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Abstract: Identifying biomarkers in non-small cell lung cancer (NSCLC) can improve diagnosis
and patient stratification. We evaluated plasmas and sera for interleukins (IL)-11, IL-6, IL-8, IL-17A,
and IL-33 as biomarkers in primary NSCLC patients undergoing surgical treatment against normal
volunteers. Exhaled-breath condensates (EBCs), a potential source without invasive procedures, were
explored in normal individuals. Due to separate recruitment criteria and intrinsic cohort differences,
the NSCLC and control cohorts were not well matched for age (median age: 65 vs. 40 years; p < 0.0001)
and smoking status (p = 0.0058). Interleukins were first assessed through conventional ELISA. IL-
11 was elevated in NSCLC plasma compared to controls (49.71 ± 16.90 vs. 27.67 ± 14.06 pg/mL,
respectively, p < 0.0001) but undetectable in sera and EBCs by conventional ELISA. Therefore, high-
sensitivity PCR-based IL-11 ELISA was repeated, albeit with concentration discrepancies. IL11 gene
and protein upregulation by RT-qPCR and immunohistochemistry, respectively, were validated in
NSCLC tumors. The lack of detection sensitivity across IL-6, IL-8, IL-17A, and IL-33 suggests the need
for further, precise assays. Surprisingly, biomarker concentrations can be dissimilar across paired
plasmas and sera. Our results identified a need to optimize detection limits for biomarker detection
and caution against over-reliance on just one form of blood sample for biomarker assessment.

Keywords: interleukin-11; biomarkers; cytokines; non-small cell lung cancer; plasma; serum; enzyme-
linked immunosorbent assay

1. Introduction

Lung cancer is a leading cause of cancer-associated deaths worldwide, accounting
for 1.8 million deaths each year [1]. Non-small cell lung cancer (NSCLC) comprises 84%
of all lung cancer diagnoses, of which the most common subtypes are adenocarcinoma
and squamous cell carcinoma, with a poor 5-year survival of 26% [2]. NSCLC is a highly
aggressive disease with a median survival of <10 to 30 months in patients with advanced-
stage NSCLC without or with targeted therapy, respectively [3], but also a poor 5-year
cancer-specific survival rate of 21% at early stages if untreated [4]. Therefore, early detection
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and diagnosis is critical to maximize NSCLC patient survival by shifting the disease
population to earlier stages, which corresponds with a better prognosis [5,6].

The recent emergence of immunotherapy has altered how advanced NSCLC is being
treated. Combinatory immunochemotherapy regiments have been shown to expand the
treatable NSCLC population and prolong overall survival, even in patients with advanced
disease responsive to immunotherapy [7]. Immunohistochemistry confirmation for pro-
grammed death-ligand 1 (PD-L1) expression is the current standard for identifying NSCLC
patients more likely to respond to immunotherapy; however, many patients with high
PD-L1 expression remain non-responders or suffer disease deterioration with potential
multi-organ immunotoxicities [8–11]. Given this, predictive peripheral blood-based and/or
tissue-based biomarkers that can facilitate patient stratification for potential responders
against the non-responders prior to the start of immunotherapy are crucial to increase
therapeutic benefits.

Blood-based biomarkers for prediction and surveillance of immunotherapy response
in NSCLC are an active field of research due to ease of sampling as compared to tissue
biopsies, and several potential biomarkers, including different forms of PD-L1, non-coding
RNAs, immune cells, peripheral cytokines, circulating free DNA, and tumor mutational
burden, have recently emerged (as reviewed in [12]). Among these, peripheral cytokines
are perhaps the easiest to develop for diagnostic and surveillance purposes, with most
assessments conducted by enzyme-based immunosorbent assays (ELISAs) that can be
developed and scaled for high-throughput studies. Additionally, many of these cytokines
reflect systemic inflammation which has been suggested to predict response and survival
in NSCLC patients treated with immunotherapy [13].

Interleukin (IL-) 11, a member of the IL-6 family, is a cytokine with increasing relevance
to a variety of cancers, including colorectal [14,15], breast [16], pancreatic [17], among
others, and a potential immunotherapeutic target [18]. IL-11 has also been suggested as a
diagnostic marker for NSCLC in bronchoalveolar lavage fluid, serum, and exhaled-breath
condensates [19,20], and a potential blood biomarker in NSCLC, although the screening
sensitivity remains a limitation (as discussed in [21]). For example, circulating IL-11 levels
have reportedly been ranging from non-detectable to 200 pg/mL in NSCLC blood [20,22,23],
suggesting an unresolved discrepancy in reported values due to differences in patient
characteristics, biological sampling sources, and technical differences (see Supplementary
Table S1). We therefore sought to validate the potential of IL-11 as a diagnostic biomarker
in paired plasma and serum of primary NSCLC patients undergoing surgical treatment
against normal volunteers in Singapore. Simultaneously, we investigated the circulating
levels of other proinflammatory or immunomodulating cytokines previously suggested
as potential biomarkers in NSCLC, albeit normal cohort comparisons in those studies
were not always available, which includes IL-6 [24], IL-8 [25], IL-17A [26], and IL-33 [27].
Additionally, we assayed the various cytokines in the exhaled-breath condensates (EBCs)
of normal volunteers as an alternative sample source that may reflect secretory cytokine
landscape in the lung tissue microenvironment and have potential for future studies. We
validated, for the first time, IL-11 gene and protein expression in situ by performing RT-
qPCR and immunohistochemistry on paired tumor and adjacent normal lung biopsies in
NSCLC patients recruited through the National Heart Center Singapore, demonstrating a
tumor-centric upregulation of IL-11 in NSCLC.

