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Abstract: Intercellular adhesion molecule 1 (ICAM-1/CD54), a transmembrane glycoprotein, has
been considered as one of the most important adhesion molecules during leukocyte recruitment.
It is encoded by the ICAM1 gene and plays a central role in inflammation. Its crucial role in many
inflammatory diseases such as ulcerative colitis and rheumatoid arthritis are well established. Given
that neuroinflammation, underscored by microglial activation, is a key element in neurodegenerative
diseases such as Parkinson’s disease (PD), we investigated whether ICAM-1 has a role in this
progressive neurological condition and, if so, to elucidate the underpinning mechanisms. Specifically,
we were interested in the potential interaction between ICAM-1, glial cells, and ferroptosis, an iron-
dependent form of cell death that has recently been implicated in PD. We conclude that there exist
direct and indirect (via glial cells and T cells) influences of ICAM-1 on ferroptosis and that further
elucidation of these interactions can suggest novel intervention for this devastating disease.
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1. Introduction

Intercellular adhesion molecule 1 (ICAM-1/CD54) is a transmembrane glycoprotein
that was discovered in the 1980s and was identified as a ligand of the β2 integrin lymphocyte
function-associated antigen (LFA)-1 (CD11a/CD18), and as an important switch to initiate
a key adhesion pathway [1,2]. Since then, its critical role in inflammatory responses and a
plethora of inflammatory diseases has been verified [3–9].

Although neurodegenerative diseases in general, and Parkinson’s disease (PD) in par-
ticular, are triggered and/or exacerbated by neuroinflammatory mediators, an association
between ICAM-1 and PD has not been adequately studied. Justification for such pursuit is
supported by several premises. First, there is a well-established involvement of neuroin-
flammation in PD [10–13]. Second, the co-morbid presentation of depression with PD is
extensively documented [14–16], and the involvement of ICAM-1 in late-life depression has
been verified [17]. Moreover, the presence of ICAM-1 in reactive astrocytes was identified
in patients with PD as well as in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-
treated monkeys, a nonhuman primate model of PD [18]. Therefore, the aim of the current
review is to provide the mechanistic implications of ICAM-1 in PD, specifically in relation
to glial cell-mediated neuroinflammation underscored by ferroptosis, a recently implicated
pathway in PD pathology, as well as T cell reactivity. Thus, following brief descriptions of
ICAM-1, PD, glial cells, T cells, and ferroptosis, we seek to provide convincing evidence
on a causal relationship between them, with the hope of identifying novel targets for the
treatment of PD.
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1.1. ICAM-1

The well-known function of ICAM-1 involves leukocyte extravasation and has been
described as one of the most important adhesion molecules during leukocyte recruit-
ment [19–21]. Specifically, the expression of ICAM1, located on chromosome 19, is induced
in endothelial cells by a variety of cytokines and inflammatory mediators, including tumor-
necrosis factor alpha (TNF-α), nuclear factor kappa B (Nf-kB), interferon gamma (IFN-γ),
interleukin-1 beta (IL-1β), IL-6, as well as hydrogen peroxide (H2O2) and NADPH oxidase
(NOX) enzyme activity [1,22–27]. ICAM-1 is expressed in the plasma membrane and binds
to the β2 integrins LFA-1 and macrophage antigen 1 (MAC-1/CD11b/CD18) expressed by
leukocytes [28–30]. ICAM-1-LFA-1/MAC-1 binding mediates leukocyte rolling, crawling,
adhesion, and the passage of blood cells through the intact walls of the capillaries (dia-
pedesis), often accompanied by inflammation during extravasation, the process by which
leukocytes move out of the circulatory system to the site of tissue damage or infection [30].
Upon binding to LFA-1/MAC-1, ICAM-1 induces the dissociation of junction proteins
with adjacent endothelial cells, cytoskeletal rearrangement, and endothelial nitric oxide
synthase (eNOS) activity, enabling transendothelial leukocyte migration [9,30–32]. How-
ever, as discussed below, the implications of ICAM-1 extend beyond the transmigration
of leukocytes.

ICAM-1 is expressed in neurons and immune, endothelial, and epithelial cells, among
others, albeit at low levels of expression during basal conditions [33–35]. ICAM-1 has
several notable ligands, including fibrinogen, mucin 1 (MUC1), cluster of differentiation 43
(CD43), hyaluronan, rhinoviruses, and plasmodium falciparum [36–41]. Moreover, ICAM-1
is involved in a myriad of physiological processes, such as T cell regulation (discussed
below), macrophage polarization, cellular migration, reactive oxygen species (ROS) produc-
tion, and cancer development and metastasis [7,26,42–44]. Aldosterone and angiotensin
II have been found to induce atherosclerosis and hypertension, respectively, via ICAM-1-
dependent mechanisms in experimental models [45–47]. The infusion of angiotensin II also
increases ICAM-1 in human subjects [45]. The role of ICAM-1 in atherosclerosis and car-
diovascular disorders has been extensively evaluated and verified [8,46–48]. The adhesion
molecule appears to have a fundamental role in intestinal and blood–brain barrier (BBB)
permeability, and neuroinflammation [49–53]. In addition to inflammation remediation,
ICAM-1 also plays a role in wound healing and efferocytosis or the clearance of apoptotic
cells [7,54,55].

