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Abstract: Owing to their physical and chemical properties and stimuli-responsive nature, gels and
hydrogels play vital roles in diverse application fields. The three-dimensional polymeric network
structure of hydrogels is considered an alternative to many materials, such as conductors, ordinary
films, constituent components of machines and robots, etc. The most recent applications of gels are in
different devices like sensors, actuators, flexible screens, touch panels, flexible storage, solar cells,
batteries, and electronic skin. This review article addresses the devices where gels are used, the
progress of research, the working mechanisms of hydrogels in those devices, and future prospects.
Preparation methods are also important for obtaining a suitable hydrogel. This review discusses dif-
ferent methods of hydrogel preparation from the respective raw materials. Moreover, the mechanism
by which gels act as a part of electronic devices is described.

Keywords: hydrogel; device; sensor; actuator; touch panel; solar cell; battery; soft robotics

1. Introduction

The three-dimensional soft, solid, or solid-like network prepared by chemical or phys-
ical cross-linking between polymers through the copolymerization method is referred to as
gel. When the dilute solution of polyvinyl chloride phthalate is cooled, it turns into gel.
Gels may absorb or swell in aqueous (water) or non-aqueous (organic) solvents. Styrene–
divinylbenzene is a covalently cross-linked gel swell in an organic solvent. Silica gel is an
inorganic gel that absorbs and swells in water. S.P. Papkor first reported gels in 1974, and
later, T. Tanaka did a survey on polymer gels [1,2]. When a three-dimensional polymeric
network (gel) can retain a large amount of water without dissolving, it is referred to as a
hydrogel, and if the hydrogel can absorb water 1000 times its dried weight, it is classified
as a superabsorbent hydrogel [3,4]. When the gels contain high porosity with extended
mechanical strength and a higher surface area for greater adsorption capacity, they are
termed aerogels. Aerogels may possess metal oxide, graphene/graphene oxide, and carbon
nanotubes to make themselves sustainable [5]. Due to having different functional groups,
like -COOH, -OH, -NH2, -NHR, -SO3, -PO3, etc., and cross-linking or grafting between
entangled networks, hydrogels show swelling and multi-functional activities. On the basis
of structural moieties, preparation methods, and functional groups present in the network,
they show stimuli-responsivity towards pH, temperature, pressure, electric and magnetic
fields, light, and ionic strength (salt effect), which facilitates hydrogels being used as sensors
in devices [6]. The mechanical strength, electrical conductivity, and biocompatibility of
hydrogels make them suitable for use in actuators and biomedical engineering. Their
multi-network structure and self-healing properties allow hydrogels to become usable in
flexible devices. In addition, hydrogels are widely used in water purification [7], metal and
dye adsorption, drug delivery, water and fertilizer supply in agriculture fields, and wound
dressing [8]. Both natural (starch, pectin, cellulose, chitosan, and dextrin) and synthetic
polymers (polyvinyl alcohol, polyvinyl chloride, etc.) are widely used for cross-linking or
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grafting with different monomers, subsequently producing hydrogels of diverse physical
and chemical natures. By varying the conditions, such as the composition of raw materi-
als, radiation dose (for radiation-induced hydrogels), and the network’s layer, different
types of monomers and metal components can be tuned to fit arbitrary parts of devices.
The tuning is performed depending on the purposes of the application [9]. For example,
Shuwang et al. reported poly(vinyl alcohol) hydrogels whose mechanical properties are
tuned for wearable electronics [10]. For bioelectronic adhesion, water-resistant hydrogels
were prepared by tuning the hydrophobic alkyl chain [11]. Ionic gels possess a conductive
organic polymer backbone, an ionic liquid (sometimes metallic compounds), and free-
moving ions (electrons) throughout the networks, which enable the gels to be used as
conductors in different devices [12]. Metal conductors’ limitations required researchers
look for new types of conductors with flexibility, self-healing, and soft mechanical and
biocompatible properties, leading to the invention of bioelectronics and soft devices [13].
The devices that the gels are used in include sensors [14], actuators [15], soft robotics [16],
flexible energy storage [17], solar cells [18], touch panels [19], and electric skin [20]. Despite
the progress of gels as a part of devices, they face conductance limitations and efficiency
challenges. More emphasis has to be imposed to mitigate and improve the conductive
gels for use in different targeting devices. Polymers are usually used to make various
gel components of devices. These polymers include poly(3,4-ethylenedioxythiophene)–
polystyrene sulfonate (PEDOT:PSS) [21,22], tetrathiafulvalene (TTE) [23], polyaniline
(PANI) [24,25], polypyrrole (PPy) [26], 7,7,8,8-tetracyanoquinodimethane (TCNQ) [27],
poly(3,4-ethylenedioxythiophene), polythiophene (PTh) [28], phenylene vinylene [29], poly-
carbazole [30], chitosan [31], cellulose [32], starch [33], pectin [34], and some other polymers.
To improve the conductivity and self-healing properties of hydrogels, different metal oxides,
graphene oxide, carbon nanotubes, and salts are incorporated with conductive organic
compounds during the hydrogel preparation, resulting in the upgraded products. Those
compounds include TiO2, CaO, MgO, Fe2O3, ZnO, CaCl2, HAuCl4, and NaCl [35–37].
Qiongyao et al. [35] explained the use of conductive hydrogels in different devices required
for the human body and other fields, as shown in Figure 1. The most important part of
conductive gels is the pie-conjugation structure of the conductive polymer, which favors
electricity conduction. The combination of a conjugation system and metallic supports
improves the gel quality of devices [38]. To improve gels’ performance in different devices,
researchers are trying to fabricate and develop the best raw materials and optimize the
radiation dose. Moreover, new materials could be developed to impart breakthrough
changes in this sector. However, this review explains the involvement of various gels in
different devices and instruments necessary for our daily practical lives.Gels 2024, 10, 548 3 of 33 
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2. Gels/Hydrogels
2.1. Properties of Gels/Hydrogels