2. Materials and Methods
2.1. Study Patient and Volunteer Cohorts

A total of 60 patients scheduled for elective surgical resection for suspected or con-
firmed lung cancer were recruited by the Clinical and Translational Research Office of the
National Heart Center, Singapore between October 2020 and October 2022. Patients were
included if they were above 21 years of age and excluded if they were unwilling or unable
to provide consent, biopsy histological diagnoses beyond primary lung cancer, past history
of chemotherapy, radiotherapy, immunotherapy, and positive diagnosis for hepatitis B,
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hepatitis C, or HIV. Clinical staging was determined as per the eighth edition of the Ameri-
can Joint Commission on Cancer (AJCC) TNM staging system for lung cancer [28]. Patients
that had surgeries rescheduled without blood and tissue sampling were not assessed for
blood cytokines and tissue gene expression, respectively. Not all patients consented to
provide blood and/or tissue biopsy; some samples were insufficient for research purposes,
or histological diagnosis proved non-NSCLC, resulting in a total sample size of N = 21 for
biomarker ELISAs and N = 24 for RT-qPCR studies.

A total of 25 normal volunteers were recruited by the Clinical and Translational
Research Office of the National Heart Center, Singapore between April 2022 and April 2023.
Inclusion criteria were any able-bodied adult between 21 and 65 years of age and not
currently on any long-term medication. Subjects were excluded if they had any instances
of previous myocardial infarction, known coronary artery disease, prior cardiac surgery,
BMI > 35, alcohol intake >10 units per week, known diabetes mellitus, asthma or chronic
obstructive pulmonary disease, current pregnancy, smoker status (including ex- and social
smokers), chronic infective disease (including tuberculosis, hepatitis B, hepatitis C, or
HIV), prior cancer history, expected life expectancy <1 year, known documented peripheral
arterial disease, autoimmune or genetic disease, psychiatric illness, previous stroke, and
inability to comply with study protocol.

All patients and volunteers provided informed written consent to participate in the
study. The study was approved by the SingHealth Institutional Review Board (2020/2876
and 2022/2149).

2.2. Blood Collection

Between 3 and 5 mL of fasted venous blood was collected by a trained phlebotomist
at the National Heart Center, Singapore. Volunteers were advised to avoid any strenuous
activities prior to their appointment. Whole blood was collected on the same day into
(1) BD Vacutainer® SST™ tubes for serum collection or (2) BD Vacutainer® K2EDTA tubes
for plasma collection and transferred to the laboratory at room temperature within 15 min.
Serum tubes were incubated at room temperature for at least 30 min to induce clotting prior
to processing. Plasma tubes were processed within 15 min from collection. Tubes were
then centrifuged at 2000× g for 10 min at 4 ◦C. Then, the plasma and serum supernatants
were collected separately and transferred into 0.2–0.4 mL aliquots for storage in a −80 ◦C
freezer until analyses were conducted.

2.3. Exhaled Breath Condensate (EBC) Collection

EBCs were collected using the disposable collection system (RTube, Respiratory Re-
search, Austin, TX, USA) according to manufacturer’s instructions in the normal volunteer
cohort only. EBC collection was conducted consecutively on the same day as their blood col-
lection as described above. Briefly, volunteers had their noses pegged and were instructed
by the Clinical Research Coordinator to breathe through their mouth only and maintain
their exhalation through the mouthpiece that is connected to the collection tube. After a few
minutes of familiarization with the detachable mouthpiece, exhaled breath was collected
for 10 min via a one-way valve tube system wrapped by a cooling sleeve for condensation.
The collection tube (with the cooling sleeve) was then transferred to the laboratory on ice
within 15 min before extraction with a plunger mechanism into 0.2–0.4 mL aliquots for
storage in a −80 ◦C freezer until analyses are conducted.