As a transmembrane glycoprotein, ICAM-1 is expressed in the plasma membrane
and extends into the cytoplasm and onto the cell surface, enabling the participation in
signal transduction, interactions with cytoskeletal structures, and ligand binding [7,30,56].
Nevertheless, ICAM-1 can be enzymatically cleaved from the cell surface to circulate
freely as a form of the protein known as soluble ICAM-1 (sICAM-1) [57,58]. Specifically, a
disintegrin and metalloproteinase 10 (ADAM10), ADAM17, matrix metalloproteinase 2
(MMP-2), and MMP-9 have been found to cleave membrane-bound ICAM-1 [59–62]. The
role of leukocyte elastase and cathepsin G may be particularly relevant regarding cleaving
ICAM-1 isoforms that arise due to alternative splicing [63,64]. Furthermore, sICAM-1
can be generated because of alternative splicing, in which case it lacks transmembrane
and cytoplasmic domains [30,65]. In vitro sICAM-1 concentrations have been found to
quantitatively relate to cell surface ICAM-1 expression [58,66]. Conversely, alternative
splicing, protease activity, and ICAM-1 ectodomain shedding would have the potential
to impact this relationship and should be considered during in vivo analyses [30,65,67].
sICAM-1 concentrations have been reported to range from 100 to 450 ng/mL in the serum
of the general population [4,68]. Increased sICAM-1 levels have been associated with an
array of conditions, notably, endometriosis, systemic lupus erythematosus, rheumatoid
arthritis, psoriasis, obstructive sleep apnea, non-alcoholic fatty liver disease, lung cancer,
atrial fibrillation, obesity, type 2 diabetes, diabetic retinopathy, gestational diabetes mellitus,
and late-life depression [17,69–82]. More recently, its crucial role in ulcerative colitis (an
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inflammatory bowel disease), where higher levels of ICAM-1 were associated with worse
prognosis, was revealed [83] (Figure 1).
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Thus, ICAM-1 has central yet diverse roles in inflammation and has an important role
in the initiation of inflammatory responses. Nonetheless, the entirety of these implications
has yet to be elucidated in specific phenotypes and/or disease states. Of particular impor-
tance and unexplored implication is to what extent and through what mechanisms ICAM-1
may be involved in PD pathology.

1.2. Parkinson’s Disease (PD)

PD is a progressive neurodegenerative disease marked by the gradual deterioration of
dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNpc), the accu-
mulation of misfolded α-synuclein proteins as Lewy bodies, and the dysregulation of glial
cells (discussed below). Although both genetic and environmental influences are known
risk factors, most PD cases are sporadic or what is commonly referred to as idiopathic,
meaning no known cause. PD is characterized by motor and non-motor symptoms. The
motor symptoms include resting tremor, bradykinesia, rigidity or inflexibility, dystonia,
and postural and walking abnormalities [11,84]. Freezing of gait is also a common feature.
Non-motor symptoms, which often precede the motor symptoms, include partial or total
loss of smell (anosmia), mood disorders (e.g., depression), excessive sweating, hypotension,
fatigue, cognitive impairment, inability to produce facial expressions or recognize other’s
verbal and nonverbal cues, sleep perturbations (e.g., insomnia/hypersomnia), gastrointesti-
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nal problems (e.g., difficulty in swallowing, constipation, and nausea), and urinary and
sexual dysfunction [11,85].

Since DA loss is the primary underlying cause, therapeutic interventions are focused
on replacing this neurotransmitter or its function. This is primarily achieved by the
administration of L-dopa, considered the gold standard, plus drugs that interfere with DA
breakdown, such as monoamine oxidase or catechol-o-methyltransferase inhibitors (e.g.,
selegiline/rasagiline and tolcapone/entacapone, respectively) and/or newer non-ergot DA
agonists, such as pramipexole, ropinirole, rotigotine, and apomorphine [10,86]. Carbidopa
is given in conjunction with L-dopa to prevent its peripheral breakdown. All of these drugs
may provide remarkable symptomatic relief, yet none of them address the progression of
neurodegeneration. Moreover, L-dopa, the most efficacious drug, not only loses its efficacy
over months or years but may induce severe dyskinesia, which may be worse than the
initial tremors [10,87]. Hence, more efficacious interventions without such adverse effects
are urgently needed [11,88].

Neuroinflammation and oxidative stress have been extensively implicated in PD [11,89–92].
Oxidative stress (OS) occurs due to an imbalance of oxidants and antioxidant capacity,
which can lead to oxdiant-induced damage to DNA, proteins, and lipids [11]. Within the
context of PD, oxidants may originate from a variety of sources, which includes, but is not
limited to, mitochondrial dysfunction, DA metabolism, and glial cells [11,89–92]. Oxidative
stress and ROS can induce the activation of immune cells and immune responses, and
ultimately inflammation. However, inflammation and OS have a bidirectional relationship,
which can contribute to a vicious and reciprical cycle in PD [11,89–92]. Mitochdondrial
damage and NOX also have roles in this process [90–92]. An emphasis of this review is the
elucidation of how ICAM-1 interacts with the intermediaries of OS or inflammation and
how it might provide a therapeutic target in PD.

1.3. Glial Cells

Glial cells were first identified in the mid-19th century and were referred to as neu-
roglia (neuro-glue), since they were thought to provide merely structural support for the
neurons. However, it is now known that glial cells carry a variety of crucial functions, not
only as structural support for neurons [93–95], but also in myelination [96,97], the control of
energetics and metabolism [95,98,99], the formation of the BBB [100,101], the development
and remodeling of synapses [102,103], the control of the fluid/electrolyte homeostasis [104],
the regulation of neurotransmitters [105,106], neuroendocrine function [107], detoxifica-
tion [108,109], and innate immunity response [110,111]. It is not surprising, therefore, that
their disruption or dysregulation may lead to neuropsychiatric and neurodegenerative
diseases [13,97,112–116]. By the same token, they may present novel targets in neurological
diseases [117]. Indeed, it has been suggested that the manipulation of the nicotinic cholin-
ergic receptors (nAChRs) in these cells may be a viable target for intervention in PD [13],
mood disorders, and even drug addiction [118].

Four main types of glial cells include microglia, astrocytes, oligodendrocytes, and
synantocytes or NG2 cells. Below, following a brief description of each, we specifically
concentrate on their interactions with ICAM-1 vis-a-vis neuroinflammatory response.

