × 10−4 * −0.88
FPN-DMN 0.053 0.069 −0.016 14 4.81 × 10−5 * 1.40 × 10−4 * −0.88
LIN-DMN 0.054 0.069 −0.015 11 2.80 × 10−5 * 1.40 × 10−4 * −0.90
LIN-FPN 0.053 0.069 −0.015 14 4.81 × 10−5 * 1.40 × 10−4 * −0.88

SMN-DMN 0.053 0.070 −0.016 13 4.02 × 10−5 * 1.40 × 10−4 * −0.88
SMN-DAN 0.052 0.070 −0.017 11 2.80 × 10−5 * 1.40 × 10−4 * −0.90
SMN-FPN 0.053 0.069 −0.016 12 3.36 × 10−5 * 1.40 × 10−4 * −0.89
SMN-LIN 0.054 0.069 −0.014 14 4.80 × 10−5 * 1.40 × 10−4 * −0.88
SMN-VAN 0.053 0.069 −0.016 15 5.74 × 10−5 * 1.59 × 10−4 * −0.87
VAN-DMN 0.054 0.070 −0.016 14 4.81 × 10−5 * 1.40 × 10−4 * −0.88
VAN-FPN 0.053 0.069 −0.015 14 4.81 × 10−5 * 1.40 × 10−4 * −0.88
VAN-LIN 0.053 0.068 −0.015 14 4.81 × 10−5 * 1.40 × 10−4 * −0.88
VIN-DMN 0.053 0.069 −0.016 13 4.02 × 10−5 * 1.40 × 10−4 * −0.88
VIN-DAN 0.053 0.069 −0.016 14 4.81 × 10−5 * 1.40 × 10−4 * −0.88
VIN-FPN 0.054 0.068 −0.015 10 2.33 × 10−5 * 1.40 × 10−4 * −0.91
VIN-LIN 0.054 0.069 −0.015 6 1.10 × 10−5 * 1.40 × 10−4 * −0.95

VIN-SMN 0.053 0.070 −0.017 13 4.02 × 10−5 * 1.40 × 10−4 * −0.88
VIN-VAN 0.053 0.070 −0.017 14 4.81 × 10−5 * 1.40 × 10−4 * −0.88

Between-network comparisons between age: OACs vs. YACs and practice OACs vs. TCOAs. *, p < 0.05. OACs = older adult controls; YACs = younger adult controls; TCOAs = Tai
Chi older adult practitioners; DMN = default mode network; DAN = dorsal attention network; FPN = frontoparietal network; LIN = limbic network; SMN = somatomotor network;
VAN = ventral attention network; VIN = visual network.
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Practice effects: TC practice was significantly related to greater within-network and
between-network connectivity across all networks and network pairs, even after FDR
correction. A trend for within-network transition magnitude in the LIN (Mdn diff = 0.10,
U = 163, FDR-adjusted p = 0.080, and rank biserial r = 0.45) suggests that TC practice may
reduce the FC strength needed for dynamic within-network LIN communication. Trends
for a lower mean lifetime, mean interval length, and transition probability, though not
surviving FDR correction, might indicate that TC practice is linked to more efficient and
stable network communication. Notably, the relationship between TC practice and FC
showed a greater effect size than that between age and FC, suggesting that TC practice
might compensate for the detrimental effects of age on FC. For detailed mean connectivity
results, see Tables 2 and 3.

4. Discussion

This study investigated the distinct relationships between age and TC practice with
recurrent neural network dynamics, focusing on both temporal and spatial features. Our
results showed that aging is associated with decreased within-network and between-
network FC across most brain networks. Conversely, TC practice appears to mitigate
these age-related declines, showing increased FC within and between networks in older
adults who practice TC compared to non-practicing older adults. These findings suggest
that TC practice may abate age-related declines in neural network efficiency and stability,
highlighting its potential as a non-pharmacological intervention for promoting healthy
brain aging.

4.1. Age-Related Effects

Large-scale, population-based findings by Zonnevald et al. [67] align with our results,
indicating significant reductions in within-network and between-network FC in older adults
compared to younger adults. For within-network FC, this decline was most pronounced in
networks involved in bottom-up attention regulation (VAN), self-related processing (DMN),
and visual processing (VIN). With regards to between-network mean FC, this decline was
most noticeable in three key areas: (1) between networks responsible for top-down attention
regulation and emotional processing (DAN-LIN); (2) between networks involved in motor
functions and emotional processing (SMN-LIN); and (3) between networks handling visual
processing and motor functions (VIN-SMN).