2.4. Enzyme-Linked Immunosorbent Assay (ELISA)

The following assay kits were used according to manufacturer’s instructions: human
IL-11 (ELH-IL11, RayBiotech, Norcross, GA, USA; detection range: 3–800 pg/mL), IL-6
(430507, Biolegend; detection range: 7.8–500 pg/mL), IL-8 (ELH-IL8, RayBiotech, Nor-
cross, GA, USA; detection range: 0.8–600 pg/mL), IL-17A (433917, Biolegend, San Diego,
CA, USA; detection range: 3.9–250 pg/mL), and IL-33 (435907, Biolegend, San Diego,
CA, USA; detection range: 15.6 to 1000 pg/mL). For standard ELISA, samples were run in
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duplicates at 2-fold dilutions for all plasma, serum, and EBC samples. During the IL-11
analysis, we noted that IL-11 was undetectable in all NSCLC and normal volunteers’ serum
and EBCs. Therefore, we procured the high-sensitivity human IL-11 IQELISA kit (IQH-IL11,
RayBiotech, Norcross, GA, USA; detection range: 0.49–2000 pg/mL) to better assay IL-11 at
lower concentrations. This was conducted as per the manufacturer’s instructions on plasma
(5-fold dilution), serum (2-fold dilution), and EBC (2-fold dilution) samples run in dupli-
cates at a volume of 25 µL of sample or standard per well. Samples were run at a minimum
of 2-fold dilution, due to potential matrix effects which may interfere with assay. ELISA was
conducted by researchers (C.X and A.C.W) blinded to the groups. Freeze-thawing of each
sample aliquots was limited to 1 cycle. Upon thawing, samples were temporarily stored
at 4 ◦C for simultaneous or consecutive assays conducted within 5 days. The standard
curve was generated on GraphPad Prism (v. 9.4.1, San Diego, CA, USA), and values were
extrapolated from the 4-parameter logistics curve-fitting algorithm. Reported cytokine
concentrations were multiplied in accordance with the fold dilutions as appropriate. We
did not observe assay values above the detection limits for the cytokines tested at the stated
dilutions. For values that were below detection limits or coefficient of variance exceeding >
20% for duplicate OD readings, the samples were repeated for confirmation at least once.
Repeated values below the detection limit were designated as ‘not detected’ and excluded
from further statistical analyses.

2.5. RT-qPCR

Flash-frozen NSCLC tumor and far-normal lung biopsies were obtained from patients
undergoing lung resection procedures at the National Heart Center Singapore. Tissues were
homogenized with silica beads in TRIzol reagent (15596026, Invitrogen, Carlsbad, CA, USA)
and column-purified RNA extracted with the PureLink RNA Mini kit (12183025, Invitro-
gen, Carlsbad, CA, USA) for RT-qPCR analysis for IL11 mRNA on the ViiA7 Real-Time
PCR system (Applied Biosystems, Foster City, CA, USA). Relative gene expression values
were assessed using the 2−∆∆Ct method normalized to GAPDH levels. Primer sequences
were as follows: IL11 forward 5′-GGACCACAACCTGGATTCCCTG-3′, IL11 reverse 5′-
AGTAGGTCCGCTCGCAGCCTT-3′, GAPDH forward 5′-CGACAGTCAGCCGCATCTTCTTT-
3, and GAPDH reverse 5′-CCAAATCCGTTGACTCCGACCTT-3′.

2.6. Immunohistochemistry

NSCLC tumor and matched-adjacent-normal lung biopsies were collected from pa-
tients undergoing lung resection procedures at the National Heart Center Singapore. Tissue
biopsies were processed at the Department of Pathology at the Singapore General Hos-
pital. Formalin-fixed embedded tissue was sectioned at 5 µm for immunohistochemistry.
Slides were blocked with 5% normal horse serum, heat-induced antigen retrieval with
Reveal Decloaker (RV1000M, Biocare Medical, Concord, CA, USA), immunostained for
IL-11 (PA5-95982, 1:2000, Invitrogen, Carlsbad, CA, USA), goat anti-rabbit IgG-HRP (A0545,
1:500, Sigma-Aldrich, Merck Mille Millipore, Singapore) and Impact DAB Substrate kit,
Peroxidase (HRP) (SK-4105, Vector Laboratories, Burlingham, CA, USA) following con-
ventional immunohistochemistry techniques. An isotype control antibody (MA5-16385,
1:2000, Invitrogen, Carlsbad, CA, USA) was applied as a negative antibody control. Slides
underwent nuclear counterstain with hematoxylin and mounted for visualization.

2.7. Statistics

Data are presented as individual counts (N), values and proportion (%) in tables,
and median ± interquartile range (IQR) or mean ± standard deviation (SD) in graphs, as
indicated in the figure legends. Statistical analyses were performed on GraphPad Prism
(v. 9.4.1). Fisher’s exact test was assessed for proportion differences between NSCLC and
normal cohorts. Prior data normality was validated using a Shapiro–Wilk test to determine
appropriate parametric or non-parametric statistical testing. A two-tailed unpaired t-test
was conducted for parametric comparisons or Mann–Whitney non-parametric test for
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data not normally distributed accordingly. Receiver-operating characteristic curves were
generated on GraphPad Prism, and 95% confidence interval was calculated using the
hybrid Wilson/Brown method. A Wilcoxon matched-pairs signed rank test was conducted
on IL11 gene expression, comparing paired tumors to adjacent normal tissue in individual
patients. Concentration values were presented corrected to 2 decimal values, and statistical
significance was established at p < 0.05 and presented as exact p-values.

3. Results
3.1. Biomarker Assessments in NSCLC Patients

Patient characteristics are listed in Table 1. Compared to normal controls, our NSCLC
patients were significantly older (p < 0.0001) and composed of more current and ex-smokers
(p = 0.0058) but were not statistically different for gender and ethnicity presentation (Table 1).
Our NSCLC cohort comprised mostly IA2- to IB-staged lung cancer patients (80.95%),
reflecting a predominantly early-stage lung cancer cohort.

Table 1. Normal volunteers and NSCLC patients’ characteristics for biomarker assessments.