The properties of gels depend on the nature of the network, types of cross-linking
and grafting, and functional groups. Jun et al. briefly mentioned most of the properties
of hydrogels possessing low–high viscosity, hydrophilicity–swelling, responsivity to pH,
pressure, temperature, light and sound, electric and magnetic fields, conductivity, self-
healing, biodegradability, biocompatibility, porousness, and flexibility [39], as shown in
Figure 2. Tunable hydrogels are receiving attention for use in devices. The mechanical
properties and water-holding capacity can be controlled by altering the cross-linking
density and functional groups on the hydrogel network. Tuning in the cross-linking
density is a function of changes in stiffness, molecular diffusivity (D), mess size (ξ), gel
mechanics (shear modulus, G), and swelling ratio (Q) of the polymeric networks. Figure 3
presents the property versus cross-linking density (ρx), where the shear modulus increases
and molecular diffusivity and swelling ratio decrease with increasing the cross-linking
density [40]. The correlation among the quantities can be expressed as the following
equation [41]:

G = RTρxQ− 1
3 (1)

where R = the universal gas constant and T = the temperature. Therefore, G is measurable
from the equation above. The determination of diffusivity is important for evaluating
the swelling character. According to Peppas’s explanation, the molecular diffusivity and
network structure of the hydrogel can be related by

D = Do

(
1 − rs

ξ

)
e−Y( Q

Q−1 ) (2)
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Here, Do = the molecular diffusivity in a pure solvent, rs = the hydrodynamic radius of
the diffusing particle, and Y = the ratio of the critical volume and the average free volume
per molecule of solvent; usually, it is considered unity.

2.2. Fabrication and Structure of Gels/Hydrogels

Hydrogels possess a three-dimensional polymeric network formed by chemical or
physical cross-linking [42]. The structure of gel can be entangling, porous, or, in some cases,
crystalline [43,44]. Hydrogels are formed by the cross-linking or grafting of polymers and
monomers through the cross-linking agent. In the solution method of polymerization,
a cross-linking agent and reaction initiator are added, which remain in the structure
after synthesis, resulting in impurity of the products. The radiation method does not
require initiators and cross-linking agents because irradiation initiates polymerization by
producing free radical points on the backbone of the polymer and vinylic parts of the
monomer, followed by propagation and termination [45]. Minjie Pei et al. [46] reported
a microcrystalline cellulose-fabricated double cross-linked poly(vinyl alcohol)–glycidyl
methacrylate (PVAGMA-MCC) hydrogel where tannic acid was used as a cross-linking
agent, as shown in Figure 4a. Figure 4b exhibits the structure and surface morphology
(SEM) of a TEMPO-oxidized cellulose nanofiber-fabricated polyvinyl alcohol (TOCN-
PVA) composite gel cross-linked by the inorganic cross-linker borax [47]. Both chemical
and physical cross-linking methods contribute to the diverse properties and applications
of hydrogels.
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2.3. Application of Gels/Hydrogels

Many modern electronics require soft, flexible, biodegradable, and biocompatible
compounds for their assembly, leading to smart devices. In this sector, different types of
gels are becoming valuable candidates. There are diverse applications of gels/hydrogels,
including adsorption [48], agriculture, medical science, electrical and electronics engineer-
ing, coating, optics, and water harvesters [49]. Figure 5 shows the application of gels
in various devices, such as sensors, actuators, flexible batteries, solar cells, touch panels,
and robots. A lot of work has gone into improving these hydrogels’ mechanical charac-
teristics in recent years so that they may be employed as anatomical and physiological
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structural supports. Hydrogels can mimic some properties of living tissue, which makes
them applicable for tissue engineering and biosensing [40]. It has been proven that gels
and hydrogels with stimuli-responsivity are promising 3D polymeric networks for sensor
design and implementation [50]. The ordinary actuators in robots or other instruments
are brittle and incompatible with biological environments. On the other hand, hydrogels
can retain 90% of water, in addition to their other favorable properties, such as an undis-
torted structure, mechanical strength, and biocompatibility. That is why hydrogels are
considered an alternative to traditional actuators [51]. Electrically conductive hydrogels are
responsible for the subsequent bending, twisting, and stretching qualities that make up the
latest technology in flexible energy storage [52]. An inorganic–organic combination of raw
materials is blended to synthesize hydrogels for an efficient approach in touch panels and
solar cells [53,54]. A revolutionary change has been brought to soft robotics by applying
soft double- or triple-network hydrogels [55].
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2.4. Choice Preparation Method of Gel/Hydrogel for Devices

