Table 2: Comparative analysis of Machine Learning classifier performance: Cross-validation metrics for binary-class and multi-class tasks.
Eighty percent of the electrophysiology dataset was used for cross-validation. The most accurate models for prediction of movement for both multi-class and binary-class are represented with bold text.
Binary-Class | Multi-Class | |||||||
---|---|---|---|---|---|---|---|---|
Model | Accuracy | Recall | Precision | F1 | Accuracy | Recall | Precision | F1 |
1. Ada Boost Classifier | 81.36 | 88.12 | 87.36 | 87.24 | 60.45 | 60.18 | 64.6 | 60.32 |
2. CatBoost Classifier | 85.91 | 94.38 | 87.81 | 90.73 | 75 | 75.7 | 77.49 | 74.53 |
3. Decision Tree Classifier | 78.64 | 82.65 | 88.1 | 84.86 | 58.64 | 59.1 | 61.34 | 58.6 |
4. Dummy Classifier | 73.18 | 100 | 73.18 | 84.51 | 38.18 | 33.33 | 12.73 | 18.41 |
5. Extra Trees Classifier | 83.18 | 92.54 | 86.12 | 88.98 | 75.45 | 75.58 | 77.32 | 74.47 |
6. Extreme Gradient Boosting | 82.27 | 89.38 | 87.74 | 88.08 | 69.09 | 69.58 | 70.97 | 67.83 |
7. Gradient Boosting Classifier | 88.64 | 93.12 | 92.12 | 92.34 | 72.73 | 72.87 | 74.45 | 72.23 |
8. K Neighbors Classifier | 78.18 | 88.86 | 83 | 85.62 | 56.82 | 57.8 | 60.22 | 56.12 |
9. Light Gradient Boosting Machine | 86.36 | 91.91 | 90.33 | 90.78 | 70 | 70.05 | 71.01 | 69.11 |
10. Linear Discriminant Analysis | 80.45 | 86.36 | 87.32 | 86.53 | 66.82 | 67.83 | 69.17 | 66.1 |
11. Logistic Regression | 80.91 | 87.65 | 86.58 | 86.91 | 61.36 | 61.87 | 62.74 | 60.76 |
12. Naive Bayes | 78.18 | 78.2 | 91.25 | 83.69 | 43.64 | 42.51 | 47.83 | 40.94 |
13. Quadratic Discriminant Analysis | 80.45 | 97.54 | 80.23 | 87.98 | 67.73 | 65.53 | 74.27 | 65.51 |
14. Random Forest Classifier | 83.64 | 93.75 | 85.82 | 89.29 | 72.73 | 72.38 | 74.3 | 71.72 |
15. Ridge Classifier | 80.45 | 86.99 | 86.74 | 86.59 | 63.64 | 64.15 | 66.32 | 62.58 |
16. SVM - Linear Kernel | 71.36 | 79.78 | 84.03 | 78.74 | 50.45 | 51.16 | 51.03 | 47.34 |