Normal Volunteers (N = 25) NSCLC Patients (N = 21) p-Value

Characteristics
Median Age (IQR) 40 (35.5–48.5) 65 (60–70) 5.88 × 1011

Gender, Female (%) 12 (48) 7 (33) 0.3769
Ethnicity 0.1107

Chinese, N (%) 24 (96) 16 (76.19)
Malay, N (%) 1 (4) 3 (14.29)
Indian, N (%) 0 (0) 0 (0)
Others, N (%) 0 (0) 2 (9.52)

Smoking status 0.0058
Non-smoker, N (%) 25 (100) 15 (71.43)
Ex-smoker, N (%) 0 (0) 4 (19.05)

Current smoker, N (%) 0 (0) 2 (9.52)
Lung cancer stage NA NA

Stage 0, N (%) 1 (4.76)
Stage IA1, N (%) 0 (0)
Stage IA2, N (%) 6 (28.57)
Stage IA3, N (%) 6 (28.57)
Stage IB, N (%) 5 (23.81)

Stage IIA, N (%) 0 (0)
Stage IIB, N (%) 1 (4.76)

Stage IIIA, N (%) 1 (4.76)
Stage IIIB, N (%) 1 (4.76)

Age was analyzed using Mann–Whitney test for non-normal distributed data. Gender, ethnicity, and smoking
status were analyzed with Fisher’s exact test for difference in proportions. Lung cancer status was assessed in
accordance with AJCC TNM staging (8th ed.). Percentages were rounded to the nearest two decimal places. IQR,
interquartile range; NA, not applicable.

We evaluated the circulating levels of IL-11 in the plasma and serum of NSCLC patients
as compared to normal volunteers. Surprisingly, we observed substantial differences in
the detection ability of the current IL-11 kit depending on their source. In the plasma,
IL-11 in the NSCLC patients was significantly greater than that of the normal volunteers
(mean ± SD: 49.71 ± 16.90 pg/mL vs. 27.67 ± 14.06, p < 0.0001; Figure 1A). Only 1 normal
volunteer’s plasma IL-11 (4%) was below the detection limit, in contrast to zero of the
NSCLC patients, and was not assigned a value (Figure 1B). In contrast, IL-11 was not
detected in the serum of either cohort. We evaluated the diagnostic value of plasma IL-11
by ROC curve analysis to distinguish the NSCLC patients from the normal individuals.
Plasma IL-11 has a diagnostic value (area under the curve; AUC) of 0.8267 (95% CI 0.7054
to 0.9480; p = 0.0001; Figure 1C).
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In comparison, IL-6 levels were detected in serum of NSCLC patients and normal
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Figure 1. Evaluation of IL-6 family cytokines, IL-11 and IL-6 concentrations, in the blood of normal
and NSCLC patients. (A) Elevated plasma IL-11 concentrations were observed in NSCLC (N = 21)
compared to normal individuals (N = 25). (B) Pie-chart depicting the percentage proportion of
plasma samples with detectable IL-11 concentrations in NSCLC and normal individuals. One normal
individual plasma IL-11 concentration was below the limit of detection. No serum from either cohort
reported detectable IL-11 concentrations > 3 pg/mL. (C) The ROC curve analysis for plasma IL-11 to
distinguish NSCLC patients from normal individuals. The dashed red line represents the random
classifier. (D) A trend towards increased serum IL-6 was observed in NSCLC (N = 12) compared
to normal individuals (N = 9). (E) Pie-chart depicting the percentage proportion of serum, with
detectable IL-6 concentrations in NSCLC and normal individuals. Sixteen normal and ten NSCLC
sera did not report a detectable IL-6 concentration, whereas plasma IL-6 was not detectable across
both cohorts. (A,D) Data presented as median ± IQR with whiskers indicating minimum and
maximum values. Two-tailed Mann–Whitney test was conducted for statistical analyses. Open and
closed symbols indicate plasma and serum, with normal in black and NSCLC in red, respectively.
(C) Wilson/Brown method was used to compute the confidence interval for statistical analyses.

In comparison, IL-6 levels were detected in serum of NSCLC patients and normal
volunteers variably, but undetectable in plasma samples. It has been reported that most
IL-6 immunoassays only recognize the unbound IL-6 form and that plasma concentrations
are generally undetectable [29], which may explain our non-detection in plasma of either
cohort. Serum IL-6 in NSCLC patients was increased, although not statistically significant,
as compared to normal volunteers (mean ± SD: 7.94 ± 8.48 pg/mL vs. 2.71 ± 2.36,
p = 0.0693; Figure 1D). Serum IL-6 levels below the limit of detection were 64% and 42.86%
of normal volunteers and NSCLC patients, respectively (Figure 1E).