1.3.1. Microglia

Microglia, representing 10–15% of all of the central nervous system (CNS) cells, cover
a significant volume of the adult brain parenchyma. These cells, through rapid movements
of their fine filopodia, constantly survey the environment and react quickly to any kind
of insult. They share the same origin as peripheral macrophages but are considered the
resident immune cells of the CNS [119,120]. By regulating neurogenesis, the formation
and elimination of neuronal synapses, mediating T cell infiltration into the brain, and,
most importantly, eliminating pathogens and cell residues, they play a vital role in main-
taining brain homeostasis [121]. On the other hand, if overactivated, microglia can cause
neuroinflammation, leading to neuronal damage or death, and neuropsychiatric and/or
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neurodegenerative diseases, including PD [122–125]. A major culprit in microglial overacti-
vation is persistent stress causing the release of proinflammatory mediators such as IL-1β
and IL-6 [126–128].

It is of relevance to note that, based on their activation state, different microglial
subtypes were described previously. Hence, the M1 microglia was associated with a
proinflammatory state and the M2 with an opposite or anti-inflammatory state [121,129].
However, emerging evidence suggests that differences in microglia functions are due
to their inherent properties, and that the subtypes should be categorized based on their
function and avoid the use of the M1 or M2 state as such [117,130,131].

Microglia express various receptors, including the calcium-sensing receptor (CASR),
low-density lipoprotein receptor-related protein 1 (LRP1), triggering receptor expressed
on myeloid cells-2 (TREM2), nAChRs, and Toll-like receptors such as TLR2 and TLR4 [13].
TLRs are a well-characterized family of pattern-recognition receptors (PRRs) that initiate
the innate immune response by sensing the endogenous debris or pathogens. Because
of their significant role in neurodegenerative diseases, TLRs are investigated intensely as
potential therapeutic targets in such diseases [121,132–134].

1.3.2. Astroglia

Due to their star-like shape, these cells were named astroglia or astrocytes [135] and
may constitute anywhere between 17 and 61% of the total brain cells, depending on the
area. Astrocytes also play a crucial role in maintaining neuronal integrity and function, as
they provide nutrients, monitor and regulate pH homeostasis, remove waste, and are a key
constituent of the BBB [135,136].

Astrocytes contain both the glial-derived neurotrophic factor (GDNF), that provides
trophic support to neuronal cells including DAergic neurons [137], and glial fibrillary astro-
cytic protein (GFAP), which is a key protein responsible for maintaining astrocyte strength
and the BBB. The GFAP is commonly used as a marker for astrocyte identification [138] and
may serve as a biomarker for brain and spinal cord disorders [139–142]. These glial cells
also express brain-derived neurotrophic factor (BDNF) and the highest amount of taurine,
a free amino acid with antioxidant and anti-inflammatory properties that is required for
optimal postnatal brain development [143]. More recently it was reported that astrocytes
are the necessary source of TNF-α for the mediation of homeostatic synaptic plasticity [144].

Astrocytes in conjunction with microglia provide the first line of defense against
insults. Here, also, the overstimulation of the proinflammatory signals may synergistically
contribute to neuronal dysregulation and ensuing neuropsychiatric/neurodegenerative
diseases [145–147]. Moreover, the elucidation of the intimate interaction between astrocytes
and microglia, as well as astrocytes and neurons, referred to as crosstalk, could provide
novel intervention in such diseases [137,148–150].

1.3.3. Oligodendrocytes

Oligodendrocytes (OLs), representing 75% of all glial cells, are the major source of
myelination in the CNS [151]. In addition to axonal myelination, OLs have other cru-
cial functions, such as providing the metabolic and trophic supply by the secretion of
GDNF and BDNF, controlling the extracellular potassium concentration, and modulating
axonal growth [151,152]. They also express TLRs, which are important in myelin for-
mation [96,153,154]. It is not surprising, therefore, that the dysregulation of these glial
cells could lead to a variety of neurological diseases, including PD (discussed in more
detail below).

1.3.4. Synantocytes (NG2 Cells)

The fourth subset of major glial cells in the CNS are synantocytes, which are also
referred to as neuron glial 2 or nerve/glial antigen 2 (NG2) cells, and oligodendrocyte pre-
cursor cells (OPCs). NG2 cells are expressed in both white and gray matter areas, and can
keep proliferating in the adult brain [151,155,156]. In addition to being OL progenitors, NG2
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cells can also transform to astrocytes and neurons [151,155,156]. They have been implicated
in a variety of neurological disorders, including multiple sclerosis, Alzheimer’s disease
(AD), epilepsy, traumatic brain injury, acute ischemic stroke, neurovascular unit formation
during development, glioma, and experimental autoimmune encephalomyelitis (EAE),
a disease associated with increased BBB permeability and neuroinflammation [157–161].
Moreover, their communication and influence on neurons renders them a potential thera-
peutic target in many diseases, including PD [162,163], as discussed in more detail below.

1.4. ICAM-1—Glial Cells
1.4.1. ICAM-1—Microglia

Microglia express ICAM-1 and constitutively express LFA-1 and Mac-1, which en-
ables various direct interactions between ICAM-1 and microglia within multiple con-
texts [164,165]. Notably, ICAM-1 has a role in the activation of microglia [166–168]. Ac-
tivated microglia, in turn, secrete TNF-α, which induces the expression of ICAM-1 in
vascular endothelial cells and facilitates leukocyte infiltration [23,169,170]. ICAM-1 may
also indirectly activate microglia. This occurs due to the vascular endothelial expression of
ICAM-1, which promotes the transendothelial migration of leukocytes and their infiltration
into the CNS, resulting in microglial activation [171–174]. Interestingly, leukocytes that
have infiltrated into the CNS may adhere to microglia [171,175]. Thus, there is a positive
feedback loop between ICAM-1 and microglia [166–168,171–174].

