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Abstract: Transcranial magnetic stimulation (TMS) has been widely used to study the mechanisms
that underlie motor output. Yet, the extent to which TMS acts upon the cortical neurons implicated
in volitional motor commands and the focal limitations of TMS remain subject to debate. Previous
research links TMS to improved subject performance in behavioral tasks, including a bias in phoneme
discrimination. Our study replicates this result, which implies a causal relationship between electro-
magnetic stimulation and psychomotor activity, and tests whether TMS-facilitated psychomotor
activity recorded via electroencephalography (EEG) may thus serve as a superior input for neural
decoding. First, we illustrate that site-specific TMS elicits a double dissociation in discrimination
ability for two phoneme categories. Next, we perform a classification analysis on the EEG signals
recorded during TMS and find a dissociation between the stimulation site and decoding accuracy
that parallels the behavioral results. We observe weak to moderate evidence for the alternative
hypothesis in a Bayesian analysis of group means, with more robust results upon stimulation to a
brain region governing multiple phoneme features. Overall, task accuracy was a significant predictor
of decoding accuracy for phoneme categories (F(1,135) = 11.51, p < 0.0009) and individual phonemes
(F(1,119) = 13.56, p < 0.0003), providing new evidence for a causal link between TMS, neural function,
and behavior.

Keywords: neuromodulation; transcranial magnetic stimulation; phoneme discrimination; neural
speech decoding; motor theory of speech perception

1. Introduction

Transcranial magnetic stimulation (TMS) has been championed as an alternative
method to indirect or correlational analyses [1,2]. The electromagnetic stimulation of corti-
cal neurons creates an electrical field that depolarizes the membrane potential and pushes
neurons past an excitation threshold. TMS is, therefore, argued to exert a causal effect that
may induce a behavioral change [1,2]. At the same time, the effect of TMS is known to be
complex. Depending on the stimulation threshold [3], frequency [3], duration [2], and coil
orientation [4], affected neurons may be horizontally aligned interneurons [5] or the cortical
columns of corticospinal neurons [6]. A synchronized or consistent response may be limited
to neurons with axons of a certain length and position relative to the stimulating coil [7–9].
Despite the widespread application of TMS to study causal relations, the complex relation-
ship between electromagnetic stimulation and its effect on cortical function has fostered
debate about the extent to which TMS may influence neurons involved in volitional motor
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commands [1,10,11]. A measurable effect reflects the summation of post-synaptic potentials
of opposite charges [12–14], which give rise to motor-evoked potentials (MEPs) [15–17],
TMS-evoked potentials (TEPs) [18,19], neural oscillations, and connectivity changes [20,21].
As a result, stimulation parameters must be calibrated precisely to ensure that the net effect
will inhibit or facilitate cortical excitability, and local and distal neuronal responses may
interfere with the site-specific effect of interest [2,22].

TMS studies that aim to perturb linguistic processes often investigate the relationship
between motor and perceptual neural circuits (for a review, see [11,23]), building on
findings in the neuroimaging literature [24,25] that describe an interrelation between motor
and perceptual circuits. In these TMS studies, the stimulation of motor cortex regions
involved in speech perception has been shown to increase cortical excitability, as observed
in the amplitude of the MEPs elicited in single-pulse paradigms [26–29] or increased
effective connectivity in double-pulse paradigms [30]. Notably, ref. [31] illustrated that
the higher cortical excitability induced via TMS may lead to a measurable behavioral and
perceptual outcome that is related to the site-specific function of the TMS target. The
authors created a double dissociation in phoneme discrimination ability and task reaction
times by targeting cortical regions uniquely involved in the articulation of two categories
of phonemes. The authors concluded that the higher excitability of neurons stimulated via
TMS led to faster reaction times and a perceptual bias towards one of the two linguistic
representations. Therefore, we oriented our study to the stimulation parameters and
experimental design of [31], in which TMS produced a measurable and predictable effect
on psychomotor activity.

The present study builds upon this literature to further investigate the nature of TMS
effects and the limits of focal stimulation by means of neural speech decoding. Neural
speech decoding utilizes neural activity thought to be associated with language as inputs
for a classifier designed to detect a linguistic feature of interest. Frequently, these inputs are
recorded from the motor cortex [32,33]. The increased cortical excitability induced via TMS
could augment this activity in a task-relevant manner or induce noise that interferes with
the decoding analysis. We assess whether the neural signals recorded during TMS will
yield superior inputs for neural speech decoding, which would imply that task-relevant
TMS augments the signal of interest over other induced effects. Secondly, we observe
whether phonemes with overlapping cortical representations may be effectively targeted
through the paradigm. To this end, we first replicate the findings of [31] and then show the
same double dissociation between phoneme categories in a speech-decoding classification
analysis performed on the neural data that were collected during the behavioral task.

The experimental paradigm in [31] capitalizes on the properties of motor articulation
to manipulate error rates in a phoneme discrimination task. To generate phonemes, neuro-
motor commands are sent to articulatory muscles that modify the airflow within the vocal
tract [34]. Consonant phonemes are described by the muscle movements that produce
them: (i) manner, which refers to how speech organs modify airflow; (ii) place, which
indicates where airflow modification occurs in the vocal tract; and (iii) voicing, which
describes the vibration of the vocal folds. Each consonant phoneme comprises a unique
combination of these articulatory properties (Figure 1A). Phonemes within the set of bilabial
and alveolar stops (/b/, /p/, /d/, /t/) share a manner of articulation (oral stops), but
they differ according to whether they are primarily produced using the lips (bilabial—left
column) or tongue (alveolar—right column), yielding two phoneme categories that can be
distinguished by the location and method of motor articulation. The phonemes are further
distinguished by those produced with vibration of the vocal folds (top row) or without
(bottom row).

The task paradigm (Figure 1D) requires a button-press identification of sound files
comprising alveolar (/d/, /t/) or bilabial (/b/, /p/) stops. The authors illustrated that the
stimulation of the motor cortex via two single TMS pulses administered in rapid succession
can influence which phoneme category is perceived. TMS administered to cortical regions
governing either lip or tongue movements (Figure 1C) produced a significant effect on
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performance: the response accuracy and speed increased in trials of phonemes articulated
with muscles controlled via the stimulated region and declined in trials of phonemes
controlled using muscles associated with the unstimulated region. The findings support a
TMS-induced bias in perception resulting from the stimulation of motor cortex neurons.

Figure 1. Phoneme Classes and Their Cortical Representation. (A) The phonemes included in this
study (/b/, /p/, /d/, /t/) differ according to the place in the oral cavity where they are articulated
(bilabial and alveolar—columns) and the degree to which they involve vocal cord movement (voiced
and unvoiced—rows). (B) Vocal cord vibrations, represented by blue lines overlying the waveform,
are generated via the phonemes /b/ and /d/ (waveforms are taken from the audio stimuli). After
vowels, which are always voiced, vibrations perseverate into post-vocalic consonants. Differences in
the waveforms and the degree of preseveration are observable among bilabial (blue) and alveolar
(orange) phonemes. (C) The experimental paradigm stimulates sites in the motor cortex associated
with phoneme articulation. Each site was taken from neuroimaging studies that reported the mean
MNI coordinates corresponding to the peak motor cortex activation probability during a specific
articulatory process (lip: −56, −8, 46; tongue: −60, −10, 25; voicing: −60, −15, 18) [35,36]. The site
associated with voicing is adjacent to the tongue target and receives the same maximum stimulation
intensity from the TMS coil. (D) Participants listened to stimuli items immersed in 500 ms of white
noise to avoid performance at the ceiling in the phoneme discrimination task. Two TMS pulses were
administered 50 ms prior to the phoneme onset with a 50-ms inter-pulse interval to replicate the
excitatory paradigm in our reference study [31].
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This approach, which stimulates phonemes on the category level, likely reflects the
challenges of focal stimulation with TMS coils [37]. Theoretically, individual phonemes may
be targeted if regions associated with two articulatory features are stimulated concurrently.
Only one phoneme in each category of the set (/b/, /p/, /d/, /t/) is produced with vocal-
fold vibration (Figure 1A). Vowels generate sustained vibration, such that their voicing
properties will perseverate, greatly enhancing the extent of vibration that accompanies the
following consonant phoneme (Figure 1B). While lip and tongue articulation have been
localized to non-adjacent regions of the motor cortex, voicing is controlled by a region in
close proximity to the site of tongue articulation [35,36] (Figure 1C). The resulting overlap
in stimulation across tongue and voicing sites should produce a graded effect across the
four phonemes, depending on their specific properties. Thus, the stimulation of multiple
features in partially overlapping feature sets could allow for more precise targeting.