As elevated serum IL-6, IL-8, and IL-11 levels correlate to worse survival in cancer
patients [30], we sought to measure IL-8 in both the serum and plasma samples in the
NSCLC patients compared against normal volunteers. We observed that plasma IL-8 was
significantly but mildly elevated in the NSCLC plasma (p = 0.0413), but mildly decreased
in the serum (p = 0.0453; Figure 2A). The observation of decreased IL-8 in NSCLC sera
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could potentially be due to the larger proportion of under-detection in normal compared
to NSCLC subjects (56% vs. 23.81%, respectively; Figure 2B), as opposed to accurate
differences in assayed values.
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Figure 2. Circulating proinflammatory cytokines, IL-8, IL-17A and IL-33, in the blood of normal and
NSCLC patients. (A) Elevated plasma, but not serum IL-8, were observed in NSCLC compared to
normal individuals. (B) Pie-chart depicting the percentage proportion of plasma and serum with
detectable IL-8 concentrations in NSCLC and normal individuals. In total, five normal and two
NSCLC plasma as compared to fourteen normal and five NSCLC sera IL-8 concentration were below
the limit of detection <0.8 pg/mL. (C) Plasma IL-17A levels were unchanged between NSCLC and
normal individuals, with all plasma samples detected. No serum in either cohort recorded IL-17A
concentrations was above the lowest limit of detection of 3.9 pg/mL. (D) Plasma and serum trended
towards reduced IL-33 levels in NSCLC as compared to normal individuals. (E) Pie-chart depicting
the percentage proportion of plasma and serum with detectable IL-33 concentrations in NSCLC
and normal individuals. Three normal and nine NSCLC plasma as compared to one normal and
nine NSCLC sera IL-33 concentration were below the limit of detection <15.6 pg/mL. (A,C,D) Data
presented as median ± IQR, with whiskers indicating minimum and maximum values. Two-tailed
Mann–Whitney test was conducted for statistical analyses. Open and closed symbols indicate plasma
and serum, with normal in black and NSCLC in red, respectively.
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IL-17A is an inflammatory cytokine that contributes to Kirsten rat sarcoma viral
oncogene (KRAS)-driven lung tumor progression in mice [31]; we therefore sought to
compare circulating levels of IL-17A in our cohorts. Despite 100% of plasma samples in
either cohort recording a detectable IL-17A concentration, plasma IL-17A was unchanged
in our NSCLC cohort compared to controls (Figure 2C). Additionally, no serum sample
recorded an IL-17A concentration above the lowest detection limit of 3.9 pg/mL, suggesting
plasma samples may be more suitable for assessing IL-17A levels.

IL-33, a secreted alarmin cytokine that plays an important role in type II innate immu-
nity, is known to be upregulated in NSCLC patients associated with tumor malignancy [32].
We observed a trend towards reduction in plasma and serum IL-33 in NSCLC patients
compared to controls (Figure 2D). However, this was likely due to the wider variation in
recorded IL-33 levels in addition to a larger proportion of NSCLC samples (42.9%, com-
pared to 4–12% in controls, respectively) that was below the limit of detection of the IL-33
ELISA kit (Figure 2E).

3.2. EBC Biomarker Assessments in Normal Individuals

Of the 25 normal volunteers, we did not recover sufficient EBCs from one subject due
to suspected device leakage, resulting in a total sample size of N = 24. We extracted exhaled-
breath condensates (EBCs) in normal volunteers with the aim to establish normal reference
ranges of IL-11, IL-6, IL-8, IL-17A, and IL-33 in the EBCs in an unaffected population
(Table 2). We note that IL-11 and IL-33 were not detectable in all 24 normal EBCs. In
comparison, only one patient (4%) recorded a sufficiently high level of IL-6 and IL-17A
to be detected. Lastly, IL-8 levels were detectable in 75% of the normal cohort, with a
detectable range between 2.83 and 8.62 pg/mL.

Table 2. EBC cytokines by conventional ELISA in normal volunteers (N = 24).

Cytokine
(Concentration) Min Median Max

Subjects with
Detectable Analytes,

N (%)

IL-11 (pg/mL) ND ND ND 0 (0)
IL-6 (pg/mL) NA 7.64 NA 1 (4.17)
IL-8 (pg/mL) 2.83 3.06 8.62 18 (75)

IL-17A (pg/mL) NA 27.45 NA 1 (4.17)
IL-33 (pg/mL) ND ND ND 0 (0)

ND denotes not detectable above the lowest limit of detection. NA denotes not applicable, as only one sample
recorded a detectable concentration within the detection range.