Since specific devices have definite requirements for choosing hydrogels to be used
as a part, it is important to select the appropriate raw materials and preparation methods.
The preparation method and components of hydrogels determine the characteristics; for
instance, the presence of sulfonic groups responsible for the selective adsorption of trivalent
metal ions from multi-element solutions on pectin–acrylamide-(2-acrylamido-2-methyl-1-
propanesulfonic acid) hydrogels prepared by applying the gamma radiation technique [56].
Here, the grafting of monomers on pectin chains was exerted without using cross-linking
agents or initiators, leading to the formation of pure hydrogels of monomers and polymers.
For drug delivery, gels should be made of specific biocompatible, biodegradable materials
using a reliable preparation method. The different methods of hydrogel preparation are
shown in Figure 6. Mutually miscible monomers and initiators are used to prepare hydro-
gels through bulk polymerization, which produces glassy, hard, and transparent products,
as well as heat energy. Yawen et al. monitored sweat glucose using wearable MXene
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(Ti3C2Tx) functionalized PEDOT:PSS hydrogels [57]. The solution method uses ionic or
neutral monomers and cross-linking agents with multi-functionality. The reaction is started
by providing thermal energy and UV radiation, where the solvents (water, ethanol, benzyl
chloride, etc.) act as heat sinks. Huihui et al. prepared a double network hydrogel from
polyacrylamide, zinc (ii), lithium (i), and physically cross-linked κ-carrageenan for flexible
electronic devices [58]. Suspension polymerization gives powder or amorphous composite
gels or beads prepared by dispersing monomers and initiators in hydrocarbons [59]. To
prepare hydrogels possessing better mechanical properties and multi-functionality, smaller
monomers are grafted on the backbone chain of polymers (natural and synthetic) [60]. A
few aqueous viscous solutions of monomers (example: 2-hydroxyethyl methacrylate) and
polymers (example: dextran methacrylate) undergo hydrogel formation under ultrasonic
sound [61]. Debbi et al. reported an ultrasound-mediated polyvinyl alcohol–methacrylate
hydrogel that was exposed to 1 MHz ultrasound without adding precursor linkers or
photo-initiators, and applied it to 3D printing and cell and drug delivery [62]. The most
promising and mostly usable methods for preparing pure hydrogels are radiation tech-
niques, which involve ultraviolet, microwave, gamma, and electron beam irradiation. Two
rays are highly energetic and ionizing and can penetrate the blend solution to initiate
polymerization through the formation of free radicals in the respective raw materials [63].
Therefore, based on the specific requirement, one can choose a suitable method for the
synthesis of an appropriate hydrogel.

Gels 2024, 10, 548 8 of 33 
 

 

hydrogel that was exposed to 1 MHz ultrasound without adding precursor linkers or 
photo-initiators, and applied it to 3D printing and cell and drug delivery [62]. The most 
promising and mostly usable methods for preparing pure hydrogels are radiation 
techniques, which involve ultraviolet, microwave, gamma, and electron beam irradiation. 
Two rays are highly energetic and ionizing and can penetrate the blend solution to initiate 
polymerization through the formation of free radicals in the respective raw materials [63]. 
Therefore, based on the specific requirement, one can choose a suitable method for the 
synthesis of an appropriate hydrogel. 

 
Figure 6. Different preparation methods of gel/hydrogel. 

3. Gels in Devices 
Pioneering applications of hydrogels in devices/instruments use definite stimuli-

responsiveness as their working principle. In the last decade, many research articles were 
reported or published in different journals, and these are reviewed in this section.  

3.1. Gels in a Sensor 
A sensor is a type of device that is able to detect and respond to different inputs from 

the physical environment. The sensor converts energy from one form to another to 
produce a signal that represents information about the signal [64]. By varying the range 
and intensity of the stimuli-responsiveness of hydrogels, sensors are prepared for use in 
biomedical engineering, drug delivery, and other instruments. The sensors most 
commonly used are pressure and strain sensors [35]. By varying the range and intensity 
of the stimuli-responsiveness of hydrogels, sensors are prepared for use in biomedical 
engineering, drug delivery, and other instruments. The sensors most commonly used are 
pressure and strain sensors [16,65,66]. Recently, several materials have been developed 

Figure 6. Different preparation methods of gel/hydrogel.



Gels 2024, 10, 548 8 of 30

3. Gels in Devices

Pioneering applications of hydrogels in devices/instruments use definite stimuli-
responsiveness as their working principle. In the last decade, many research articles were
reported or published in different journals, and these are reviewed in this section.