1.4.2. ICAM-1—Astroglia

Astrocytes also contain ICAM-1, the expression of which is increased by TNF-α, IL-1β,
and IFN-γ [176–180]. ICAM-1, in turn, may cause the release of inflammatory cytokines,
including TNF-α in astrocytes [181,182]. The ICAM-1 activation of astrocytes may also
be brought indirectly via fibrinogen, which is induced in various neuroinflammatory
states and binds to ICAM-1 [183,184]. Fibrinogen-activated astrocytes further enhance
ICAM-1 expression and promote the production of NO and ROS, leading to neuronal
death [183,184]. Curiously, ROS may induce astrocytic ICAM-1 production in an Nf-kB-
dependent mechanism [185,186]. Therefore, here, also, there appears to exist a positive
feedback loop between astrocytes and ICAM-1 [179,181,183–186].

1.4.3. ICAM-1—Oligodendrocytes

The enhanced expression of ICAM-1 in OLs during inflammatory conditions is postu-
lated to be a defense mechanism in response to immunogenic insult [177,187]. The direct
contact of OLs with T cells has been suggested to induce OL damage, and anti-ICAM-1
antibodies were found to inhibit Th1 cell contact with OLs [187]. Due to the role of OLs in
myelination, T cell-induced damage in these cells may contribute to neurodegeneration,
as seen in EAE [187]. The inhibitory action of anti-ICAM-1 antibodies on EAE in vivo has
been shown in animal models, including marmoset monkeys [188,189]. As discussed for
microglia, ICAM-1 has a role in T cell infiltration into the CNS, which again provides an
indirect mechanism for ICAM-1 to influence OL homeostasis [173,177,187].

1.4.4. ICAM-1—NG2 Cells

The maturation of NG2 cells is inhibited by proinflammatory cytokines [190–192].
Moreover, microglia can influence NG2 cell proliferation, differentiation, migration, and
apoptosis, while NG2 cells can regulate microglia homeostasis and activation [193]. This
suggests an indirect interaction between ICAM-1 and NG2 cells. While recent findings im-
plicate NG2 cells in the initiation of neuroinflammation via the activation of immunogenic
cells, the NG2 protein appears to be a negative regulator of ICAM-1 expression in pericytes
and two different glioblastoma cell lines [194–196].
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1.5. ICAM-1—Glial Cells—PD

Neuroinflammation has been extensively implicated in the pathophysiology of PD,
with significant contributions from glial cells [197,198]. The role of glial cells in neuroinflam-
mation and PD is supported by a recent meta-analysis reporting increased cerebral spinal
fluid (CSF) concentrations of TNF-α, IL-6, IL-1β, nitric oxide (NO), chemokine ligand 2
(CCL2), and c-reactive protein (CRP) in individuals with this disease [199]. Despite the pro-
tective roles of transiently activated microglia, the chronic activation of microglia has been
widely hypothesized to be involved in PD [200]. Specifically, inflammatory microglia pheno-
types have been found in experimental models as well as in the SN of PD patients [200,201].
Cytokines associated with inflammatory phenotypes of microglia include TNF-α, IL-6,
IL-1β, and IFN-γ, all of which induce ICAM-1 expression [1,22,23,199,202]. The role of
microglia in PD is also supported by a postmortem analysis that found an increase in
activated microglia, and its expression of ICAM-1, LFA-1, TNF-α, and IL-6, in the SN and
various other regions of the brain in PD patients [203].

While microglia have a clear role in PD-associated neuroinflammation, they may
also induce a neurotoxic and reactive phenotype of astrocytes, often referred to as the A1
phenotype, which can exacerbate PD pathology [204–206]. Furthermore, astrocytes have a
role in the removal of dysfunctional proteins such as α-synuclein. Microglial–astrocyte in-
teractions may also facilitate α-synuclein removal, the accumulation of which may increase
ICAM-1 and IL-6 expression in astrocytes [206–209]. Moreover, increased concentrations of
astrocytes and microglia, infiltration of leukocytes, and increased expression of ICAM-1
and LFA-1 were found in the SN of PD patients [18].

Abnormal and decreased myelin contents have been associated with PD symptoms [210,211].
In PD patients, 80% of connections originating from the basal ganglia displayed decreased
myelin content [212]. Moreover, OLs, which are major contributors to myelination, have
been found to be decreased in idiopathic PD [213]. In addition, α-synuclein transfer from
neurons to OLs may exacerbate PD pathology [214,215]. Given that the OL expression of
ICAM-1 is enhanced during inflammatory conditions, the modulation of this adhesion
molecule may provide a novel target in PD [177,187].

Altogether, the above provides a strong connection between ICAM-1, glial cells,
and PD.

1.6. ICAM-1—T Cells

Leukocytes in the circulatory system are recruited to sites of inflammation via various
inflammatory signaling molecules, such as cytokines and chemokines. As mentioned
earlier, once leukocytes reach the site of inflammation, they often extravasate and undergo
diapedesis, that is, they pass through capillary walls, a process mediated by adhesion
molecules. T cells also undergo a similar process as they express LFA-1 and interact with
ICAM-1 to facilitate their endothelial transmigration [216,217]. ICAM-1 not only facilitates
T cell transmigration [216,218], but also facilitates their activation [219,220]. In addition, it
plays an important role in enabling T cell interactions with other leukocytes [219–221].

1.7. ICAM-1—T Cells—PD

T cells have diverse roles in PD and appear to be influenced by DA [222]. Moreover,
peripheral concentrations of T cell subpopulations are generally heterogenous and are
dependent on a variety of patient characteristics, such as sex, age, and disease severity
and duration [223,224]. Specifically, PD patients present with increased Th1 and Th17
cells and decreased Th2 and regulatory T cells (Tregs) [224], and some PD patients possess
α-synuclein-specific T cells [225–227].