Confirmation that electromagnetic stimulation of the motor cortex, as implemented
in our paradigm, elicited the same task-relevant behavioral response observed in [31] is a
necessary first step prior to evaluating whether TMS-induced cortical excitability will im-
prove the suitability of EEG signals for speech decoding. First, we replicated the previously
reported bias in phoneme-category discrimination through two separate experiments, and
we evaluated evidence of a graded effect for individual phoneme discrimination ability.
Next, we performed a classification of the EEG data collected during the phoneme discrim-
ination task to determine whether the stimulation of each cortical region will result in a
more accurate prediction of the associated phoneme.

2. Methods and Materials
2.1. Subject Details and Inclusion Criteria

Participants (aged 20–40) were recruited from the UCLA campus by means of flyers.
All participants possessed no diagnosis of any neurological, psychiatric, or developmental
disorders, self-reported normal hearing, and no contraindications for TMS or MRI protocols
(e.g., implanted medical devices, implanted metal, pregnancy, a personal or family history
of seizures, and exclusionary medications). The initial screening required the completion of
an abbreviated version of the experimental task to ensure that participants understood the
task directions and could successfully discriminate between phonemes. Left-hemisphere
lateralization of the language-processing regions in all participants was established during
an fMRI scan in which the participants performed the discrimination task. Ten participants
(6 female) were recruited in 2019. This participant number was established based on the
sample size of our reference study [31]. Two individuals (1 female) were excluded from the
2019 data set due to modifications made to the stimulus audio files after their participation.
All ten participants contributed neural and behavioral data, which were collected during
the discrimination task. Twenty participants (10 female) were recruited for the second
experiment in 2021. One participant (male) was excluded due to poor task performance,
and three participants (male) were excluded due to complications with the TMS equipment
that may have led to imprecise targeting. All participants contributed neural data. Only
the final ten participants recorded their responses during the discrimination task. All
participants provided informed consent and were paid for the two experimental sessions.

2.2. Experimental Design and Data Collection

The study was conducted in three sessions. First, the participants underwent an
intake interview to ensure that they met the study inclusion criteria and possessed no
contraindications. Participants who performed an abbreviated phoneme discrimination
task with at least 75% accuracy were enrolled. Second, the participants underwent an
MRI scan to aid in neuronavigation for the TMS procedure, during which they performed
the discrimination task in the MRI scanner to lateralize their language processing areas.
Finally, EEG signals, button-press responses, and reaction-time data were recorded while
the participants performed the phoneme discrimination task. TMS was targeted to areas of
the motor cortex associated with the production of the designated phonemes (Figure 2).
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Figure 2. Experimental Paradigm. (A) Participants listened to phoneme stimuli presented via
computer-based experiment-presentation software. Concurrently, EEG signals were recorded as
participants identified the phoneme they heard with a button-press response input on a computer
keyboard. The task was performed with TMS under experimental conditions and without TMS under
the control condition. After data collection, a classification analysis was conducted on the EEG signals,
and accuracy was computed for the aggregate task-response data. (B) The task was administered in
two blocks in 2019 and in four blocks in 2021; both CV and VC phoneme pairs were presented in 2019,
and only CV phoneme pairs were presented in 2021. The presentation order of blocks and stimuli
lists was counterbalanced across participants. EEG data were obtained for 8 participants in 2019 and
16 participants in 2021. Task-response data were obtained from 8 participants in 2019 and 2021.

2.3. MRI Scanning

The scanning protocol was conducted at the UCLA Center for Cognitive Neuroscience
with a Siemens Prisma-FIT 3T Scanner. The participants were provided with ear protectors
and headphones to reduce the scanner noise from 45 to 60 dB, thus ensuring that the stimuli
could be heard clearly and that the noise level was not uncomfortably loud. The participants
were asked to lie motionlessly during scanning. High-resolution anatomical images were
acquired, followed by a functional scan in which the participants were directed to either
relax passively while looking at a fixation cross or perform a right-handed button-press
phoneme discrimination task. The functional data were acquired in a block design with a
TR of 800 ms and a BOLD-weighted echoplanar imaging sequence aligned in parallel to
the bicommissural plane, yielding 36 slices covering the whole brain. Each slice was 3-mm
thick with a 1-mm gap between slices, and each slice was acquired as a 64-×-64 matrix
yielding an in-plane resolution of 2 × 2 mm. The total duration of the scan was 40 min.
fMRI data were analyzed in FSL (version 5.0.10). The data were corrected for motion
artifacts for each participant and transformed into a common brain space according to
the MNI (Montreal Neurological Institute) template. The data were resampled into 2-mm
isotropic voxels and smoothed with a 4-mm Gaussian filter. Effects were estimated using a
general linear model (GLM). The protocol was not intended to isolate distinct brain areas
for each phoneme or phoneme category on the level of individual participants. Instead,
a subtraction analysis was performed between the listening task (all phonemes) and rest
(the silent observation of a fixation cross). The functional maps exhibited bilateral fMRI
activation over our region of interest—the motor cortex—with a greater extent of activation
in the left hemisphere.
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2.4. TMS During EEG Recording

The TMS-EEG protocol was conducted at the Neuromodulation Division of the Semel
Institute for Neuroscience and Human Behavior at UCLA. The TMS equipment included
a Magstim Super Rapid Plus1 stimulator and a figure-of-eight 40-mm coil. The EEG
system included an eegoTM sports WaveGuard 64-channel EEG cap and eego mylab sys-
tem compatible with electromagnetic stimulation. Targeting was completed using the
Visor 2 neuronavigation system. The electrode positions were digitized and registered to
individual participant MRIs using the ANT Neuro Xensor. EEG signals were bandpass-
filtered 0.1–350 Hz, sampled at 2000 Hz, and referenced to the CPz electrode. All electrode
impedances were kept <5 kΩ. The appropriate stimulation intensity for TMS studies is
determined on an individual basis [38]. Prior to the experimental session and after the
application of the EEG cap, the motor threshold (rMT) of each participant was determined
by eliciting motor-evoked potentials (MEPs) in the first dorsal interosseus (FDI) muscle of
the dominant hand at the minimum amount of stimulation needed to evoke an MEP in a
hand muscle after a single pulse over M1. Single TMS pulses were delivered to locations in
the motor cortex contralateral to the dominant hand. The intensity of the stimulation was
gradually lowered until reaching a level of stimulator output at which 5 out of 10 MEPs
in the hand muscle had an amplitude of at least 50 microvolts. In accordance with [31],
stimulation was administered at 110% of the FDI rMT, and the coil was maintained at a
45◦ orientation to the interhemispheric fissure. The participants were provided with ear
protectors [39], and a physician observed the motor-thresholding procedure to ensure that
no negative effects were incurred by the participants. The range of rMT values fell within
normal parameters [40].