Previous findings by Ferreira and colleagues [9] were echoed in a recent systematic
review by Deery et al. [68], suggesting that normal aging can result in a loss of functional
diversity [9], known as the de-differentiation hypothesis [4,69]. In accordance with this
hypothesis, we found a trend for a greater between-network transition magnitude be-
tween the DAN-LIN. In other words, older adults may require a greater increase in FC
when transitioning between states as compared to younger adults, indicative of a loss in
amplitude-coupling efficiency with age. These results largely align with previous literature
showing a general global decline in FC [9,70], as well as a regional decline in attentional and
self-referential/internal processing networks. In addition, we can qualitatively comment
that our FC group matrices show a very clear loss of anti-correlations and an increase in
positive correlations with age (see Figure 2), aligning with the previously mentioned find-
ings by Zonnevald et al. [67], Ferreira et al. [9], and Deery et al. [68] (among others [4,9,71]).
Altogether, these results suggest that normal aging may lead to a network-wide loss of
intra-network resource efficiency and specialization and decreased inter-network modu-
larity [9,10]. Interestingly, the FC matrix of TCOAs shows a neural phenotype in between
the YACs and OACs: neither a complete loss of anti-correlations nor a total increase in
positive correlations.
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Figure 2. Thresholded functional connectivity matrices for younger adult controls (YACs), older adult
controls (OACs), and Tai Chi older adult practitioners (TCOAs). Red indicates positive correlations,
and blue indicates negative correlations (z-scored values displayed). Compared to YACs, OACs show
reduced negative correlations and increased positive correlations, indicating age-related declines
in network specialization. TCOAs exhibit a pattern between YACs and OACs, suggesting that
Tai Chi practice may help preserve functional connectivity, maintaining a more balanced network
organization despite aging. Networks visualized include visual (VIN), somatomotor (SMN), dorsal
attention (DAN), ventral attention (VAN), limbic (LIN), frontoparietal (FPN), and default mode
network (DMN).

4.2. Effects of Tai Chi Practice

TC practitioners exhibited significantly higher within-network and between-network
FC across all examined networks compared to non-practicing older adults. This increase
in FC suggests that TC practice may promote neural plasticity and plausibly enhance
network efficiency in a network-wide fashion, partially attenuating the declines associated
with aging. Notably, when comparing effect sizes between aging and TC practice for
within-network FC, the greatest effect size differences were observed in top-down attention
regulation and higher-order function (DAN, FPN: r diff = 0.29 and 0.30, respectively),
affect (LIN: r diff = 0.40), and self-related processing (DMN: r diff = 0.32) networks, poten-
tially pointing to the underlying neural mechanisms through which TC practice exerts its
strongest intra-network effects. In a similar fashion, when comparing effect sizes between
aging and TC practice for between-network FC, bottom-up attention regulation and self-
related processing (VAN-DMN), higher-order cognitive function and self-related processing
(FPN-DMN), and higher-order cognitive function and affect (FPN-LIN) relationships were
most prominent. These results suggest that, despite aging-related declines, TC practice may
facilitate robust intra- and inter-network communication and integration, which are crucial
for maintaining cognitive and affective function, while also facilitating a compensatory
response that largely attenuates normal decrements experienced during the aging process
(please see Figure 2 for a visual comparison of FC matrices between non-practicing older
adults and TC practitioner older adults).

We contextualize the results of TC practice in light of recent studies from the mind–
body and meditation literature [25,26,43,72,73], which have lent support to the triple-
network model of large-scale communication in the brain, initially proposed by Menon [74].
This framework integrates previously disconnected models of how attentional mechanisms
reign in excessive rumination while deploying mindful attention [75,76]. According to this
adapted model, mindful attention regulates mind wandering via shifting network dynam-
ics. More specifically, the activity of key nodes within the DMN (e.g., medial prefrontal
cortex and posterior cingulate cortex) are known to coordinate stimulus-independent
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thought processes such as autobiographical memory recall, internal speech, mental time
travel, as well as the fundamental differentiation between self and other [77–79]. Although
useful and often necessary, excessive internal attention can lead to significant errors caused
by a loss of attention to relevant external stimuli [80,81]. These processes can be said to
generate a certain level of salience that is monitored and primarily regulated via the dorsal
anterior cingulate cortex along with the anterior insular cortex [82], regions known to be
involved in performance monitoring and salience detection, respectively [83]. In the process
of responding and/or anticipating errors, fronto-insular connections are strengthened to co-
ordinate a beneficially antagonistic process in which DMN regions are downregulated [83]
while FPN/DAN regions are upregulated. Consequently, internal attention and external
attention are balanced in a way that allows for greater pliancy and responsiveness. Indeed,
the VAN and LIN, with extensive connections to the DMN and FPN, form a cortico–striato–
thamalo–cortical loop [84] that communicates salient information to the FPN, effectively
coordinating between internally and externally oriented attention, as well as the amount of
attention that needs to be deployed via the FPN.