Under inflammatory conditions, endothelial cells in the CNS express various proteins
and adhesion molecules, including ICAM-1, which facilitate the migration and infiltration
of immune cells and antibodies [225,228]. T cell infiltration into the CNS of PD patients is
supported by numerous animal studies, including nonhuman primates, as well as post-
mortem human studies [229–234]. For example, it was shown that ICAM-1 and LFA-1
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expression were increased in endothelial and T cells, respectively, and that the adminis-
tration of ICAM-1 or LFA-1 antibodies reduced immunological and behavioral changes
in MPTP-treated mice [231]. Furthermore, contact between CD8 T cells and dopaminergic
cells was observed in postmortem PD patients [231,233]. The ICAM-1/LFA-1 axis has also
been shown to mediate the Th17-induced death of dopaminergic neurons [35]. Thus, it
can be asserted that ICAM-1 interaction with T cells is part of PD pathology. As discussed,
increased ICAM-1 expression in PD may be most relevant in endothelial cells and the BBB,
and in glial cells [18,203,235–238]. Regarding circulating sICAM-1 concentrations, although
decreased ICAM1 gene expression has been detected in PD patients [239], increased sICAM-
1 levels have also been noted in the sera, plasma, and CSF of such patients [231,240–242].
Therefore, it remains to be determined how the gene expression of ICAM1 may translate
into protein production in PD.

2. Fe—Ferroptosis

Ferroptosis is an iron-dependent form of regulated cell death that is unique relative to
other mechanisms of cell death [243,244]. While the term and concept of ferroptosis was
introduced in 2012, the central role of iron in non-apoptotic cell death emerged several years
prior, in 2008 [244,245]. Ferroptosis has since been implicated in an array of conditions,
including diseases of the liver, kidney, intestines, lungs, heart, blood cells, and nervous
systems, among others [246–248]. Iron, as Fe2+, reacts with hydrogen peroxide (H2O2)
and generates a hydroxyl radical (•OH), which induces lipid peroxidation, known as the
Fenton Reaction (Fe2+ + H2O2 → Fe3+ + •OH + OH−) [244]. This reaction and the hydroxyl
radical ultimately lead to the peroxidation of cellular membrane lipids and cell death
(ferroptosis) [244,246,249]. Iron can also lead to the generation of alkoxyl radicals via the
reaction with lipid hydroperoxides and the activation of arachidonate lipoxygenase (ALOX)
enzymes [246,249]. ALOX enzymes oxygenate polyunsaturated fatty acids (PUFAs), leading
to the generation of lipid hydroperoxides, and subsequently malondialdehyde (MDA) and
4-hydroxynonenal. Due to the role of PUFAs in ferroptosis, the PUFA-synthesizing enzymes
ACSL4 and LPCAT3 have also been implicated in this process [249].

H2O2 can originate from a variety of sources, including the reduction of superox-
ide (O2

−) via superoxide dismutase (SOD) enzymes [250]. The metabolism of DA via
monoamine oxidase B also produces H2O2 [251]. The mitochondria are a major source
of superoxide, as electrons can escape from the electron transport chain and react with
oxygen [250]. NOX enzymes utilize NADPH as an electron donor to generate superoxide
and are also a major source of this free radical [249,250]. Following the reduction of super-
oxide via SOD, the catalase enzyme can catalyze the reduction of two hydrogen peroxide
molecules to water and diatomic oxygen [250]. However, as alluded to earlier, in the
presence of iron, hydrogen peroxide can participate in the Fenton Reaction and contribute
to the synthesis of the hydroxyl radical, which is a highly potent oxidant [244].

Ferroptotic cells have several key features, including abnormal mitochondria. While
iron has a central role, the lipid metabolism and glutathione homeostasis are also regulators
of ferroptosis. Likewise, glutathione peroxidase 4 (GPX4) is a major regulator of ferrop-
tosis [244]. GPX4 utilizes glutathione (GSH) to reduce peroxidized phospholipids and
cholesterol [246]. Due to the importance of glutathione, the cystine–glutamate antiporter
xCT, also known as SLC7A11, has a role in mediating ferroptosis. Additionally, SLC7A11
transports cystine into the cytoplasm while transporting glutamate into the extracellu-
lar space. In an NADPH-dependent mechanism, cystine is then converted into cysteine,
which is a rate-limiting amino acid in the synthesis of glutathione. Notably, erastin, a
small-molecule compound, can induce ferroptosis by inhibiting SLC7A11 [252]. GPX4
and SLC11A7 expression is regulated by the transcription factor known as nuclear factor
erythroid 2-related factor 2 (Nrf2), which is sequestered and controlled by KEAP1, and
binds to the antioxidant response element (ARE) [252,253]. As a result, Nrf2 is an important
mediator of ferroptosis and regulates the expression of additional ferroptosis-related genes,
such as glutathione synthetase, ferroportin 1 (FPN1), heme oxygenase 1 (HO-1), transferrin
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receptors (TFRC), and ferritin heavy chain 1 (FTH1) [253]. Conversely, the transcription
factor Bach1, also known as the BTB domain and CNC homolog 1, represses the expression
of several Nrf2-regulated genes, and thus can induce ferroptosis by reducing the expres-
sion of glutathione and iron metabolism-related genes [252–255]. It has also recently been
revealed that a specific form of autophagy, known as ferritinophagy, has a notable role in
ferroptosis, as it regulates the degradation of ferritin, an intracellular protein that stores
and releases iron in a controlled fashion. Hence, ferritinophagy may be considered as a
new player in maintaining iron homeostasis [250,253].

2.1. Ferroptosis—PD

The role of ferroptosis in the pathophysiology of PD has been extensively discussed
and is supported by a wide range of data [85]. Iron can accumulate in the SN of PD
patients, leading to the death of dopaminergic neurons [85,256]. PD has also been as-
sociated with lipid peroxidation, aberrant iron metabolism, decreased GSH, and ROS
production, all of which are reflected in differences in gene expression in the SN of PD
patients [85,251,257–259]. Specifically, differences in the expression of ferroptosis-related
genes have been observed in dopaminergic and non-dopaminergic neurons, microglia,
astrocytes, OLs, NG2 cells, and endothelial cells/pericytes of PD patients [259].