TMS targeted areas of the motor cortex involved in lip and tongue movements [41].
The stimulation targets were defined as the MNI coordinates of peak motor cortex activation
in LipM1 and TongueM1 during lip and tongue articulatory movements (lips: −56, −8,
46; tongue: −60, −10, 25), which were taken from the literature [36] and the reference
study [31]. However, cortical functional localization shows considerable variation by
individual [42] and task [43,44]. It was important to target regions associated with both
phoneme articulation and the perception task. Therefore, the coordinates were overlaid
over the activation map of the task results for each participant to ensure an overlap between
the targets and individual task localization. The target was taken as the nearest peak to
the MNI coordinate. TMS elicits a period of excitatory activation with an onset latency of
50–80 ms after stimulation [45]. We reproduced the design of [31] to ensure an excitatory
neural response that would translate into task facilitation. Each trial delivered two TMS
pulses separated by a short interpulse interval (50 ms) at one of the stimulation targets. The
excitation of the cortical region not involved in stimulus production (i.e., TMS at LipM1
during alveolar phoneme presentation) may result in neural noise that interferes with the
discrimination task. The audio stimulus followed 50 ms after the second TMS pulse. One
target was stimulated per run (counterbalanced across participants).

2.5. Phoneme Discrimination Task

The participants were asked to identify speech sounds with a button-press response.
The auditory stimuli were presented via laptop speakers: consonants (Cs) comprised four
phonemes (/b/, /p/, /d/, /t/), and vowels (Vs) comprised five phonemes (/i/, /E/, /A/,
/u/, /oU/), yielding 40 phoneme pairs (20 CV/20 VC). The participants listened to audio
clips immersed in 500 ms of white noise. This created a mild background distraction to
ensure that participants did not perform the task at the ceiling so that we could measure
the relative accuracy in phoneme discrimination across conditions. The participants were
instructed to respond as fast as possible with a button press after they had identified the
phoneme. In the case of multiple button presses, correct trials were calculated from the
initial button press. Participants who exhibited a biased response strategy (i.e., failure
to select from the full set of phonemes) were excluded. Stimulus presentation and the
recording of reaction-time data were conducted in PsychoPy [46]. Two lists of stimuli
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were used, with each list assigned to one block. A run comprised all blocks administered
sequentially during TMS to the same target. One run included a block of CV pairs, followed
by a block of VC pairs. A 16-second break separated the blocks. A 5-minute break was
provided between runs. The participants completed 120 trials in each run: 80 with TMS
and 40 control trials. All phoneme pairs were presented in a pseudo-randomized order.

The reversal of the order of phonemes in VC stimulus pairs increases the time interval
between the TMS pulse and the consonant. Because timing plays a key role in determining
the ultimate effect of TMS, the protocol cannot be assumed to produce the same excitatory
effect on VC stimuli; this condition may, therefore, serve as an interesting comparison.
Upon confirmation in 2019 that the protocol produced a different behavioral response for
VC pairs, only CV pairs were tested in 2021, using a slightly modified protocol. The same
CV lists were split in two, such that four blocks were administered per run, with a 5-s
break between blocks. The performance for the phoneme /d/ in the 2019 control condition
was notably elevated relative to other phonemes. Therefore, in 2021, the decibel level of
the white noise in which stimuli were immersed was increased to ensure that the control
condition would prove uniformly challenging. All other aspects of the task remained the
same. Minimal modifications to this procedure were made during the intake and scanning
sessions. For the initial assessment, half of the task was performed. During fMRI data
collection, the full-length task was administered. Stimuli were combined in blocks with a
jittered 16-s ISI by articulation type (bilabial and alveolar) to achieve greater power.

Button-press tasks assume that participants will respond accurately; in practice, there
is an element of motor coordination through which participants may press either a correct
or incorrect button by accident (creating both type I and type II errors). We know from
participant feedback that random buttons were periodically pressed, given the distractions
of TMS. On occasion, participants were aware that they had pressed the wrong button
upon having correctly heard the sound. Therefore, missed trials (i.e., when the participant
did not press a button, having not perceived the sound) were excluded from the analy-
ses, whereas neural data from all trials when the participant heard and responded to a
sound (including incorrect trials) were retained in the decoding analyses. Because we know
the task performance allowed for both type I and type II errors, we cannot assume that the
inclusion of all trials reduced the decoding accuracy or that the exclusion of some portion of
trials would have represented a more reliable decoding accuracy. There is no way to know
the true ratio of response types, and we suspect a larger number of false negatives based
on participant feedback, so we opted to retain all trials. An analysis limited to correct trials
might lead to a false sense of certainty, as there are likely some false positives included in
the task results, and participants who performed well would be over-represented in the
data set. Moreover, the ability to correctly perceive a sound and the ability to correctly
perform a button-press task are not strictly equivalent. Generally speaking, we assume that
the error of either type is low because we screened for participants who could perform the
task at greater than 75% accuracy prior to initiating TMS trials.

2.6. Quantification and Statistical Analyses

The protocol required sustained attention during a lengthy period of TMS. The mean
reaction time and standard deviation were calculated to confirm that the participants were
attentive to the task throughout the procedure. These metrics are documented in .csv files
uploaded to the data repository. In the 2019 data set, some variation in trial numbers was
observed due to the exclusion of missed trials in which no response was recorded or due to
rotation in the list of stimuli administered to each participant. All excluded trials resulted
from missed trials. No subjects performed a button-press decision for less than 90% of the
total list, with the exception of P04 in the VC condition with LipTMS. In the 2021 data set,
all trials were uploaded irrespective of a button-press response.

Bayesian analyses were performed using JASP [47], and linear mixed-effects models
were performed in RStudio [48] with the lmerTest package [49]. All statistical analyses are
publicly available at https://osf.io/e82p9/(accessed on 2 August 2024). We implemented

https://osf.io/e82p9/
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the Bayesian t-test framework proposed by [50,51] on the behavioral task data. Task
accuracy is measured as the average hit rate for each phoneme category or individual
phoneme in the experimental condition minus the average hit rate in a matched control
condition. Due to potential site-specific effects, control trials recorded during each type
of stimulation (lip motor cortex—LipM1; tongue motor cortex—TongM1) were averaged
separately, yielding two sham conditions (e.g., LipM1 TMS average accuracy − LipM1
sham average accuracy = relative task accuracy). A Bayesian approach may be more
informative for small-N studies because the credible intervals do not depend on large-N
approximations [52]. Instead, unlike p-values, Bayes factors assess the degree of evidence
for the alternative hypothesis along a continuum. Such analyses provide a three-way
distinction between the null hypothesis, the alternative hypothesis, and no evidence. This
is important because a highly powered study may yield a significant result from data
that are insufficiently sensitive to illustrate an effect or fail to show a significant result in
low-powered studies that do yield sensitive data; power does not guarantee that we can
distinguish between these three states of evidentiality [53].

Average decoding accuracy was calculated from EEG data recorded across trials by
applying our signal-processing technique to triplets” of nearby channels simultaneously as
a form of data augmentation, in the same way as described for the computation of ERPs
in [54]. A transformation of the data was first performed to allow for the data frames
to be compared. In decoding analyses, random under-sampling was used to equalize
the number of trials per condition. Cross-validation was performed with k-fold random
subsampling. As a result, we obtained a smaller data set and near-zero error in the random
subject variable. This difficulty is commonly encountered in psychological experiments;
best practice recommends that the analysis still be considered appropriate when near-zero
error is the source of a singular fit in the model [55].