3.3. High-Sensitivity IL-11 Assay in NSCLC Patients

Next, we repeated attempts to assay IL-11 at even higher sensitivities, which has been
gaining research traction as a diagnostic marker for lung cancer [21], in all three sample
types: plasma, serum, and EBC. We observed that sera and EBCs of normal and/or NSCLC
cohorts, which were previously undetectable with the conventional IL-11 ELISA, were now
detectable in the high-sensitivity IL-11 PCR-based ELISA kit, albeit at ~10-fold difference
lower compared to plasma (Figure 3A,B). However, the extrapolated values from the stan-
dard curve in this assay were vastly different from the conventional assay (Figure 1), which
may have been due to differences in sample dilutions in different assay buffers, PCR-based
amplification for higher sensitivity at lower concentrations as compared to chromogen
assay, and the smaller sample volumes in the high-sensitivity assay. Correspondence to
the vendor’s technical support was unable to resolve the discrepancy, although it was
noted that head-to-head comparisons were not performed, and validations of each assay
were conducted independently. Notwithstanding, we observed a significant increase in
plasma and serum IL-11 in the NSCLC patients compared to the controls (both p < 0.05).
Plasma IL-11 has a diagnostic value (AUC) of 0.7755 (95% CI 0.6393 to 0.9116; p = 0.0012)
with similar trends to the conventional assay (Figure 1C), whereas serum IL-11 has a lower
diagnostic value of 0.6736 (95% CI 0.5196 to 0.8277; p = 0.0417) (Figure 3C). The median
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IL-11 concentration in normal EBCs was 16.72 pg/mL (IQR 6.1–25.8 pg/mL), which was
comparable to previously published values for controls [20].
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thologies without a normal lung comparison. As increases in circulating IL-11 levels may 
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Figure 3. High sensitivity IL-11 IQELISA in plasma, serum and EBC in normal individuals versus
NSCLC patients. (A) Elevated plasma and serum IL-11 levels were observed in NSCLC compared
to normal individuals. In addition to 24 normal EBC, all 25 normal and 21 NSCLC plasma and
serum recorded a detectable IL-11 concentration with the high-sensitivity human IL-11 IQELISA kit
(IQH-IL11, RayBio). Two-tailed Mann–Whitney test was conducted for statistical analyses. Open and
closed symbols indicate plasma and serum, with normal in black and NSCLC in red, respectively.
(B) Table depicting median IL-11 concentrations and interquartile ranges, respectively. (C) The ROC
curve analysis for plasma and serum IL-11 to distinguish NSCLC patients from normal individuals.
The dashed red lines represent the random classifier. (A,B) Data presented as median ± IQR with
whiskers indicating minimum and maximum values. Two-tailed Mann–Whitney test was conducted
for statistical analyses. (C) Wilson/Brown method was used to compute the confidence interval for
statistical analyses.

3.4. IL-11 Expression in NSCLC Lung Tumor Biopsies

Patient demographics for IL11 gene expression studies are presented in Figure 4A.
Collectively, IL11 mRNA was >2-fold greater in tumors compared to the adjacent normal
biopsies (Figure 4B). Surprisingly, few subjects demonstrated greater IL11 mRNA in normal,
compared to tumor, regions that may suggest some degree of heterogeneity in NSCLC.
It is unknown if these may be contributed by other concomitant pulmonary pathologies
without a normal lung comparison. As increases in circulating IL-11 levels may be indepen-
dent of the tumor microenvironment [21], we performed immunohistochemistry for IL-11
protein confirmation in lung tumors and adjacent normal biopsies in two NSCLC patients
(Figure 4C). While sporadic expression of IL-11-positive cells were observed in adjacent
normal biopsy, IL-11 positivity was more commonly observed in epithelial-like cells in
tumor regions. Thus, demonstrating that IL-11 was upregulated specifically within the
tumors and may potentially contribute to upregulated circulating IL-11, as seen previously
(Figures 1A–C and 3).
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Figure 4. Interleukin-11 is upregulated in NSCLC tumors. (A) NSCLC patient demographics (N = 24)
used for RT-qPCR for IL11 gene expression studies. (B) IL11 gene expression was assessed in adjacent
normal and tumor biopsies in paired subjects by RT-qPCR (N = 24). Gene expression was normalized
to GAPDH and expressed as fold change. Data are presented for paired individual subjects with the
collated mean ± SD for each group. Two-tailed Wilcoxon test was conducted for statistical analyses.
(C) IL-11 expression by immunohistochemistry in NSCLC tumors compared to adjacent normal
biopsies in paired subjects (N = 2 biological replicates). Negative control sections were stained with
an isotype control antibody.

4. Discussion

Recent emphasis of appropriate biomarker identification to aid NSCLC diagnosis
and surveillance of immunotherapy has spurred new research interests into inflammatory
mediators, including interleukins and exosomes which comprise extracellular vesicles con-
taining cell-derived proteins, DNA, messenger and non-coding RNAs such as microRNAs,
and long non-coding RNAs [33–35]. Exosomal biomarkers present a promising research
area for lung cancer diagnosis and therapy. However, its application to the clinic is lim-
ited by the need for specific isolation method standardization, heterogeneity in exosome
detection methods and characterization, and a lack of reproducibility across studies and
understanding of the functional mechanisms by which exosomes target cell-specific cargo
delivery [34–37]. Alternatively, interleukins are well-validated mediators of the immune
response and potential therapeutic targets for immunotherapy in cancer treatment [38]. Tu-
mor progression is associated with immune evasion and the presence of chronic unresolved
inflammation in the tumor microenvironment where inflammatory cytokines and inter-
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leukins play an active role in modulating the immune responses [39] and therefore functions
as both a surveyor of the tumor microenvironment and potential immunotherapy target.

In the present study, we examined the circulating levels of IL-11, IL-6, IL-8, IL-17A,
and IL-33 cytokines in the blood, differentiated for both plasma and serum, using con-
ventional ELISA techniques. Across the various cytokines, plasma IL-11 demonstrated
the most robust assay, with most samples recording a detectable concentration apart from
one normal volunteer sample. However, most of the other assays recorded a substantial
proportion of readings below the minimal detection range in both NSCLC and normal
controls, precluding their current utility as a diagnostic marker. In the last decade, EBCs
have emerged as a promising non-invasive, easy-to-collect alternative to more invasive
methods, such as bronchoalveolar lavage and/or bronchial biopsies, for examining local
airway inflammation [40,41]. We note that EBCs present cytokines at much lower concen-
trations than blood-based sources (often not detectable for IL-11, IL-6, IL-17A, and IL-33
by conventional ELISAs) and may therefore require more sensitive assays. Utilizing a
high-sensitivity IL-11 PCR-based ELISA, we were able to demonstrate detectable IL-11
concentrations across all samples (unlike the conventional ELISA), and significantly higher
levels were observed in both the plasma and serum of the NSCLC patients. Lastly, in
the NSCLC patients, we observed increased IL-11 gene and protein expression in tumor
compared to their adjacent normal tissue biopsies.