3.1. Gels in a Sensor

A sensor is a type of device that is able to detect and respond to different inputs
from the physical environment. The sensor converts energy from one form to another
to produce a signal that represents information about the signal [64]. By varying the
range and intensity of the stimuli-responsiveness of hydrogels, sensors are prepared for
use in biomedical engineering, drug delivery, and other instruments. The sensors most
commonly used are pressure and strain sensors [35]. By varying the range and intensity
of the stimuli-responsiveness of hydrogels, sensors are prepared for use in biomedical
engineering, drug delivery, and other instruments. The sensors most commonly used are
pressure and strain sensors [16,65,66]. Recently, several materials have been developed and
designed for the purpose of producing flexible sensors, like polyimides [67], conductive
polymers [68,69], graphene [70], polyurethane [71], ionic liquids [72], liquid metals [73], etc.
However, these sensors often suffer from unsatisfactory sensitivity, insufficient detection
range, low stretch ability, and inferior biocompatibility. Since sensors have been used on
skin and tissue for a long time, the sensors have to be extremely flexible, biocompatible,
nontoxic, and soft so that they can be used safely in the human body [74]. Unlike traditional
sensors, hydrogel-based sensors rely on the characteristics of hydrogel, such as high water
content, stimulation responsiveness, and high permeability [49]. Figure 7 includes the
hydrogel-based wearable sensors that are becoming increasingly significant for biomedical
and physiological applications.

Gels 2024, 10, 548 9 of 33 
 

 

and designed for the purpose of producing flexible sensors, like polyimides [67], 
conductive polymers [68,69], graphene [70], polyurethane [71], ionic liquids [72], liquid 
metals [73], etc. However, these sensors often suffer from unsatisfactory sensitivity, 
insufficient detection range, low stretch ability, and inferior biocompatibility. Since 
sensors have been used on skin and tissue for a long time, the sensors have to be extremely 
flexible, biocompatible, nontoxic, and soft so that they can be used safely in the human 
body [74]. Unlike traditional sensors, hydrogel-based sensors rely on the characteristics of 
hydrogel, such as high water content, stimulation responsiveness, and high permeability 
[49]. Figure 7 includes the hydrogel-based wearable sensors that are becoming 
increasingly significant for biomedical and physiological applications. 

 
Figure 7. Different hydrogel-based sensors. 

The application of conductive hydrogels with excellent self-healing ability in 
wearable sensors has attracted massive attention in recent years. Hui et al. developed a 
polyvinyl alcohol–carrageenan self-responsive hydrogel for NO2 and NH3 sensing. The 
rapid and reversible mechanism is shown through molecular crystallization, electrostatic 
interaction, and hydrogen bonding [75]. Zhang et al. designed and developed a 
supramolecular sodium alginate nano-fibrillar double network hydrogel exhibiting high 
self-healing, strain sensitivity, and transparency [76]. Liu et al. reported a wearable strain 
sensor based on a conductive, elastic, self-healing, and highly strain-sensitive CNCs-Fe3+-
based hydrogel with a soft and hard hierarchical network structure [77]. The hydrogel 
shows stable electrochemical behavior and self-healing capability within 5 min. A novel 
conductive polymer hydrogel was reported by Chen et al. and fabricated by cross-linking 
the 2-ureido-4[1H]-pyrimidinone (UPy) group with the polyaniline/poly(4-
styrenesulfonate) (PANI/PSS) network [78]. The hydrogel-based strain sensor exhibits 
external strain and rapid self-healing within 30 s upon damage. Hydrogels’ anti-freezing 
properties can help to maintain their stability at low temperatures and improve their 
practical application. Liu et al. were also able to create highly strong, anti-freezing 
conductive hydrogels for wearable strain sensors using a binary solvent solution of 

Figure 7. Different hydrogel-based sensors.

The application of conductive hydrogels with excellent self-healing ability in wearable
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alcohol–carrageenan self-responsive hydrogel for NO2 and NH3 sensing. The rapid and
reversible mechanism is shown through molecular crystallization, electrostatic interaction,
and hydrogen bonding [75]. Zhang et al. designed and developed a supramolecular
sodium alginate nano-fibrillar double network hydrogel exhibiting high self-healing, strain
sensitivity, and transparency [76]. Liu et al. reported a wearable strain sensor based on
a conductive, elastic, self-healing, and highly strain-sensitive CNCs-Fe3+-based hydrogel
with a soft and hard hierarchical network structure [77]. The hydrogel shows stable
electrochemical behavior and self-healing capability within 5 min. A novel conductive
polymer hydrogel was reported by Chen et al. and fabricated by cross-linking the 2-
ureido-4[1H]-pyrimidinone (UPy) group with the polyaniline/poly(4-styrenesulfonate)
(PANI/PSS) network [78]. The hydrogel-based strain sensor exhibits external strain and
rapid self-healing within 30 s upon damage. Hydrogels’ anti-freezing properties can help
to maintain their stability at low temperatures and improve their practical application. Liu
et al. were also able to create highly strong, anti-freezing conductive hydrogels for wearable
strain sensors using a binary solvent solution of ethylene glycol and H2O in order to attain
the freezing property [79]. The hydrogel can operate at a temperature of −20 ◦C. Wang et al.
demonstrated a conductive hydrogel-based strain sensor with outstanding anti-freezing
properties using poly(3,4-ethylenedioxythiophene):sulfonated lignin as the conducting
material and a water/glycerol binary solvent as the dispersion medium [80]. The resulting
conductive hydrogel sensors can maintain good mechanical and conductivity properties
at −15 ◦C. Lu et al. designed a mussel-inspired conductive hydrogel with a glycerol–
water mixture and a polydopamine-decorated carbon nanotube [78]. The formed hydrogel
contains high mechanical properties and flexibility and can recover from deformation at
−20 ◦C to 60 ◦C.