2.7. Delay Differential Analysis

We employed a novel signal-processing technique, delay differential analysis (DDA),
as part of the neural decoding classification analyses. The technique combines differential
embeddings with linear and nonlinear nonuniform functional delay embeddings. The
integration of nonlinear dynamics allows information from the data to be detected that
may not be observable in traditional linear methods. DDA requires minimal pre-processing
of the EEG data, which eliminates a highly subjective step in the data analysis. Sparse
DDA models have several advantages over the high dimensional feature spaces of other
signal-processing techniques: (i) the risk of overfitting is greatly reduced; (ii) the sparse
model concentrates on the overall dynamics of the system and cannot additionally model
noise; (iii) DDA is computationally fast; and (iv) there is no need for pre-processing (i.e.,
the removal of motion artifacts like eye blinks, etc.), except the normalization to zero mean
and unit variance for each data window, in order to ignore amplitude information and
concentrate on the system dynamics. DDA is a detection/classification technique that aims
not to model the data (i.e., reconstruct the equations for the underlying process generating
the data) but to distinguish between data classes. The classification performance of the
DDA models is assessed by the area under the receiver operating characteristic.

The term “DDA models” may refer to the DDA model structure, as well as the delays
within the model structure. The model structure was fixed throughout our analyses,
and therefore, the complexity of the model did not change: it was the delays that were
determined for a specific classification problem. DDA models (i.e., the model structure) can
be seen as sparse Volterra-series models with only three terms, two delays, and a quadratic
order of nonlinearity. The most general DDA model is

ẋ =
I

∑
i=1

ai

N

∏
n=1

xmn,i
τn . (1)
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for τn ∈ N, mn,i ∈ N0 (N is the set of positive natural numbers, and N0 is the set of natural
numbers). N is the number of delays (usually 2), I is the number of terms (typically around
3), and xτn = x(t − τn), relating the signal derivative ẋ to the signal non-uniformly shifted
in time. We then used the coefficients ai and the least square error ρu as features. Most of
the terms in Equation (1) were set to zero in the model-selection step of the analysis using
random subsampling cross-validation.

Finding the best model can be done supervised or unsupervised. In [54], we selected
the best model for the epileptic seizure analysis of iEEG data from all models with three
terms and up to quartic nonlinearity using a genetic algorithm. This was done unsupervised
by finding the DDA model, as well as the delays that have the lowest least square error
of randomly selected data segments before and after seizure onset, as determined by
a neurologist. Interestingly, most of the models found had two linear terms and one
nonlinear term. This class of models was found again when we performed a supervised,
exhaustive search on EEG data from a large data set of 877 schizophrenia patients and
753 nonpsychiatric comparison subjects who underwent mismatch negativity testing [56]
in [57], where we built a spindle detector from iEEG data, and other EEG studies. For other
data classes, such as heart electrocardiogram data, other models were found [58].

The DDA model structure consists of two sets of parameters: (i) the delays and
model form are fixed parameters that are kept constant throughout the analysis; and
(ii) the coefficients (a1, a2, a3) and the fitting error of the model are free parameters. The
nonlinearity of the terms or the complexity of the DDA model depends on the data class.
For EEG data, a model with two linear terms and one nonlinear term has been shown to
act as a good model in a variety of studies [54,56]. The coefficients are used as features to
distinguish different dynamics in the data. The DDA model for EEG data used here is

ẋ = a1x1 + a2x2 + a3x2
1 (2)

where xi = x(t − τi) is the signal delayed due to τi ∈ N, and the fixed parameters are
the same as in [56,59]. We found that one of the free parameters, namely a3, can be used
to describe neural activity in a manner similar to ERPs, although they are not the same
phenomenon (see [56]). In most cases, there is no direct relation between frequencies and
any of the model parameters, as explained in [60]. For a model with only linear terms, a
direct connection to spectral analysis can be found; as soon as nonlinear terms are added
to the model, each coefficient of the model corresponds to a combination of higher-order
statistical moments (see [60]). In the analyses performed here, the delays were τ1 = 6 δt
and τ2 = 16 δt, with δt = 1

fs
, and the sampling rate was fs = 2000 Hz (double the delays

in [56] because the sampling rate was doubled). The window length was 30 ms, and the
window shift was 1 ms. To explain how to use the same DDA model for data with double
the sampling rate, we use the same approach as explained in [57]. For a time series, x(t), of
length L, Equation (2) can be rewritten as a matrix equation in the following way:

ẋ(t + 1)
ẋ(t + 2)
ẋ(t + 3)

...
ẋ(t + L)

 =


x(t + 1 − τ1) x(t + 1 − τ2) x(t + 1 − τ1)

2

x(t + 2 − τ1) x(t + 2 − τ2) x(t + 2 − τ1)
2

x(t + 3 − τ1) x(t + 3 − τ2) x(t + 3 − τ1)
2

...
x(t + L − τ1) x(t + L − τ2) x(t + L − τ1)

2


 a1

a2
a3



ẋ = Mx A

(3)

Note that Mx is an (L × 3) matrix. L is the number of data points for each window for
the estimation of the three free parameters, a1,2,3. For data with double the sampling rate,
we rewrote Equation (3) in the following way:(

ẋ2j−1
ẋ2j

)
=

(
Mx2j−1

Mx2j

)
A (4)
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where

ẋ2j−1 = d
dt


x(t + 1)
x(t + 3)
x(t + 5)

...
x(t + (2L − 1))

 , ẋ2j =
d
dt


x(t + 2)
x(t + 4)
x(t + 6)

...
x(t + (2L))

 (5)

are the numerical derivatives, and

Mx2j−1 =


x(t + 1 − 2τ1) x(t + 1 − 2τ2) x(t + 1 − 2τ1)

2

x(t + 3 − 2τ1) x(t + 3 − 2τ2) x(t + 3 − 2τ1)
2

x(t + 5 − 2τ1) x(t + 5 − 2τ2) x(t + 5 − 2τ1)
2

...
x(t + (2L − 1)− 2τ1) x(t + (L − 1)− 2τ2) x(t + (2L − 1)− 2τ1)

2



Mx2j =


x(t + 2 − 2τ1) x(t + 2 − 2τ2) x(t + 2 − 2τ1)

2

x(t + 4 − 2τ1) x(t + 4 − 2τ2) x(t + 4 − 2τ1)
2

x(t + 6 − 2τ1) x(t + 6 − 2τ2) x(t + 6 − 2τ1)
2

...
x(t + (2L)− 2τ1) x(t + (2L)− 2τ2) x(t + (2L)− 2τ1)

2



(6)

are the matrices with alternating data points and the double delays. This way, the delays
are doubled in relation to Equation (3).

The classification task was done in a subject-dependent manner, with one model by
participant and TMS condition. Non-overlapping triples of neighboring channels were
combined, resulting in 20 channel triples. Models were obtained with dynamical ergodicity
DDA (DE-DDA) applied to these triples on sliding windows of 30 ms and window shifts of
1 ms. From these, mean and standard deviation values were taken for each trial, resulting
in the features that serve as inputs to the classifiers. Classification of phonemes was
achieved with SVD, as described in [61]. Leveraging the spatiotemporal aspects of the data,
training of the SVD classifier was done through non-connected time trials and testing with
time-connected trials.

3. Results
3.1. Phoneme Discrimination Task

Two experiments utilizing the same protocol were performed in 2019 and 2021. After
the exclusion of problematic data (see Section 2), an equal number of participants in 2019
(n = 8) and 2021 (n = 8) contributed data from the behavioral task.