A previous study by Liu et al. [34] investigating resting-state fMRI differences between
TC practitioners and controls showed that decreased connectivity between the medial
frontal gyrus and dorsolateral prefrontal cortex fully mediated the relationship between
a mindful, non-judgmental stance and emotional-regulation ability. Although their seed-
based analysis did not allow for a more comprehensive evaluation of coordinated large-
scale activity, it must be noted that the decoupling observed between the key nodes of
the DMN and FPN is a key finding within the mind–body literature at large [26,85,86].
Moreover, the VAN has been observed to be of great importance for the regulation of
emotion. Thus, the neural mechanisms and outcomes examined fall squarely within the
framework of the triple-network model, as do our results. Moreover, our results add some
nuance to the existing framework. Our findings align with the triple-network model, which
places a strong emphasis on the dynamics of networks related to top-down regulation of
attention, as previously emphasized when highlighting the strongest effect sizes in our
results. However, our results also show coupling between sensory–motor networks (both
SMN and VIN), top-down and bottom-up attention (DAN and VAN, respectively), and
cognitive control (FPN). These results suggest that large-scale networks, including those
that comprise the triple-network model, could be influenced by visceral signals [26,33,87].
This possibly alludes to the benefits derived from integrating physical activity with mindful
attention, clearly showing how visceral signals may play a regulatory role in the reining in
of rumination and, ultimately, the enhancement of cognitive health.

Relatedly, comparing mind–body practices like TC, yoga, and Qigong with traditional
exercises such as aerobic and resistance training could highlight both shared and distinct
neuroprotective effects on the aging brain. Unfortunately, there are no systematic reviews
or meta-analysis to date that allow for such structured comparisons to be made. In fact, we
are aware of a single systematic review (i.e., Bray and colleagues) that assessed the possible
effects of exercise on FC in older adults with and without cognitive impairment [88]. The
inclusion of several multi-domain interventions (which included TC, Qigong, and yoga),
however, was telling of the nascent state of the exercise literature with regards to the
outcomes of interest to this study. In addition, the inclusion of these studies also makes a
differentiation between traditional and non-traditional modes of exercise on the outcomes
of interest (i.e., FC in older adults) an intractable issue. Additionally, it is becoming increas-
ingly clear that gross differences in activation and/or connectivity will be insufficient to
determine whether and how meaningful distinctions between traditional exercise modali-
ties and mind–body practices exist and how they manifest. Indeed, neither a closer look
at the pre–post changes in the study by Bray and colleagues [88], nor a closer examina-
tion of related systematic reviews (e.g., Li et al. [89]) reveals clear-cut differences between
traditional exercise and non-traditional modes of exercise (i.e., mind–body practices).

Closely inspecting systematic reviews on mind–body practices proves to be similarly
insufficient. In particular, recent meta-analyses from Gothe et al. [22] and Pan et al. [25]
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describe similar findings: reconfigurations within and between the DMN and FPN occur
during exercise, as well as during mind–body practice. In other words, differences in
effect may be (a) non-existent, which is unlikely, or (b) subtle, which will require a careful
investigation underneath these gross-level FC differences observed in these nascent areas of
research. Only a few studies provide preliminary evidence to build upon. Amongst them,
structural findings by Villemure and colleagues found that (1) gray-matter volume (GMV)
increased with increased time spent practicing yoga; (2) as opposed to controls, GMV
was not predicted to follow the classic decline with age in yoga practitioners; (3) poses,
breathwork, and meditation all contributed to positive GMV volume, yet different ratios of
these three components resulted in distinct areas primarily benefitting [90]. In addition, a
study by Sharp et al. compared structural pre–post changes in an intervention comparing
a group receiving physical fitness training (i.e., a combination of low- and high-intensity
cardiovascular and weight training) and cognitive training (i.e., the Mind Frontiers pro-
gram) and another group receiving the same intervention, plus a mindfulness intervention
(ten 70-min sessions, 11.67 h completed in total) [91]. The added mindfulness group (and
not the physical fitness + cognitive training group) showed significantly higher mean right
insular connectivity post-training [91]. These two studies clearly show the possibility that
combining non-traditional modalities during or apart from exercise (i.e., breathwork and
meditation) may contribute to diverging results. These studies also highlight the inter-
twined nature of movement, breathwork, and mindfulness in practices that do not always
neatly separate these components—such as in TC, Qigong, and yoga—which will require
methodological dexterity on behalf of researchers who wish to better understand whether
and how they may interact.