To fulfill the demand for a stretchable strain or pressure sensor, Shan et al. designed
and developed a multifunctional conductive hydrogel composed of a polyacrylamide
(PAAM)/chitosan (CS) hybrid network [65]. The PAAM network was cross-linked by
hydrophobic association, and the chitosan (CS) network was cross-linked by carboxyl-
functionalized multi-walled carbon nanotubes (c-MWCNTs). These two networks are
further interconnected by physical entanglement and hydrogen bond interactions. The
dynamic cross-linking network provided the hybrid hydrogel with excellent mechanical
properties. Figure 8 shows the joint motion of the hydrogel attached to the finger and the
resistance during the bending of the finger. The hydrogel resistance progressively rose
when the finger was bent step by step (0◦, 30◦, 45◦, 90◦). Here, the hydrogel resistance
was steady and constant at a certain angle when the finger remained at a consistent value.
The hydrogel resistance did not change while the finger was kept in a static position.
This shows the precise bending angle measurement through resistance. Furthermore, the
hydrogel shows the ability to track small movements, such as speech, breathing, and
heartbeat. Table 1 lists a few recent hydrogels used in different sensors whose performance
is promising, but the efficiency has to be improved.
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Table 1. Different hydrogels in sensors.

S.N. Name of Hydrogel Characteristics Types of Sensors
and Applications Performance References

01
MXene poly(acrylic acid)
(PAA)–amorphous calcium
carbonate composite hydrogel

Excellent stretch ability,
recyclability, favorable
shape adaptability,
adhesiveness

Pressure sensor. For
e-skin.

1. Conductivity 0.8 S m−1

2. Tensile strain >900%
[81]

02

Cationic cellulose nanofibers
(CCNFs)–liquid metals
(LM)–poly(acrylic acid)
hydrogel

Good conductivity,
mechanical property,
self-adhesiveness, quick
self-healing

Strain sensor. For
monitoring human body
movement.

1. Conductivity 1.54 S m−1

2. Tensile strain >1500%
[82]

03

Poly(Vinyl alcohol) (PVA)–
glutaraldehyde/poly(acrylic
acid-co-Acrylamide) double
network hydrogel

High adhesiveness,
sensitivity, temp.
tolerance

Stain and pressure
sensor. For monitoring
human motion and
physiological activities.

1. Conductivity 0.83 S m−1

2. Tensile strain 1700%
[83]

04
Chitosan-poly(Acrylamide-co-
acrylic acid) double network
hydrogel

Good mechanical
properties, conductivity,
durability, strong
freezing tolerance

Strain and pressure
sensor. For biomimetic,
skin health monitoring,
and soft robots.

1. Conductivity 0.32 S m−1

2. Tensile Strain ~450%
[84]

05

Gelatin(G) carboxylated
carbon(C) polypyrrole
(PPy)–gold (AU)
hydrogel

Good mechanical
properties,
electroconductivity,
biocompatibility

Pressure sensor. For
e-skin.

1. Conductivity 2.33 S m−1

2. Tensile strain 253%
[85]

06

Poly(Vinyl alcohol)
(PVA)/poly(Acrylamide-co-
acrylic acid)-Fe3+ double
network hydrogel

Maximum open-circuit
voltage, short-circuit
current, short-circuit
transferred charge

Strain sensor. For
wearable devices,
human health
monitoring, and energy
harvesting.

1. Toughness 6.5 MJ m−3

2. Elasticity modulus 0.4 MPa
[86]

07
Poly(Vinyl alcohol)
(PVA)–cellulose nanofibers
(CNF) hydrogel

Highly stretchable,
strong, tough,
transparent, and ionic
conductive

Multi-functional strain
and pressure sensor. For
detecting human body
movement.

1. Toughness 5.25 MJ m−3

2. Elasticity modulus < 1.1 MPa
[87]

08 Double network hydrogel
Good biocompatibility,
stretch ability,
self-healing property

Strain sensor. For
human and organ
motion.

Self-healing efficiency 95.3% [88]

09

Poly(Vinyl alcohol)
(PVA)–borax(B)–sodium
alginate (SA)–tannic acid (TA)
hydrogel

pH sugar
responsiveness, high
stretch ability, high
healing
ability

Strain sensor.
For detecting
human
motion.

Self-healing efficiency 93.56% in
10 min [89]

10

Poly(Vinyl alcohol)
(PVA)–MXene poly(3,4-
ethylenedioxythiophene):poly(4-
styrene sulfonate) hydrogel

Good biocompatibility

Multi-functional strain
and position sensor. For
human motion detection,
detecting speed sensor,
and hand-writing
recognition.