3.1.1. Phoneme Categories

We predicted that the stimulation of the region controlling lip-muscle movements
would increase the discrimination accuracy for bilabial consonants and that stimulation of
the region controlling tongue-muscle movements would increase this accuracy for alveolar
consonants. At the same time, we predicted that error rates would increase for phonemes
not associated with the stimulation sites. The 2019 experiment compared the results for
consonant–vowel (CV) and vowel–consonant (VC) pairs to confirm that the protocol design
affected consonants in the pair-initial position. Only CV pairs indicated support for the
alternative hypothesis. Therefore, only CV pairs were analyzed in the 2021 experiment.

Within this paradigm, the null hypothesis postulated that there would be no category-
specific difference in task accuracy when phoneme discrimination was performed during
task-relevant TMS versus when the task was performed without TMS; moreover, any
difference should reflect a greater relative accuracy when the TMS target corresponds to
the associated phoneme category (i.e., /b/, /p/ during LipM1 TMS and /d/, /t/ during
TongM1 TMS). The one-sided alternative hypothesis stated that a greater relative accuracy



Brain Sci. 2024, 14, 895 11 of 24

would be obtained when the TMS target corresponded to the phoneme category produced
via the articulators governed by this brain region. Importantly, relative accuracy was
measured because it is inherently easier to perform the discrimination task during the sham
condition. Greater noise and scalp sensations were reported during experimental trials.

The Bayes factor provides a continuous measure of evidence for H+ over H0. The
data were equally well predicted by both models when the Bayes factor was 1. As the Bayes
factor increased above 1, the evidence favored H+ over H0; the reverse was true as the
Bayes factor decreased below 1. A Bayes factor of 3 is often considered to be the amount
of evidence that approximates a p-value of 0.05 [50,62]. However, this is an arbitrary level
selected to correspond to a commonly used yet problematic metric [63]; other authors
recommend establishing a threshold for each specific case [64]. Our brief report considers
evidence from a relatively small data set. Thus, here, we are primarily interested in which
category of evidentiality is supported, whether evidence for a hypothesis trends in the same
direction across studies, and under which conditions the evidence may be more robust.

Table 1 shows that the Bayes factor indicated minimal evidence for H+ in all CV
conditions of the 2019 and 2021 experiments and approached moderate evidence for H+

in the 2021 alveolar condition. In contrast, the Bayes factor indicated moderate evidence
for H0 in the bilabial condition and no evidence for H+ in the alveolar condition. The
BF+0 for CV items equaled between 1.188 and 2.002, which means the data were between
approximately 1.188 and 2.002 times more likely, depending on the condition, to occur
under H+ than H0. The BF+0 for VC items equaled only between 0.121 and 0.807, which
means the data were between approximately 0.121 and 0.807 times more likely, depending
on the condition, to occur under H+ than H0. The error percentages were small, which
indicates that the algorithm used to obtain the results has stability; the error percentage was
larger in the inconclusive alveolar VC condition. Notably, the Bayes factor was consistently
larger for alveolar phonemes in both the CV and VC trials.

Table 1. Bayesian paired samples t-test—phoneme category-discrimination task.

Year Category Measure 1 Measure 2 BF+0 Error %

2019 Bilabial CV LipM1 TMS > TongM1 TMS 1.188 2.349×10−5

2019 Alveolar CV TongM1 TMS > LipM1 TMS 1.361 2.002 × 10−5

2021 Bilabial CV LipM1 TMS > TongM1 TMS 1.390 1.959 × 10−5

2021 Alveolar CV TongM1 TMS > LipM1 TMS 2.002 4.661 × 10−5

2019 Bilabial VC LipM1 TMS > TongM1 TMS 0.121 2.441 × 10−4

2019 Alveolar VC TongM1 TMS > LipM1 TMS 0.807 0.006

Figure 3 illustrates relative task accuracy and the results for parameter estimation. For
the CV trials, we observed a clear double dissociation between the phoneme categories
in 2019 and 2021 yet no double dissociation in the VC trials. Interestingly, TongM1 TMS
appeared to elicit a marginal effect in the VC trials. The robustness of the Bayes factor to
our prior specification is shown in BF+0 as a function of the prior width, r. When the Bayes
factors for the user prior was over 1.3, the Bayes factor appeared to be relatively stable
across several Cauchy prior widths. The accuracy results of the 2019 /d/ control task were
abnormally high relative to those of the other phonemes; as a result, when /d/ and /t/ are
graphed together, the error rates misleadingly appear to converge during TongM1 TMS.
Here, /d/ is excluded from the line graph but not the analysis. We present the full set of
data in Supplementary Material.
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Figure 3. Phoneme Category Discrimination. (A) 2019 CV results for (i) relative accuracy, and
parameter estimation for (ii) bilabial phonemes and (iii) alveolar phonemes. (B) 2021 CV results for
(i) relative accuracy, and parameter estimation for (ii) bilabial phonemes and (iii) alveolar phonemes.
(C) 2019 VC results for (i) relative accuracy and parameter estimation for (ii) bilabial phonemes and
(iii) alveolar phonemes. Error bars represent the 95% confidence intervals.

3.1.2. Individual Phonemes

We evaluated whether the effects observed at the category level would persist for
individual phonemes. In particular, we considered whether individual phonemes would
show a graded effect across TMS targets due to the overlap in stimulation between the
TongM1 target and a brain region governing the voicing of phonemes (see Figure 1C). Here,
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we analyze the 2021 CV data, for which a more ideal decibel level for white noise had
been set, to allow a consideration of all four phonemes. Table 2 shows moderate evidence
for H+ in the /b/ and /t/ CV conditions. The BF+0 equaled between 2.010 and 3.255,
indicating that the data were between 2.010 and 3.255 times more likely to occur under H+

than H0. In contrast, the Bayes factor indicated no evidence for H+ in the /p/ and /d/ CV
conditions, where the BF+0 equaled between 0.596 and 0.646, and the data were between
0.596 and 0.646 times more likely to occur under H+ than H0. The error percentages
were consistently small, which demonstrates that the algorithm used to obtain the results
has stability.

The VC conditions revealed a very different picture. The Bayes factor indicated
minimal evidence for H0 in the /p/ and /t/ VC conditions and no evidence for H+ in the
/b/ VC condition. The BF+0 equaled between 0.336 and 0.344 for /t/ and /p/, respectively,
and the data were 0.336 and 0.344 times more likely to occur under H1 than H0. The BF+0
for /b/ equaled 0.959, and the data were 0.959 times more likely to occur under H1 than
H0. These conditions possess a high error percentage, suggesting that our model does
not describe the data efficiently; this confirms our assumption regarding the timing of
the protocol for targeting the initial phoneme in phoneme pairs. However, surprisingly,
the Bayes factor did indicate minimal evidence for H+ in the /d/ VC condition with
a small error percentage. The BF+0 equaled 1.385, and the data were 1.385 times more
likely to occur under H+ than H0. This may indicate some evidence of an effect related
to the voicing feature: /d/ is the only phoneme described by both tongue articulation
and voicing.

Table 2. Bayesian paired samples t-test—individual phoneme discrimination task.