As previously mentioned, it is important to highlight that our primary metric of choice
through which all temporal and spatial features were derived (i.e., amplitude coupling) is
only one of the many modes of communication that the brain is hypothesized to use [41,42].
Indeed, our findings are more comprehensive when considering recent complementary
findings by studies utilizing similar study designs, such as those by He and Hu [35].
Similar to the current study, He and Hu compared source-localized oscillatory patterns
in TC practitioners, age-matched OACs, and YACs. Comparable to our findings, authors
found the following pattern: YACs > TCOAs > OACs in alpha 1 (8–10.5 Hz) synchronization
and theta desynchronization in central, parietal, and occipital regions. Along with our
findings, this evidence provides joint support for a positively altered functional trajectory
in TC practitioners that likely buffers the effects of aging. Jointly, our results likely suggest
that TC practice might beneficially improve functional brain connectivity through enhanced
bidirectional signaling (given greater coupling in top-down and bottom-up pathways in
our data) while simultaneously maintaining oscillatory processes supportive of attention
and adaptive cognitive control (i.e., alpha 1 synchronization) [92], as well as sensory–motor
inhibition [93] and information-specific encoding [94].

4.3. Limitations, Methodological Considerations, and Future Directions

Our study, while providing valuable insights into the effects of TC practice on FC, has
several limitations that warrant consideration. Primarily, the cross-sectional nature of our
research design limits our ability to draw causal inferences. While we observed significant
relationships between TC practice and altered FC patterns, we cannot definitively attribute
these changes to the practice itself. Future longitudinal interventions are necessary to
establish causality and determine the precise duration of practice required to elicit the
neural changes observed in our study and those previously reported in the literature.
Furthermore, TC is often considered “mindfulness in motion”, which implies that both
physical and mental exercises are involved. Our findings should be cautiously interpreted
as indicating the overall influence of the two on FC. Future studies should aim to find ways
to separate the behavioral, cognitive, and neural influences of the physical and mental
aspects of practice to better discern how they may complement or even possibly interfere
with each other.
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Additionally, our sample size (n = 15 per group) was relatively small, and TC prac-
titioners were restricted to a single style practiced (i.e., Yang style), which may limit the
generalizability of our findings. The study findings may also have limited generalizability,
given the contribution of additional confounding factors such as physical activity levels,
sleep quality, or medication use. Larger-scale studies are needed to corroborate and repli-
cate these results, ensuring their robustness across diverse populations. Furthermore, our
reliance on an MRI template, rather than individual MRI images, may have introduced
some imprecision in our analyses. This is especially relevant in the context of FC, given that
age will result in a certain amount of structural atrophy, which has been shown to affect
functional outcomes [9]. Therefore, the results from this study should be taken with caution,
and future studies should seek to control the effects of overall brain tissue volume on FC
whenever possible. While this approach is not uncommon in EEG studies, it is important
to note that future investigations, particularly those employing high-temporal resolution
methods such as EEG or MEG, would benefit from collecting individual MRI images. This
is especially crucial when considering that template models and low-electrode count setups
can result in diminished sensitivity and specificity [35,41,42,92–95].

Regarding methodological considerations, we employed a novel unsupervised al-
gorithm to threshold the correlation matrices, aiming to minimize arbitrary decisions in
the analytical process. The adaptive nature of this algorithm dynamically adjusts the
alpha threshold, tailoring it to the specific characteristics of the cohort being studied. To
ensure robustness and generalizability, we employed bootstrapping with replacement over
10,000 iterations. This process involved aggregating edge weights from all participants to
create a representative distribution. By resampling from this distribution, we effectively
simulated drawing new samples from the same underlying population, allowing us to
determine an optimal alpha that is less sensitive to variations within individual datasets
and more reflective of the broader population from which the cohort was drawn. While
this approach mitigates the risk of overfitting and enhances the specificity of our findings,
it is important to note that it does not replace the need for a thorough power analysis.
The algorithm itself does not address issues related to statistical power directly related to
an insufficiently small sample size, which remains a crucial aspect of the research design.
Moreover, a fundamental question is raised in the field of dynamic FC analysis: How can
we accurately determine the true number of functional connections within a given cohort?