Self-healing efficiency 95.47% in
30 min [90]

11
Dried smart
poly(N-isopropylacrylamide)
hydrogel

Stable, porous structure,
large surface area Gas sensor Exhibits a high affinity for various

organic gases [91]

3.2. Hydrogels in Actuators

An actuator is a type of technology that transforms input energy into usable mechanical
energy. With the rapid development of microtechnology, the necessity for the development
of devices that can perform mechanical work on a micro- and macroscale has increased [92].
There have been several studies performed on the design of actuators using piezoelectric
effects [93,94], fluid flow [95], magnetic fields [96], and electric fields [97]. Among them,
stimuli-responsive hydrogels received much attention. Because of its high-water content,
biocompatibility, and biometric properties, hydrogel is more advantageous than other
materials. Hydrogel material can provide the properties of motion and actuation because
of its capacity to expand and shrink in response to the amount of water present or absent.
This enclosed water reacts and is sensitive to a variety of outside stimuli, including strain,
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heat, electricity, and magnetism [98], as shown in Figure 9. For instance, the thermal stimuli
response system is extensively used and investigated for artificial intelligence systems,
which has demonstrated an important role in the creation of hydrogel actuators.
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Zhao et al. created a bilayer hydrogel actuator using a PAAM/PAAC layer with the
upper critical solution temperature (UCST) effect and a PAAM layer without responsive
function [99]. Here, when the temperature drops below UCST, the hydrogel actuator
deforms spontaneously. Furthermore, the PAAM layer remains unchanged by temperature.
To create smart hydrogels with a lower critical solution temperature (LCST) and UCST-
sensitive characteristics, Sun et al. created a temperature-driven hydrogel using poly(N-
acrylamide) (PNAGA) layers and PNIPAM layers [100]. Here, at low and high temperatures,
the two polymer layers in the hydrogel showed different thermal responses in terms of their
expansion and contraction characteristics. This hydrogel actuator could respond quickly to
temperature changes and quickly recover from them. Chan et al., inspired by the mimosa
plant, prepared a bilayer hydrogel based on the Poly(Acrylic acid-co-Acrylamide) layer
and the Poly(NIPAM) layer [101]. Here, internal moisture transfer enables the hydrogel
actuator to realize the actuation execution in an open-air environment. The light stimulation
method is the most-used method for hydrogel actuators because of its long distance, fast,
non-contact, and sensitive characteristics. Natural light is one of the most readily available
sources and has a wide range of applications for actuators. A lot of research has been
conducted on smart hydrogels that are precisely activated by light. Xia et al. produced a
PNIPAM-AuNPS/PAAM thin film hydrogel actuator doped with visible light-responsive
photothermal gold nanoparticles [102]. The photothermal nanoparticles inside the hydrogel
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actuator produce heat when simulated by external light through their own photothermal
effect. Furthermore, the hydrogel’s deformation is reversible. The reversible actuation
performance of natural light shows a critical value in the remote and precise control of
the process. Chen et al. created a light-responsive hydrogel actuator using polyurethane
(PU) and carbon black (CB) as printing doping materials [103]. Inspired by sunflowers,
they made composite artificial multilayer sunflowers. The artificial sunflower has a precise
driving procedure like a natural sunflower. Here, the petals of the sunflower are opened at
30 ◦C. Additionally, the deformation of the hydrogel is reversible. Kang et al. constructed a
DC electroactive hydrogel (EAH) actuator based on poly(3-sulfopropyl acrylate potassium
salt) (PSPA) by 3D printing, where they used multileg long-chain (MLLC) cross-linker
glycidyl methacrylated hyaluronic acid (GMHA). Sulfonate groups are negatively charged
and fixed to the actuator hydrogel, but potassium ions are positively charged and move
freely when an electric field is applied, leading to electroactivity and actuation. This type
of actuator typically has the feature of being able to adjust its volume and structure. As
illustrated in Figure 10, when the switch is on and electricity flows towards the PSPA-based
hydrogel, potassium (K+) ions move in the direction of the cathode to respond to the electric
field. Moreover, the remaining anionic sulfonate group is attached to the anode side. As
shown in Figure 10, the hydrogel is positioned in the middle of the two electrodes in the
KCl solution. Electric osmotic pressure is created at the interface between the sides of
the hydrogel when the external circuit is closed because of the electric field’s effect on the
ion concentration at that location. The hydrogel’s cations move to the electrolyte solution
in order to make the hydrogel electrically neutral. The hydrogel actuator reacts to the
electrical field simultaneously by bending towards the negative pole. At 7.5 V, the induced
ion waves in the electrodes move at a speed of 1 mm/min, which takes 10 min for actuation.
However, GMHA-PASA EAHS takes 4 min at 7.5 volts for actuation, which is substantially
faster. The electroactivity increases with increasing the concentration of KCl up to 0.05 M,
then starts decreasing. Therefore, the optimum concentration of KCl for electroactuation
of the GMHA-PSPA EAHs was found to be 0.05 M. These findings show the adaptability
and controllability of the DC hydrogel actuators. Because of its shape-changing ability, the
hydrogel actuator can be used in biosensors and artificial muscles [104]. Table 2 refers to
some recent hydrogels used as actuators, where the best banding angle is 400◦ with other
properties.
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Table 2. Different hydrogels in actuators.

S.N. Name of Hydrogel Characteristics Types of Actuators and
Applications Performance References

01
Poly(N-isopropylacrylamide)–clay
nanocomposite (NS)
hydrogel

Rapid, reversable,
repeatable
thermos-responsive
bending

Thermo-responsive.
Actuator for
encapsulation, capture,
and transportation.

Bending angle
180◦/120 s [105]

02

Poly(N-isopropylacrylamide)/poly(2-
(dimethylamino)ethyl
methacrylate)–acrylamide (AM)
hydrogel

Temperature/salt- and
temperature/pH-
responsive

Bilayer and multiple
stimuli-responsive.
Actuator for soft
robotics, biometric
devices, and
environmental sensors.