Year Category Measure 1 Measure 2 BF+0 Error %

2021 B CV LipM1 TMS > TongM1 TMS 3.255 2.648 × 10−4

2021 P CV LipM1 TMS > TongM1 TMS 0.646 6.038 × 10−7

2021 D CV TongM1 TMS > LipM1 TMS 0.596 1.212 × 10−6

2021 T CV TongM1 TMS > LipM1 TMS 2.010 7.809 × 10−6

2019 B VC LipM1 TMS > TongM1 TMS 0.959 0.020
2019 P VC LipM1 TMS > TongM1 TMS 0.344 0.003
2019 D VC TongM1 TMS > LipM1 TMS 1.385 2.875 × 10−5

2019 T VC TongM1 TMS > LipM1 TMS 0.336 0.003

Figure 4 illustrates relative task accuracy and the results for parameter estimation.
For the CV trials, we observed a double dissociation between phonemes in 2021. There
was considerable error in the VC condition, making it difficult to draw conclusions. As
anticipated, a dissociation between bilabial and alveolar phonemes was absent in the VC
trials. Again, TongM1 TMS appeared to elicit a marginal effect. The robustness of the Bayes
factor to our prior specification is shown in BF+0 as a function of the prior width, r. The
Bayes factors for the user prior appeared to be relatively stable across several Cauchy prior
widths when over 1.3.

In summary, the results of the behavioral trials confirm that the protocol was cor-
rectly designed to influence the perception of the initial consonant in phoneme pairs. The
performance trended towards a more accurate perception of alveolar phonemes during
TongM1 TMS. Upon disambiguation, we see an increased ability to discriminate the un-
voiced alveolar phoneme /t/ in CV pairs during TongM1 TMS. This is not the case for
/d/; however, as noted, some discrepancies emerged regarding the perceptibility of /d/ in
white noise relative to the other phonemes. Secondly, the increased ability to discriminate
voiced phonemes during TongM1 TMS appears as a trend that might be substantiated with
the analysis of a larger data set. The findings are consistent with an additional effect of
voicing caused by the overlap in stimulation across the cortical regions involved in tongue
articulation and voicing. We may conclude that not all phonemes are equally affected by
the protocol.
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Figure 4. Individual Phoneme Discrimination. (A) 2021 CV results for (i) relative accuracy, and
robustness parameters for (ii) /b/, (iii) /p/, (iv) /d/, and (v) /t/. (B) 2019 VC results for (i) relative
accuracy, and robustness parameters for (ii) /b/, (iii) /p/, (iv) /d/, and (v) /t/. Error bars represent
the 95% confidence intervals.

3.2. Neural Speech Decoding

In the behavioral task, TMS may have either increased the hit rate for true positives
when the associated target was stimulated or increased the miss rate for false positives
when a non-associated target was stimulated, thus biasing the participant towards the
selection of an incorrect phoneme or phoneme category. Given the fact that we measured
relative accuracy and that these metrics fluctuated across different phonemes in the control
condition, it is difficult to ascertain which of these scenarios is more likely. Therefore, we
investigated whether the TMS protocol would induce a facilitatory effect on the motor
neurons governing phoneme articulation, which would be measurable from the EEG signals.
Specifically, we sought to determine whether the stimulation of task-specific motor regions
would result in superior inputs for neural speech decoding, which could be interpreted
as support for the facilitation hypothesis. Classification analyses were conducted on the
EEG signals collected during the phoneme discrimination task performed in 2019 (n = 8)
and 2021 (n = 16). Neural data were collected from the participants who contributed the
behavioral data analyzed above. In 2021, an additional cohort of participants contributed
neural data recorded during the discrimination task, leading to a two-fold increase in
neural data only.
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3.2.1. Phoneme Categories

We predicted that the stimulation of the region controlling lip-muscle movements
would increase the classification accuracy of bilabial consonants, whereas the stimulation of
the region controlling tongue-muscle movements would increase the classification accuracy
of alveolar consonants. At the same time, we predicted that the decoding accuracy would
decrease for phonemes that were not associated with the stimulation sites. We anticipated
that the findings would illustrate a double dissociation that closely corresponded to the
one observed in the behavioral analyses. Again, we considered both CV and VC pairs from
the 2019 experiment and CV pairs only from the 2021 experiment.

Within this paradigm, the null hypothesis postulated that there would be no category-
specific difference in decoding accuracy when phoneme discrimination was performed
during task-relevant TMS versus when the task was performed without TMS; moreover, any
difference should reflect a greater relative accuracy when the TMS target corresponded to
the associated phoneme category. The one-sided alternative hypothesis stated that a greater
relative decoding accuracy would be obtained when the TMS target corresponded to the
phoneme category produced via the articulators governed by this brain region. As noted,
the sham condition was inherently easier: effortful processing in TMS conditions may
augment the neural signal (see [25]), or any real effect may be diminished, as postulated for
the behavioral-task results.

Table 3 shows that the Bayes factor indicates moderate evidence for H0 in the alveolar
CV condition in 2019 and both VC conditions in 2019. The BF+0 equaled 0.307 and 0.344
for alveolar phonemes in the 2019 CV condition and between 0.157 and 0.196 in the 2019
VC conditions. Thus, the data were 0.307 and between 0.157 and 0.196 times more likely to
occur under H1 than H0, respectively. However, the error percentage was only small for
bilabial phonemes in the 2019 VC condition, suggesting that our model may not effectively
describe the alveolar data. The Bayes factor indicates no evidence for H1 in either the 2019
or 2021 CV bilabial conditions. The BF+0 equaled between 0.444 and 0.495, respectively,
and the data were 0.444 and 0.495 times more likely to occur under H1 than H0, with
small error percentages. Yet, the Bayes factor did indicate moderate evidence for H1 in the
alveolar CV condition of 2021. The BF+0 equaled 3.166, the data were 3.166 times more
likely to occur under H1 than H0, and the error percentage was small, suggesting that this
model is stable.

Figure 5 illustrates relative task accuracy and the results for parameter estimation. For
CV trials, we only observed a clear dissociation between the category groups in 2021, when
more participants were recruited, increasing the overall power. A double dissociation was
not visible in any of the 2019 data. As indicated in Table 3, the findings from the 2021 data
appear to be largely driven by alveolar phonemes. The robustness of the Bayes factor to
our prior specification is shown in BF+0 as a function of the prior width, r. The Bayes factor
appears to be relatively stable across several Cauchy prior widths in this analysis.

Table 3. Bayesian paired samples t-test—neural phoneme-category decoding.

Year Category Measure 1 Measure 2 BF+0 Error %

2019 Bilabial CV LipM1 TMS > TongM1 TMS 0.495 1.391 × 10−6

2019 Alveolar CV TongM1 TMS > LipM1 TMS 0.307 0.026

2021 Bilabial CV LipM1 TMS > TongM1 TMS 0.444 1.230 × 10−5

2021 Alveolar CV TongM1 TMS > LipM1 TMS 3.166 1.307 × 10−4

2019 Bilabial VC LipM1 TMS > TongM1 TMS 0.196 5.683 × 10−4

2019 Alveolar VC TongM1 TMS > LipM1 TMS 0.157 0.001
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Figure 5. Neural Category Decoding. (A) 2019 CV results for (i) relative accuracy and (ii) bilabial and
(iii) alveolar parameter estimation. (B) 2021 CV results for (i) relative accuracy and (ii) bilabial and
(iii) alveolar parameter estimation. (C) 2019 VC results for (i) relative accuracy and (ii) bilabial and
(iii) alveolar parameter estimation. Error bars represent the 95% confidence intervals.

3.2.2. Individual Phonemes

We evaluated whether the effects observed at the category level would persist for
individual phonemes. Whether individual phonemes would show a graded effect across
TMS targets was again of particular interest, and we analyzed the 2021 CV data. In this
analysis, Table 4 does reveal a graded response to stimulation, although not all phonemes
responded as anticipated. The Bayes factor indicates moderate evidence for H0 for /p/
and no evidence for H1 for /d/ in the 2021 conditions. The BF+0 equaled 0.187 for /p/ and
0.638 for /d/, indicating that the data were 0.187 and 0.638 times more likely to occur under
H+ than H0. This result was not surprising for /p/, which did not respond robustly to
TMS across the experiments and analyses, presumably due to its combination of features as
an unvoiced bilabial phoneme. The result for /d/, however, contradicted our assumptions
that it would show the greatest increase in decoding accuracy as a voiced alveolar phoneme.