Interestingly, α-synuclein also has a role in the iron metabolism and PUFA synthe-
sis, as it induces lipid peroxidation and increases the risk of ferroptosis in dopaminergic
neurons [85,246,260–262]. Iron may also enhance the oxidation of DA, an unstable neuro-
transmitter, leading to the formation of 6-hydroxydopamine (6-OHDA) and DA quinone
(DAQ) [263,264]. DAQ, in turn, may enhance neuron susceptibility to ferroptosis by fa-
cilitating the degradation of GPX4 [264,265]. It has also been suggested that Fe3+ may be
reduced by lipid hydroperoxides, creating an iron–DA complex that produces 6-OHDA and
hydroxyl radicals [263,266]. 6-OHDA has been found to increase the concentrations of free
iron via releasing it from ferritin, and ultimately may create a vicious cycle of free radical
production. This toxic consequence is further enhanced by the metabolism of 6-OHDA
leading to H2O2 generation [263].

Ferroptosis may also have a role in BBB disruption and dysfunction [85,267]. Specifi-
cally, increased iron, lipid peroxidation, and decreased antioxidant concentrations have
been found in the BBB of PD patients [267]. BBB impairment, which may also involve
α-synuclein, has been observed in PD patients [268–271] and involves disrupted tight
junction proteins and adhesion molecules, contributing to the pathophysiology of the
disease [267,270].

2.2. Glial Cells—Ferroptosis

Glial cells have complex and multifaceted interactions with the iron metabolism and
ferroptosis. They can be a direct source of iron in the CNS, as they contain ferritin, the
concentration of which is increased during aging and pathological conditions [263]. Glial
cells can also indirectly facilitate the influx of iron and inhibit its efflux across the BBB
via secreting ceruloplasmin and hepcidin, respectively [263,272]. Hepcidin, a peptide
hormone produced in the liver, plays a crucial role in iron homeostasis [85]. Glial cells may
also facilitate iron accumulation in the CNS via the cytokine-induced regulation of iron
transporters [273].

Since glial cells can regulate iron homeostasis in the CNS and are involved in the
induction of ferroptosis, they may have critical roles in neurodegenerative processes [274].
Specifically, activated astrocytes may induce neuronal ferroptosis via secreting the CXCL3R
ligand CXCL10 and decreasing the expression of SLC7A11 [275]. On the other hand, in a
BDNF- and Nrf2-dependent mechanism, astrocytes may protect dopaminergic neurons
from ferroptosis [276,277]. A similar scenario exists for microglia, in which lipopolysac-
charide (LPS)-activated microglia may protect neurons against glutamate-induced ferrop-
tosis [278]. The complexity of these interactions is further underscored by the findings
that glial cells themselves can undergo ferroptosis, and hence contribute to neurodegenera-
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tion [279]. While NG2 cells are particularly prone to ferroptosis, OLs, with their greatest
concentrations of iron in the CNS, may protect themselves against ferroptosis by secreting
ferritin heavy chain [246,277,280,281].

Additionally, ferroptosis may activate glial cells by releasing damage-associated
molecular patterns (DAMPs) [253,282–284]. DAMPs are molecules that are released
from damaged or dying cells and are considered a component of the innate immune
response [253,282]. Glial cells also express PRRs, such as TLRs, that can recognize and
activate DAMPs, and hence contribute to neurodegeneration [283,284]. It is, however, im-
portant to note that the DAMP-mediated activation of microglia may have neuroprotective
effects in some instances [284]. This is consistent with the concept that the acute activation
of microglia can have neuroprotective properties, whereas chronic activation can lead to
neurodegeneration [200,201].

2.3. T Cells—Ferroptosis

In tumor cells, T cells can induce ferroptosis via IFN-γ-mediated SLC7A11 inhibition
and ACSL4 activation [285–288]. This has emerged as an important innate antitumor im-
mune response [285,289]. T cells have also the potential to contribute to neuronal ferroptosis
by increasing the expression of transferrin receptor 1 (TfR1) in neurons [290]. Moreover,
the interaction between T cells and ferroptosis is reciprocal, as neuronal ferroptosis can
activate T cells [291,292], and T cells themselves can undergo ferroptosis [289]. However, it
appears that ferroptosis may be less immunogenic than other forms of cell death [244,246].

2.4. ICAM-1—Ferroptosis

To our knowledge, the interactions between ICAM-1 and ferroptosis in various con-
texts have not been adequately addressed. Direct bidirectional interactions between fer-
roptosis and ICAM-1 is suggested by multiple experimental analyses. For example, in an
in vivo contusion spinal cord injury model, the ferroptosis inhibitor SRS 16-86 decreased
ICAM-1 expression, among other changes in protein and cytokine expression [293]. Similar
results were found in a diabetic neuropathy rat model, in which SRS 16-86 reduced ICAM-1
as well as IL-1β and TNF-α [294]. Likewise, ferrostatin-1 (Fer-1), a ferroptosis inhibitor,
inhibited oxidized low-density-lipoprotein-induced ICAM-1 expression in endothelial
cells [295–297]. Moreover, erastin, a ferroptosis inducer, has been found to increase ICAM-1
expression and activate endothelial transmigration [298]. Nonetheless, further verifications
of the direct interactions between ICAM-1 and ferroptosis in other models and contexts
are required.