Bending angle
180◦/60 s [106]

03

Alginate-Poly(N-
isopropylacrylamide)/Aluminum-
alginate-Poly(N-isopropylacrylamide)
hydrogel

High mechanical
properties

Bilayer and
thermo-
responsive.
Actuator for soft
robotics.

Bending angle
140◦/50 s [107]

04

Poly(N-isopropylacrylamide)-
poly(Vinyl
alcohol)/poly(2-(dimethylamino)ethyl
methacrylate)–poly(sodium-p-
styrenesulfonate)
hydrogel

Rapid, reversable,
repeatable bending
motion

Bilayer and intelligent
responsive
actuator.
Soft actuator.

Bending angle
180◦/60 s [108]

05
Poly(N-
isopropylacrylamide)/poly(Acrylic
acid-co-acrylamide) hydrogel

Self-water circulation,
reversible actuation

Bilayer and
thermo-responsive.
Actuator for soft
material.

Bending angle
180◦/60 s [101]

06

Poly(N-isopropylacrylamide)/poly(3-
(1-(4-vinylbenzyl)-1H-imidazol-3-ium-
3-yl) propane-1-sulfonate)
hydrogel

Fast, reversible,
bidirectional bending
behavior

Bilayer and
thermo-responsive.
Actuator for soft and
intelligent
material.

Bending angle 400 ◦ [109]

07
Poly(Acrylic acid)/carboxylic reduced
graphene oxide/Fe
hydrogel

High stretch ability,
self-healing ability,
rapid bending
actuation

Electro-responsive.
Actuator for soft robots.

Bending
angle > 150◦/180 s [110]

08

Carbon nanotube/poly((2-acrylamido-2-
methyl-1-propane-sulfonic
acid)-co-acrylic acid)
hydrogel

Good electric
conductivity

Electro-responsive.
Strain actuator.

Bending angle
90◦/120 s [111]

09
Poly(N-isopropylacrylamide)-co-
hydroxyethyl acrylate–laponite
hydrogel

Fast response to hot
water, rapid recovery in
air

Thermo-responsive.
Actuator for soft robots,
micromanipulation,
microfluidics, and
artificial muscles.

Bending angle
100◦/40 s [112]

10
Poly(2-acrylamido-2-methyl-1-
propane–sulfonic acid)/polypyrrole
hydrogel

High elasticity, high
bending rate

Electro-responsive.
Actuator for
electric field.

Time 40 s [113]

3.3. Hydrogels in Touch Panels

In the modern living era, machine and human interactions with touch panels play
a significant role due to the daily interaction between various devices like smartphones,
laptops, tablets, game consoles, ticketing machines, and various electronic devices [114], as
well as their advantages like easy use, portability, and intuitive characteristics [115]. The
significant aspiration of touch panels is to obtain factors like biocompatibility, stretchability,
softness, high resolution, low parasitic capacitance, fast response, and rapid functionality.
For this reason, the stiff and brittle attributes of indium tin oxide (ITO), which is used
as a transplant-conducting film in the conventional touch panel, make it constrained. To
overcome these limitations, some other options are available, like metal oxides, metal
composites [116], carbon nano-materials [117,118], conducting polymers [119], copper
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nanowires [120], and silver nanowires [121]. Further research is required to prove the
biocompatibility of these substitute materials [122].

In the segment of artificial intelligence, wearable devices, and soft robotics, ultra-
stretchable and sensitive soft touch panels have significance and a wide range of functions.
Nevertheless, conventional human–computer interfaces deteriorate due to displeasurable
and asynchronous signals [53]. However, common ionic hydrogels made of chemically
cross-linked acrylamide (PAAm) [123] undergo poor surface bonding and lack a self-healing
capacity [124]. Zhou et al. made an ionic touch panel from PAAm hydrogel containing
LiCl, but the performance was below 500%; the tensile strength, self-healing attributes,
and feeble surface bonding were absent [125]. A self-healing semi-conductive touch panel
was made by exploiting a novel TiO2 nanocomposite hydrogel as the panel material by
Guo et al. [115]. The panel exhibited low tensile properties of about 1100%. A capacitive
hydrogel-based ionic skin sensor was introduced by Lei et al. that is recyclable, freely self-
healable, and designed for curves and dynamic surfaces that are mechanically compliant,
although the tensile property was only about 1000%. By using ionic hydrogels made of
sodium polyacrylate (SA), poly(vinyl alcohol) (PVA), and sodium tetraborate decahydrate
(borax), where borate salt and Na+ cation on the polymer chains were used as the charge
carriers, Kewon et al. [126] were able to create a stretchable and self-healing touch sensor.
Gao et al. expanded a self-feeling ionic touch panel using a polyzwitterion–clay hydrogel,
despite its low tensile performance of about 1500% [127]. Furthermore, ionic hydrogels that
are physically cross-linked demonstrate exceptional qualities, including a super-stretch
ability, easy plasticity, and self-healing capabilities, which enable them to adapt to the
dynamic surface of the skin and promptly recover when damaged [128], which implies the
potential of the next generation of intelligent touch panels.