The results for the other two phonemes were similarly unexpected: the Bayes factor
indicated minimal evidence for H0 for /b/ and moderate evidence for /t/. The BF+0
equaled 1.071 and 3.629, respectively, indicating that the data were 1.071 and 3.629 times
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more likely to occur under H+ than H0. The error percentages for all conditions were small,
with the exception of /p/. We may consider that, perhaps, the more effortful processing
of unvoiced phonemes (/t/,/p/) led to increased decoding accuracy and an increased
error for /p/, as it may be better described by an alternate model. However, this remains
speculative and not entirely consistent with the category-level findings. We also cannot
discount the limitations of the method: the coil was heavy and prone to some movement;
thus, targeting may not have remained ideal throughout the entire TMS block, which
became more apparent in the more specific phoneme-level analysis. Nonetheless, we did
observe an effect on decoding accuracy and a graded response across phonemes.

In the VC conditions, the results were more straightforward. The Bayes factor indicated
moderate evidence for H0 across all phonemes. The BF+0 equaled 0.244 and 0.326 for
bilabial phonemes /b/ and /p/, indicating that the data were 0.244 and 0.326 times more
likely to occur under H+ than H0. These values closely resemble those obtained for
alveolar phonemes, with the BF+0 equaling 0.235 and 0.244 /d/ and /t/, indicating that
the data were 0.235 and 0.0244 times more likely to occur under H+ than H0. The error
percentages remained consistently small. These findings are consistent with the assumption
that phonemes in the VC condition would not be affected by TMS due to changes in the
timing of TMS pulses.

Figure 6 illustrates relative task accuracy and the results for parameter estimation. For
the CV trials, despite the different states of evidentiality observed for the four phonemes,
we found a double dissociation between three of the phonemes (/b/,/d/,/t/) in the 2021
CV condition. A double dissociation was not visible in any of the 2019 data. As indicated
in Table 4, the findings from the 2021 data appear to have been largely driven by alveolar
phonemes. The robustness of the Bayes factor to our prior specification is shown in BF+0
as a function of the prior width, r. The Bayes factor appeared to be relatively stable across
several Cauchy prior widths only for /t/ in the CV condition.

In summary, the results of speech decoding were not as pronounced as those for the
behavioral task. We observed consistencies between the two sets of analyses, particularly
in regard to the differences seen for CV versus VC stimulus pairs. Again, the performance
trended towards a more accurate perception of alveolar phonemes during TongM1 TMS
for phoneme categories, and there was a greater disambiguation of individual phonemes at
the TongM1 TMS target. Although, given that we are assessing relative accuracy, the target
inducing a greater effect on /b/ is not clear. In the phoneme-level decoding analysis, it is
less clear whether there is an additional effect of voicing at play, or a more relevant alterna-
tive factor may be the role of effortful processing. Nonetheless, it is notable that all three
phonemes associated to some degree with the TongM1 TMS site trended towards an effect,
and we may again conclude that not all phonemes are equally affected by the protocol.

Table 4. Bayesian paired samples t-test—individual phoneme discrimination task.

Year Category Measure 1 Measure 2 BF+0 Error %

2021 B CV LipM1 TMS > TongM1 TMS 1.071 2.521 × 10−5

2021 P CV LipM1 TMS > TongM1 TMS 0.187 0.010
2021 D CV TongM1 TMS > LipM1 TMS 0.638 6.458 × 10−6

2021 T CV TongM1 TMS > LipM1 TMS 3.629 3.470 × 10−5

2019 B VC LipM1 TMS > TongM1 TMS 0.244 6.211 × 10−4

2019 P VC LipM1 TMS > TongM1 TMS 0.326 8.916 × 10−4

2019 D VC TongM1 TMS > LipM1 TMS 0.235 6.365 × 10−4

2019 T VC TongM1 TMS > LipM1 TMS 0.244 6.198 × 10−4
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Figure 6. Neural Category Decoding. (A) 2021 CV results for (i) relative accuracy and robustness
parameters for (ii) /b/, (iii) /p/, (iv) /d/, and (v) /t/. (B) 2019 VC results for (i) relative accuracy
and robustness parameters for (ii) /b/, (iii) /p/, (iv) /d/, and (v) /t/. Error bars represent the 95%
confidence intervals.

3.3. Statistical Comparisons Across Data Sets
Additional inferential statistics were performed in order to better understand whether a relation-

ship existed between the results of the phoneme discrimination task and neural decoding. We utilized
the 2021 data set, given that it offered the largest participant number and a more optimal decibel
level for white noise. To assess which, if any, of three factors (task accuracy, TMS target, and category
or phoneme) might have been a predictor of decoding accuracy, a mixed-effects linear regression
was performed. In particular, we assessed whether the accuracy achieved in the behavioral task
could be considered a significant predictor of the neural decoding accuracy. The average decoding
accuracy in the LipM1 TMS condition, the TongM1 TMS condition, and the two target-specific sham
conditions was modeled as a function of the average task accuracy across participants, with a separate
calculation for each unique combination of these factors. Participants were used as the random-effects
grouping factor; however, minimal variance was observed.

The behavioral task-accuracy metrics already reflect our hypotheses regarding the association
between TMS target sites and phoneme feature sets because task accuracy is assumed to vary by these
factors. Therefore, we anticipated that one of the main effects of task accuracy would be a significant
predictor of decoding accuracy. A significant main effect of the phoneme category or an individual
phoneme would suggest that a particular category or phoneme is inherently more “marked” in
terms of its neural signature in the brain. A significant effect of the target would suggest that one
target is inherently better for generating perceptible signals. There was no evidence to support these
additional hypotheses.
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In Table 5, the relative improvement in each model over the next best-fit model was evaluated to
identify which model provided the greatest explanatory value. For phoneme categories, task accuracy
and target were found to be significant main effects, although only the former was highly significant.
In accordance with our hypothesis, the model with the highest significance and the lowest sample
variance was Decoding Accuracy∼Task Accuracy (F(1,135) = 11.510, p = 0.0009). For individual
phonemes, Task Accuracy and Target were found to be the main effects, and there was a significant
interaction between Task Accuracy and Phoneme. The model with the highest significance was
Decoding Accuracy∼Task Accuracy * Phoneme (F(3,119) = 12.488, p ≤ 0.0001). The model with the
second highest significance and the lowest sample variance was Decoding Accuracy∼Task Accuracy
(F(1,119) = 13.556, p = 0.0003). These findings suggest that task accuracy is a significant predictor of
decoding accuracy on the phoneme-category level, as well as on the individual phoneme level, with
some additional effect of individual phonemes.

Table 5. Mixed-effects linear regression summary.

Effect df F p-Value

Task Accuracy 1, 135 11.510 0.0009
Category 1, 135 2.257 0.1106
Target 3, 135 2.811 0.0419
Task Accuracy * Category 1, 135 0.931 0.3364
Task Accuracy * Target 3, 135 0.510 0.6762
Category * Target 3, 135 1.487 0.2210
Task Accuracy * Category * Target 3, 135 0.835 0.4771

Task Accuracy 1, 119 13.556 0.0003
Phoneme 9, 119 1.299 0.2444
Target 3, 119 3.192 0.0262
Task Accuracy * Phoneme 3, 119 12.488 <0.0001
Task Accuracy * Target 3, 119 0.093 0.9638
Phoneme * Target 9, 119 1.299 0.2444
Task Accuracy * Phoneme * Target 9, 119 0.685 0.7217

Note: Type III sum of squares.