Although not being able to detect IL-6, IL-8, and IL-33 in a substantial proportion of
samples, this may be reflective of a less-severe, clinically staged NSCLC cohort. Elevated
plasma IL-6 and IL-8 are associated with poor prognosis in advanced NSCLC patients
undergoing targeted radiotherapy combined with immunotherapy [42]. Likewise, elevated
levels of IL-6, but not IL-8, correlate to poorer overall survival in NSCLC [43]. Although
we saw an increased serum IL-6 trend in our NSCLC patients, these results must be
interpreted with caution due to ~50% of serum and 100% of plasma samples not reporting
a detectable reading. Serial changes in serum IL-8 levels correlate with responsiveness to
anti-PD-1 blockade therapy in NSCLC patients [25]. Reported median baseline IL-8 levels
in non-responders and best responders were 12 and 20 pg/mL, respectively, which were
higher than our observations. Additionally, interquartile range (Q1–Q3) for non-responders
ranged between 0 and 42 pg/mL, which suggests the inclusion of data below the assay
detection limit, whereas we excluded these in our study.

Plasma IL-17A levels in NSCLC patients, at similar concentrations observed in the
current study, have been reported to correlate with pneumonitis onset in patients with Stage
IIIB-IV NSCLC undergoing immunotherapy [26]; however, a comparison to normal controls
were not provided. Alternatively, elevated serum IL-17A has been reported in small cell
lung cancer patients at mean levels of 24 pg/mL compared to 12 pg/mL in controls [44]
and at comparable levels to other studies with mixed-staged NSCLC cohort [45–47]. This
contrasts with our paired plasma–serum comparison, where we observed no detectable
serum IL-17A in NSCLC and normal control cohorts. It should be noted that in a study with
15 stage-I-IIA NSCLC and 30 normal controls, elevated EBC IL-17A was observed in NSCLC
patients compared to normal controls, albeit at lower concentrations (<3 pg/mL) [48], which
is lower than the detection limits of the kit used in this study. Even with the more sensitive
assay, detectable, positive serum IL-17A was observed in only 20% of samples [48], thereby
limiting their assessment of IL-17A in serum.

Serum and EBC IL-11 concentrations have been reported to be increased in NSCLC
patients, correlating to the severity of tumor staging [20]. Detectable serum IL-11 in
NSCLC (ranging from 123 to 324 pg/mL) was increased as compared to controls (ranging
from 23 to 77 pg/mL), whereas reported EBC IL-11 levels were lower as compared to
serum but still elevated in NSCLC (ranging from 26 to 76 pg/mL) compared to controls
(8 to 17 pg/mL). However, it should be noted that IL-11 levels have also been non-detectable
in plasma or serum in patients with lung pathologies, including bronchial carcinoma [22].
In bronchoalveolar lavage fluid (BALF), IL-11 levels were higher in lung adenocarcinoma
(median 107 pg/mL) as compared to controls, with negative detection for IL-11 solely to
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be ~10 to 20% in lung cancer patients depending on the cohorts [19]. We therefore chose,
for the current study, the current conventional and high-sensitivity IL-11 ELISAs with
minimal detection limits of 3 and 0.49 pg/mL, respectively. In our study, high-sensitivity
IL-11 IQELISA reported higher levels in plasma and serum in NSCLC compared to normal
volunteers (refer to Figure 3). This potentially suggests that IL-11 may be used as both
a diagnostic and monitoring tool for treatment responses in NSCLC, akin to CEA as a
traditional tumor biomarker [20]. Recently, astrocyte-derived IL-11 has been demonstrated
to upregulate PD-L1 expression and promote immune escape in NSCLC by reducing T
lymphocytes demonstrating direct immunomodulating effects of IL-11 and a potential
therapeutic target [49].

Through this pilot study, we demonstrated that high-sensitivity IQELISA can detect
IL-11 in the EBCs of normal individuals, although corresponding NSCLC samples were
lacking and of interest for future studies. Notably, except for plasma, IL-11 could not be
detected using conventional ELISA methods in EBC nor serums of normal individuals,
suggesting the need of precise assays for small differences in the lower ranges. Importantly,
we were able to probe for IL-11 gene and protein expression in NSCLC tumors compared
to their adjacent normal controls, providing paired comparisons in the same patient. To
the best of our knowledge, this is the first-time IL-11 protein immunostaining has been
performed in situ and in paired-adjacent normal and tumor regions in NSCLC patients.
Our results agree with others [50], suggesting a mechanistic role of IL-11 in lung cancer.
The application of these findings will need to be explored in different TNM-staged NSCLC
patients to determine correlation with the disease severity.

