Skip to main content
[Preprint]. 2024 Sep 19:2024.09.13.612676. [Version 1] doi: 10.1101/2024.09.13.612676

Table 2: Comparative analysis of Machine Learning classifier performance: Cross-validation metrics for binary-class and multi-class tasks.

Eighty percent of the electrophysiology dataset was used for cross-validation. The most accurate models for prediction of movement for both multi-class and binary-class are represented with bold text.

Binary-Class Multi-Class
Model Accuracy Recall Precision F1 Accuracy Recall Precision F1
 1. Ada Boost Classifier 81.36 88.12 87.36 87.24 60.45 60.18 64.6 60.32
 2. CatBoost Classifier 85.91 94.38 87.81 90.73 75 75.7 77.49 74.53
 3. Decision Tree Classifier 78.64 82.65 88.1 84.86 58.64 59.1 61.34 58.6
 4. Dummy Classifier 73.18 100 73.18 84.51 38.18 33.33 12.73 18.41
5. Extra Trees Classifier 83.18 92.54 86.12 88.98 75.45 75.58 77.32 74.47
 6. Extreme Gradient Boosting 82.27 89.38 87.74 88.08 69.09 69.58 70.97 67.83
7. Gradient Boosting Classifier 88.64 93.12 92.12 92.34 72.73 72.87 74.45 72.23
 8. K Neighbors Classifier 78.18 88.86 83 85.62 56.82 57.8 60.22 56.12
 9. Light Gradient Boosting Machine 86.36 91.91 90.33 90.78 70 70.05 71.01 69.11
 10. Linear Discriminant Analysis 80.45 86.36 87.32 86.53 66.82 67.83 69.17 66.1
 11. Logistic Regression 80.91 87.65 86.58 86.91 61.36 61.87 62.74 60.76
 12. Naive Bayes 78.18 78.2 91.25 83.69 43.64 42.51 47.83 40.94
 13. Quadratic Discriminant Analysis 80.45 97.54 80.23 87.98 67.73 65.53 74.27 65.51
 14. Random Forest Classifier 83.64 93.75 85.82 89.29 72.73 72.38 74.3 71.72
 15. Ridge Classifier 80.45 86.99 86.74 86.59 63.64 64.15 66.32 62.58
 16. SVM - Linear Kernel 71.36 79.78 84.03 78.74 50.45 51.16 51.03 47.34