4. Discussion
This study provides a unique contribution to the literature by demonstrating that the neuromod-

ulatory effects of TMS on behavior are reflected in the neuronal activity measured via EEG and may
be indexed using neural decoding metrics. The findings offer additional evidence for the motor theory
of speech perception. While the neuroimaging literature provides a strong foundation for the theory,
EEG signals can be considered a more direct measure of neuronal activity than the hemodynamic
response function measured in fMRI studies, which may fail to correspond to neuromodulation-
induced motor excitability [65,66]. Furthermore, the findings illustrate that the mechanisms that
underlie these effects and how specific brain regions contribute to speech perception may be better
addressed through the investigation of articulatory feature sets. The stimulation protocol appeared
to exert a short-term effect on cortical regions associated with the place of phoneme articulation,
as identified by [31]. However, better relative performance was generally observed across trials
and experiments at the tongue stimulation site, suggesting the influence of additional factors. No
effect was anticipated in the VC trials, yet voiced phonemes in these trials also trended toward better
relative performance over the TongM1 site, indicating that regions governing the voicing feature
may have been partially activated and may have exhibited an effect that perseverated into pair-final
consonants. This is a prospective area for future investigation.

The study raises additional methodological and practical questions. The translational goal of
the study was to investigate whether neuromodulation could facilitate non-invasive neural speech
decoding from EEG signals by manipulating psychomotor activity. Brain–computer interface (BCI)
devices that utilize neural signals as inputs have the potential to restore communication for patients
with debilitating neuromuscular diseases, such as amyotrophic lateral sclerosis (ALS) and locked-in
syndrome (LIS) [67]. While the results are promising, a number of challenges must be overcome
before neuromodulation can be adopted as a realistic means of improving neural speech decoding.
Certain complications are inherent to conducting a TMS experiment: TMS is known to affect neurons
selectively, eliciting either an overall facilitatory or inhibitory effect based on protocol timing and
the type and position of the stimulated neurons [7,8,68]. In the existing technologies, M1 excitability
in response to TMS varies significantly between individuals [69,70]. These methodological barriers



Brain Sci. 2024, 14, 895 20 of 24

likely account for the individual-level variation observed in our study, such that only group-level
effects were present.

Likewise, the noise and physical sensations that accompany TMS have the potential to bias
individual participant responses and may impede task performance by distracting or inconveniencing
susceptible participants. While sham TMS techniques exist, they are generally considered insufficient
to fully mask the accompanying somatosensory effects [71]. A sham TMS coil was unavailable for this
study, and therefore, the results should be interpreted in light of the fact that task performance in the
control condition was objectively easier than when TMS was administered. It is the relative change in
performance across TMS conditions that provides insight into the extent of facilitation that may be
afforded via neuromodulation. Many, but not all, TMS conditions still showed increased performance
relative to the control condition in absolute terms when TMS was paired with the corresponding
phoneme or phoneme category. This hints at the potential for a much stronger absolute effect if a less
distracting neuromodulation technique is adopted.

On the other hand, ensuring that participants are moderately challenged during the task may be
advantageous for neural decoding. In discrimination tasks, phonemes are typically immersed in white
noise, such that effort is required to perceive them. The processing of hard-to-discriminate speech
sounds has been shown to increase the hemodynamic response in neuroimaging studies [25]; the
number of mistakes in linguistic decision trials corresponds to an increase in functional connectivity
in task-relevant brain regions [72], and the presence of an effect in neuromodulation studies has
been tied to task difficulty [11,23]. The motor system may, in fact, only be engaged in response to
effortful processing [73]. However, even if the psychomotor activity reported in TMS studies is an
artifact of task demands, rather than a component of linguistic processing [74], this is irrelevant for a
purely practical solution to speech decoding. Many brain–computer interface (BCI) paradigms orient
to motor processing. The assumption that a real-world solution to speech decoding need be fully
naturalistic is not warranted.

However, from a technology-development perspective, an ideal neuromodulation technique
would allow for the rapid and simultaneous stimulation of multiple precise targets while excluding
or reducing the somatosensory effects associated with TMS. Suitable neuromodulation technologies
that address these needs continue to evolve [75]. The protocol adopted in this study illustrates the
facilitation of neural speech decoding in a discrimination paradigm, whereas a BCI device will need to
operate upon neural signals that are not produced in response to an external stimulus. This scenario
does not preclude the use of neuromodulation for the training—of participants or algorithms—as
a preliminary step in the ongoing research into neural decoding. Given the evidence of a useful
effect, it is important to remain open to creative solutions to the problem of real-world neural speech
decoding from non-invasive EEG signals.

5. Conclusions
This study reproduced the double dissociation between electromagnetic stimulation site and

stimulus category that was reported by [31] during a phoneme discrimination task, and it extended
the paradigm to investigate whether behavioral facilitation would predict improved neural decoding.
Utilizing the EEG signals recorded from participants while they executed the discrimination task
as classification inputs, we found a double dissociation between the stimulation site and phoneme-
category decoding accuracy that paralleled the behavioral findings. Statistical analyses indicated
that task accuracy was a significant predictor of decoding accuracy when performed on EEG signals
collected during the task. These findings support the hypotheses that TMS exerts a task-relevant
facilitatory effect on neuronal activity and that neural decoding metrics may serve as an index for
psychomotor activity. We also investigated phoneme-level effects. While there is some evidence
that a focal effect can be achieved using phonemes that possess different articulatory feature sets
by targeting multiple features of the sets (e.g., place of articulation and voicing), the data remain
inconclusive at this sample size. Nonetheless, task accuracy and the interaction between task accuracy
and phoneme type are significant predictors of decoding accuracy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/brainsci14090895/s1, Figure S1: All Phonemes in 2019. (A)
Phoneme discrimination results for (i) CV pairs and (ii) individual phonemes. (B) Neural decoding
results for (i) CV pairs and (ii) individual phonemes. These line graphs include data from both /d/
and /t/ trials. An unusually high level of correct responses in the /d/ control condition relative to the
other phonemes is apparent in the downward displacement of the line representing /d/ responses
along the y-axis. Error bars represent the 95% confidence intervals. Interestingly, we observed that the
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phonemes that obtained lower task-accuracy results showed a higher decoding accuracy. Therefore,
the role of effortful processing in neural speech decoding may be a relevant area of further study.;
Figure S2: Discrimination Results by Individual Phoneme. (A) The 2019 CV accuracy rates for (i) b,
(ii) p, (iii) d, and (iv) t. (B) The 2021 CV accuracy rates for (i) b, (ii) p, (iii) d, and (iv) t. The difference
between the percentage of correct responses in the experimental condition and its matched control
condition was within approximately 5% for all phonemes, with the exception of /d/ in 2019, which
showed a difference between the experimental and control condition that was approximately twice
as large and marginally significant or significant. The decibel level of the white noise in which the
stimuli were immersed was increased in 2021 to correct this discrepancy. Error bars represent the 95%
confidence intervals. Note: Here, we provide the aggregate count of correct trials for all participants.
Other figures in this paper calculate relative percentages on the subject level, rather than the group
level, to allow for statistical analysis. Some discrepancies may, therefore, be observed between the two
visualizations, as they do not strictly represent the same information. The variation in subject-level
means may be reflected in the error bars for the mean of the entire data set. ˜ p < 0.10; * p < 0.05.
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