It is also crucial to acknowledge the inherent limitations of our chosen atlas (i.e.,
Schaefer atlas, the exclusion of subcortical structures, the lack of individualized parcel-
lation, imprecision with mapping activity due to age-related brain atrophy, etc.) and
source-localization method (i.e., eLORETA, which favors distributed sources and provides
smoothed/blurred spatial resolution, etc.). These methodological constraints should not
be interpreted as evidence for the absence of subcortical contributions to the processes
described in our results. Indeed, electrophysiological data have been shown to be affected
by subcortical activity [96]. Future studies should aim to expand upon these limitations
by exploring the role of subcortical structures in dynamic large-scale communication,
providing a more comprehensive understanding of the neural mechanisms underlying
TC practice.

While we have addressed several avenues for future research throughout this discus-
sion, additional directions warrant exploration. Given the high dimensionality inherent to
dynamic FC analysis, particularly when using EEG, our results provide a broad overview
of large-scale communication within this cohort. Future work should strive for a more
granular analysis, similar to the approach taken by Ferreira et al. [9], to provide a detailed
examination of the nature of correlations comprising the positive and negative connectivity
patterns observed in our results. Although we could qualitatively comment on large trends
observed, a careful quantitative analysis is still warranted. Furthermore, we aim to delve
deeper into the temporal aspects of our findings. By exploiting the Markov-chain dynamics
extractable from an HMM, we can gain better insights into the directionality and sequence
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of interactions within and between networks. This temporal analysis could reveal crucial
information about the dynamic nature of neural changes associated with TC practice.

Given the established positive effects of TC on mental health outcomes, such as stress
reduction and improvements in anxiety and depression [30,31,34], an intriguing avenue for
future research is the exploration of a “network interaction profile” or “neural phenotype”
in relation to practitioner expertise. Investigating whether such a profile is predictive
of better mental health outcomes could provide valuable insights into the mechanisms
underlying the psychophysiological benefits of TC, and it could lead researchers to better
understanding how such benefits could be reliably reproduced.

Lastly, it is essential to recognize that TC is a holistic, whole-body practice. To gain
a more comprehensive understanding of its benefits, future research should integrate
our neuroimaging findings with other physiological measures, such as heart-rate vari-
ability [97], respiration patterns, and kinematic data [24,98]. Indeed, our findings clearly
show that somatosensory networks may play a regulatory role in attention and affect
regulation. However, the nature of the interactions between neural and visceral signals
needs to be further explored. In other words, the directionality and temporal dynamics
of interactions between visceral signals (e.g., cardiac, respiratory, and kinematic/kinetic)
and the neural outcomes reported herein require further exploration. Specifically, future
research should investigate how these signals may bidirectionally interact with brain ac-
tivity to orchestrate the benefits in attention and affect regulation widely reported in the
mind–body literature [23,25,26,76,99–101]. This multi-modal approach would provide a
more comprehensive understanding of the complex interplay between bodily processes
and neural dynamics underlying the effects of TC practice.

5. Conclusions

This study explored the relationships between age and TC practice with recurrent
neural network dynamics, focusing on both temporal and spatial features. Our findings
revealed that aging is linked to decreased within-network and between-network FC across
most brain networks. In contrast, TC practice seems to counteract these age-related declines,
showing increased FC within and between networks in older adults who practice TC
compared to non-practicing older adults. These results suggest that TC practice may
help maintain neural network efficiency and stability, indicating its potential as a non-
pharmacological intervention for promoting healthy brain aging.

Our study adds support and nuance to the triple-network model showing that a
balancing and reorientation of attention might be engaged not only through a higher-order
and top-down mechanism (i.e., FPN/DAN) but also via the coupling of bottom-up, sensory–
motor (i.e., SMN/VIN) networks. Future work should seek to unpack the nature of the
intra- and inter-network couplings found, as well as the temporal directionality in which
the couplings occur, to further elucidate the neural mechanisms through which TC practice
may exert its neuroprotective effects.
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