IL-11 is known to stimulate proinflammatory responses, including IL-6 and IL-33,
through the JAK–STAT pathway in tissue fibroblasts [51], of which cancer-associated
fibroblasts contribute centrally to the tumor microenvironment. Serum IL-33 has been
proposed as a diagnostic and prognostic marker for NSCLC [27]. Using a cut-off value
of 68 pg/mL (95% specificity in normal volunteers), Hu et al. found serum IL-33 to have
a diagnostic value of 0.736 AUC for NSCLC and high IL-33 levels at baseline correlated
with poorer prognosis. Contrastingly, Kim et al. reported opposing results with initial
elevated plasma IL-33 levels only in stage I lung cancer patients compared to normal
controls but decreases with lung cancer stage progression [52]. Likewise, we also noted a
trend towards reduced IL-33 in our NSCLC cohort (despite the large data variability) and
a bigger proportion of NSCLC samples that were under-detected. Notably, the reported
IL-33 concentrations by Kim et al. were in line with our current findings in both plasma and
serum (in the ng/mL range) rather than that of Hu et al. (in pg/mL). The reason behind
this discrepancy is not known but likely attributed to differences in ELISA kit vendors and
their accompanied detection ranges.

The reasons behind detectability differences in IL-6, IL-11, and IL-17A between plasma
and serum reported here are incompletely understood. Both plasma and serum comprise
the liquid component of blood following removal of blood cells, with differences in the
clotting process to obtain serum that is prevented in plasma with anticoagulation. Poor
agreement between plasma and serum cytokines in paired subjects has been previously
reported [53], where inflammatory cytokines are generally higher in serum than plasma [54].
Additionally, IL-11 is known to upregulate the von Willebrand factor, a crucial clotting
factor mediating hemostasis in humans [55]. Whether circulating levels of IL-11 may be
altered through the coagulation process for serum preparation remains unexplored.

Study Limitations

Several limitations exist in our study. Firstly, our sample size was small, and the
normal volunteer cohort was not age-matched to our NSCLC cohort consisting largely of
early-stage NSCLC. This was due to differences in the inclusion/exclusion criteria in the
separate recruitment processes; we selected mostly younger normal volunteers that were
non-smokers without any known diseases, whereas recruitment for NSCLC patients was
based on clinical presentation for surgery. Additionally, EBCs were provided by the normal
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cohort in an attempt to derive reference-normal ranges on interleukin concentrations but
were unavailable in NSCLC patients due to recruitment order. We highlight that conven-
tional ELISA sensitivities commonly performed for plasma or serum are not optimized
towards the lower concentrations expected in EBCs, often presented below assay detection
limits, and re-enforce the need for higher-sensitivity assays to meaningfully study EBCs in
health and disease. Secondly, each analyte was assessed by only one commercially available
ELISA kit, and it is possible that other kits, if employed, may present differences, as has
been suggested for IL-17A, with different percentages of detectability [56]. Furthermore,
IL-11, like IL-6, can form cytokine–receptor complexes extracellularly, which can potentially
affect their detectability in immunoassays that only detect the free or unbound cytokine [29].
All the kits used were validated for sensitivity and specificity with recombinant peptides
(free form) according to their respective datasheets and do not necessarily account for
trans-signaling mechanisms. This is performed by spiking recombinant peptides into
samples and assessing for assay recovery, which may not necessarily reflect endogenous
peptides’ properties entirely, depending on the expression system employed [57]. Thirdly,
we were surprised by the differences between plasma and serum IL-11 concentrations.
Despite the abnormally high IL-11 concentrations (in plasma; ng/mL) observed with the
high-sensitivity IQELISA, we report trends with highest concentrations observed in plasma,
serum following, and least in the EBC, which explains the non-detectability by conventional
assays. Furthermore, as reagents in both kits are proprietary information, we are unable to
assess if they recognize similar epitopes which may affect detection. However, the reported
plasma IL-11 concentrations in our controls were comparable to others utilizing conven-
tional assays [17,58,59]. Conversely, our reported IL-11 concentrations by the IQELISA kit
were comparable to levels previously reported in serum and EBCs from NSCLC and normal
individuals using a conventional kit from a different company [20], but plasma samples
were not explored in that study. Whether this discrepancy may also be due to the choice of
blood collection tubes, as is recently seen with specific proteins and metabolites, is currently
unknown [60]. Recent developments in ultra-sensitive IL-11 assays have allowed for even
lower limits of quantification (0.006 pg/mL) and will be especially useful in assessment of
antibody target engagement biomarkers for clinic trials [61]; however, these assays are not
commercially available for widespread use. We also note that at the time of drafting the
manuscript, the IL-11 IQELISA kit has not been cited before and would encourage more
replication in the scientific community for reproducibility.

5. Conclusions

Changes in biomarker levels may potentially aid prediction and surveillance of im-
munotherapy responses in NSCLC. In our small cohort study, pilot data suggest that IL-11
remains a potential and robust blood-based biomarker that is elevated in NSCLC patients,
more so than IL-6, IL-8, IL-17A, and IL-33, which have variable detectability across sample
sources. Nevertheless, further development and refinement are warranted in the field
to ensure robust specificity and sensitivity across assay modes, to the individual assay’s
detection limits, biosample sources, and reproducibility of IL-11 measurements across
platforms. Lastly, the use of blood-based and/or circulating biomarkers as a surveyor
of immunotherapy response in NSCLC remains to be optimized and poses an attractive
research avenue that warrants future study.
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