Hydrogen peroxide, lipid peroxides, and ROS, which have a central role in ferroptosis,
also appear to have a role in ICAM-1 expression [23,26,236,299–302]. Specifically, hydrogen
peroxide has been found to increase ICAM-1 expression in endothelial cells [23,299,300]. It
is important, however, to note that some analyses have failed to find the H2O2-induced
expression of ICAM-1 in endothelial cells [169,303], likely due to methodological differ-
ences [23,169,299,300,303]. Nevertheless, H2O2 appears to increase ICAM-1 expression via
the AP-1 and Ets cis-regulatory elements in the ICAM1 gene promoter [23,299]. H2O2 has
also been shown to have a role in the post-translational modification of ICAM-1 [304–306].
Additionally, plasma with elevated lipid peroxides obtained from women with severe pre-
eclampsia increased ICAM-1 expression in human umbilical cord endothelial cells [302].

ICAM-1 was suggested to have a regulatory role in ferroptosis in a recent study in
which the administration of recombinant ICAM-1 (rICAM-1) increased intracellular ROS
and Fe2+, and decreased GPX4 and SLC7A11 expression in LPS-stimulated macrophages
and human umbilical cord endothelial cells, likely mediated by PTGS2. Moreover, the
inhibition of PTGS2 inhibited the impact of rICAM-1 on ferroptosis-related parameters,
suggesting that PTGS2 has a mechanistic role in this interaction [307]. However, further
elucidation of the mechanism of action of ICAM-1 in its various roles is warranted.



Cells 2024, 13, 1554 11 of 27

2.5. ICAM-1—Glial Cells—T Cells—Ferroptosis—PD

In PD, dopamine oxidation and mitochondrial dysfunction are widely considered to
be underlying characteristics of the disease. Dopamine oxidation appears to have a role
in the induction of mitochondrial dysfunction, including in sporadic PD cases [308,309].
Mitochondrial dysfunction in both neurons and microglia themselves can induce microglia
activation, resulting in the release of inflammatory cytokines, such as TNF-α and IL-1β, ulti-
mately leading to neuroinflammation and neurodegeneration [310,311]. This self-sustaining
cascade of events was postulated two decades ago, although the details of the steps were
not evident [312]. Now, it is known that inflammatory cytokines released by microglia
disrupt the BBB and induce the expression of adhesion molecules, such as ICAM-1, which
facilitate the infiltration of leukocytes, including T cells [310]. Once infiltrated, T cell differ-
entiation is stimulated by different glial cells, but particularly microglia via the release of
cytokines. Thus, naïve T cells differentiate into Th1 and Th17 cells, whereas their differenti-
ation into regulatory T cells is suppressed [310,313]. In turn, CD8+ T, Th1, and Th17 cells
release inflammatory cytokines, which further promote microglia into an inflammatory
and neurotoxic phenotype [310]. IL-17 has been found to increase adhesion molecule
expression in microglia [310,314]. Thus, this vicious cycle of glia and T cell reciprocal
activation is believed to contribute to the self-sustaining activation of neuroinflammation
and neurodegeneration in PD [198,230,310].

Although α-synuclein may contribute to the disruption of the BBB [271,315], T cell
infiltration appears to precede α-synuclein accumulation in the brain [233]. Interestingly,
increased CSF concentrations of ICAM-1 have been associated with increased CSF con-
centrations of α-synuclein in PD patients [242]. Once α-synuclein begins to accumulate
in the SN, the susceptibility to neuronal ferroptosis increases [85,246,260–262]. This co-
incides with the presence of activated glia and T cells and the potentiation of ferrop-
tosis [170,260,261,267,273,310]. Neuronal ferroptosis, in turn, activates T and glial cells,
further propagating the inflammatory and degenerative cycle [283,291,292]. In this scenario,
ICAM-1 abundance in the SN may facilitate T cell-induced dopaminergic neuronal death
and further facilitate interactions amongst glia and T cells [18,35,166–168,203].

ICAM-1 expression in astrocytes may be enhanced by α-synuclein [207]. Moreover,
ICAM-1-expressing astrocytes are present in the SN and may promote their own expression
of ICAM-1 in an ROS- and NF-kB-dependent mechanism [18,183–186]. However, by far,
inflammatory conditions, via the release of cytokines, enhance ICAM-1 expression and
can lead to ferroptosis [1,22,23,177,316]. Hence, a vicious cycle may be generated in which
ferroptosis would lead to an increase in ICAM-1 expression in endothelial cells, causing the
disruption of the BBB and the facilitation of T cell infiltration, leading to further cytokine
release, neuroinflammation, and neurodegeneration [85,267,293,298,310]. These direct and
indirect interactions between ICAM-1, glia, T cells, and ferroptosis, while elucidating
potential mechanisms leading to PD pathophysiology (Figure 2), may also offer novel
interventions, as discussed below.

The associations of increased iron accumulation, lipid peroxidation, ROS, ICAM-1,
and decreased GSH in the SN during PD further supports that a potential direct ICAM-1–
ferroptosis axis exists in this disease [18,85,203,251,257,258,310]. Although circumstantial,
various forms of exercise, which was recently advocated as a potential mediator of ferropto-
sis, has been associated with the decreases in lipid peroxidation, H2O2, iron accumulation,
and sICAM-1 concentrations in patients with PD [317–320].
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3. Novel Interventions

The critical need for novel treatment options for PD is well recognized [11,88]. In
this regard, ICAM-1 and the ICAM-1–ferroptosis axis could be promising novel targets
in PD. The internalization of ICAM-1 in endothelial cells following ICAM-1 antibody
binding, and the subsequent recycling of ICAM-1 back into the plasma membrane, has
been documented [321]. ICAM-1 antibodies have anti-inflammatory potential by inhibiting
leukocyte interactions [321], and have been shown to mitigate PD pathology and symptoms
in vivo [231,322]. For example, ICAM-1 antibodies were found to reduce dopaminergic cell
death, glial cell activation, gut dysbosis, and behavioral changes in MPTP-treated mice [322].
Likewise, in a previously discussed analysis, LFA-1 and ICAM-1 antibodies were found to
decrease immunological and behavioral changes in MPTP-treated mice [231]. Moreover,
inhibiting ICAM-1 or LFA-1 has also been found to decrease Treg concentrations in the SN
of MPTP-treated mice [323]. Furthermore, catalase-bound ICAM-1 antibodies have been
found to inhibit H2O2 toxicity in endothelial cells during multiple analyses [321,324,325].
The ability for antioxidant enzyme-bound ICAM-1 antibodies to mitigate various neurolog-
ical conditions, including glial activation, in experimentally induced traumatic brain injury
has also been demonstrated in vivo [326,327]. Thus, a number of preclinical studies confirm
the utility of ICAM-1 antibodies in mitigating the toxic or neurodegenerative processes.

Moreover, the F(ab’)2 fragment from a murine ICAM-1 antibody was shown to inhibit
EAE, and, unlike the murine IgG2a ICAM-1 monoclonal antibody, the F(ab’)2 fragment did
not result in the activation of human neutrophils in vitro [188,328]. Although extracellular
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adherence protein (Eap) of staphylococcus aureus interacts with multiple ligands, it binds to
ICAM-1, inhibits ICAM-1/LFA-1 interactions, and has been shown to inhibit EAE [329].
The modulation of NG2 protein expression may also represent a viable target for regulating
ICAM-1 expression [194]. ICAM-1 is also highly expressed by various cancer cells, and
ICAM-1 antibodies conjugated with anticancer drugs have recently been evaluated in vivo
as novel approaches to cancer treatment [330,331]. Although these novel approaches in
targeting ICAM-1 have yet to be considered within the context of PD, with the execption of
ICAM-1 antibodies, the available data suggest potential exploitations of such targets.

The role of L-dopa in oxidative stress has been debated [332–335]. Under physio-
logically relevant conditions, it appears to have antioxidant activity [333,335]. However,
elevated concentrations of plasma sICAM-1 were found in stage 1 and 2 in idiopathic PD
patients receiving L-dopa, suggesting the particular relevance of ICAM-1 during the early
stages of L-dopa treatment [240]. L-dopa-induced dyskinesia has been found to occur
concomitantly with an increase in inflammatory cytokines and ROS, and is enhanced in
the presence of systemic inflammation in vivo [336,337]. Therefore, the combination of
dopamine-enhancing treatments with anti-ICAM-1 treatments would not only address mul-
tiple key pathophysiological mechanisms in PD but may also have a synergistic effect with
current approaches via mitigating side effects. Together, innovative methods of targeting
ICAM-1 and/or the ICAM-1–ferroptosis axis may be a promising option for the treatment
and/or mitigation of PD.

4. Conclusions

Recent discoveries indicate a central role for ICAM-1 in PD pathology manifested via
its activation of glial cells, as well as the activation and migration of the T cells. Since both
glial and T cells are directly linked to ferroptosis, this suggests an indirect connection be-
tween ICAM-1 and ferroptosis. ICAM-1 may also have a direct interaction with ferroptosis,
which is likely to occur within the context of PD. Although further confirmation of the
latter link is needed, collectively, the present knowledge advocates ICAM-1 as a promising
target in PD.
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Abbreviations

6-OHDA 6-hydroxydopamine
AD Alzheimer’s disease
ADAM10 a disintegrin and metalloproteinase 10
ADAM17 a disintegrin and metalloproteinase 17
ALOX arachidonate lipoxygenase
ARE antioxidant response element
BBB blood–brain barrier
BDNF brain-derived neurotrophic factor
CASR calcium-sensing receptor
CCL2 chemokine ligand 2
CD43 cluster of differentiation 43
CNS central nervous system
CRP c-reactive protein
CSF cerebral spinal fluid
DA dopamine
DAergic dopaminergic
DAMPs damage-associated molecular patterns
DAQ dopamine quinone
EAE experimental autoimmune encephalomyelitis
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eNOS endothelial nitric oxide synthase
Fer-1 ferrostatin-1
FPN1 ferroportin 1
FTH1 ferritin heavy chain 1
GDNF glial-derived neurotrophic factor
GFAP glial fibrillary astrocytic protein
GPX4 glutathione peroxidase 4
GSH glutathione
H2O2 hydrogen peroxide
HO-1 heme oxygenase 1
ICAM1 intercellular adhesion molecule 1
ICAM-1 intercellular adhesion molecule 1
IL-1β interleukin-1 beta
IL-6 interleukin-6
IFN-γ interferon gamma
LFA-1 lymphocyte function-associated antigen 1
LPS lipopolysaccharide
LRP1 low-density lipoprotein receptor-related protein 1
MAC-1 macrophage antigen 1
MDA malondialdehyde
MMP-2 matrix metalloproteinase 2
MMP-9 matrix metalloproteinase 9
MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
MUC1 mucin 1
nAChRs nicotinic cholinergic receptors
Nf-kB nuclear factor kappa B
NG2 nerve/glial antigen 2 (NG2)
NO nitric oxide
NOX NADPH oxidase
Nrf2 nuclear factor erythroid 2-related factor 2
OLs oligodendrocytes
OPCs oligodendrocyte precursor cells
OS oxidative stress
PD Parkinson’s disease
PRRs pattern-recognition receptors
PUFAs polyunsaturated fatty acids
ROS reactive oxygen species
sICAM-1 soluble intercellular adhesion molecule 1
SN substantia nigra
SNpc substantia nigra pars compacta
SOD superoxide dismutase
TfR1 transferrin receptor 1
TFRCs transferrin receptors
TLR2 Toll-like receptor 2
TLR4 Toll-like receptor 4
TLRs Toll-like receptors
TNF-α tumor-necrosis factor alpha
TREM2 triggering receptor expressed on myeloid cells-2
VCAM-1 vascular cell adhesion molecule 1
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