First, physical cross-linking between poly(N, N′-dimethylacrylamide) chains and sil-
ica nanoparticles in a lithium chloride solution creates an ultra-stretchable, self-healing
composite hydrogel. In its prepared state, the hydrogel exhibited mechanical and electrical
self-healing characteristics and a fracture elongation of up to >3800%. The composite
hydrogels were then used to create an ionic surface capacitive touch panel, which demon-
strated continuous self-healing-sensing capabilities. Writing words and playing computer
games served as demonstrations for the skin touch panel’s construction. Additionally, these
hydrogels will encourage the creation of intelligent skin-associated devices for future gen-
erations, particularly for use cases where the human body must endure severe acceleration,
stretching, and impact.

The platinum (Pt) electrode associated with both the terminal of the gel strip and the
alternating current was applied to all the terminals of the gel strip, as stated in Figure 11.
The touch panel functions as the positive source, and when a human touches it, it connects
to the ground or the negative. Once the circuit is complete, the touch panels generate
a potential difference that induces a current through the finger. Additionally, the strip
functions as a parallel circuit with two resistive components, and in response to hydrogel
interference, it forms a coupling capacitance that permits the current to flow from the
electrodes to the touch position via the gel strip. The distance between the electrode and
the touch site also determines the current’s amplitudes. The C-touch capacitor splits the
gels into two divisions by touching the finger to the touch panel. In an electric double layer
(Cedl), a capacitor connects the gels and ammeters in series, with the two components
connected in parallel and in series to the capacitor. Due to the high AC frequency and
the capacitor’s broad electric double layer, we neglected the electric double layer in the
parallel AC circuit [129]. Figure 11 illustrates the parallel touch experiment conducted to
confirm the connection between the touching current and touch location. The touching
current was measured by touching the finger for approximately 5 s, at intervals of 10 mm,
in an onward direction towards the touch strip. The parasitic capacitance between the
strip and the environment develops the baseline current, which is considered the leakage
current in the order of microampere. Table 3 presents the hydrogel’s touch panels, which
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are widely used in e-skin and wearable electronics where the performance of hydrogels in
touch panels is satisfying.
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Table 3. Hydrogels for touch panels.

S.N. Name of the Hydrogel Characteristics Type of Touch Panel Efficiency Reference

01
Poly(N-isopropylacrylamide)–
poly(vinyl alcohol)/sodium
acrylate hydrogel

Stretchability,
self-healing ability

Optical touch panel.
For e-skin wearable
electronics and smart
windows.

Optical transparency
91%, stretch ability
(150% to 600%)

[126]

02 Polyacrylamide hydrogel Stretchability,
biocompatibility

Capacitive touch
panel. For e-skin.

Optical transparency
98%, stretch ability
(>1000%)

[129]

03

Polyacrylic acid-polycation
(poly(methyl chloride
quaternized N <
N-dimethyl-amino ethyl
acrylate))
hydrogel

Self-healing ability,
self-power voltage
ability

Optical touch panel.
For soft robotics and
artificial intelligence.

Optical transparency
90%, stretch ability
(>10,000%)

[130]

04

k-carrageenan/poly(N-acrloyl
glycinamide (NAGA)–co-vinyl
imidazole (VI))
hydrogel

Thermoplasticity,
injectability, tough,
fast self-recovery,
thermal degradation
resistance, durability,
controllable adhesion

Resistive touch panel.
For sensing devices. Stretch ability (1045%) [131]

05
Titanium dioxide/poly(N,
N′-dimethylacrylamide)
hydrogel

High stretch ability,
soft, low parasite
capacitance, high
resolution, fast
response

Capacitive touch
panel. For e-skin.

Transparent stretch
ability (1100%) [115]
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Table 3. Cont.

S.N. Name of the Hydrogel Characteristics Type of Touch Panel Efficiency Reference

06

Silicon dioxide/lithium
cation/poly(N,
N′-dimethylacrylamide)
hydrogel

Ultra-stretch ability,
self-healing

Capacitive touch
panel. For e-skin.

Stretch ability
(>3800%) [53]

07

Glycerin and hydroxyethyl
cellulose elastomer and
poly-acrylamide/carrageen
hydrogel

Self-healing without
degradation, good
mechanical property,
durability

Optical touch panel.
For touch screen
sensors.

Optical transparency
93%, stretch ability
(310% for GHEC
elastomer, 906% for
PAM Carrageen)

[132]

08 Gelatin–poly acrylic acid
(PAA)-based organic hydrogel

Excellent
self-adhesion,
self-healing,
anti-freezing,
anti-drying

Optical touch panel.
For health care and
human–machine
interface.

Optical transparency
87%, stretch ability
(1700% at 60 ◦C and
1200% at −20 ◦C)

[133]

09 Polyvinyl chloride ion gel Good stretch ability,
high transparency

Optical
flexible touch panel.
For smart electronic
devices.

Optical transparency
90%, stretch ability
(250%)

[134]

10

Poly(3,4-
ethylenedioxythiophene):
poly(styrene sulfonate)
PEDOT:PSS ionogel

Mechanical and
electrical conductivity
and good transparency

Optical touch panel.
For electronic and
optoelectronic devices.

Optical transparency
87%, stretch ability
(200%)

[135]

3.4. Hydrogels in Solar Cells

To promote efficiency, hydrogels of suitable components are being tried for use in solar
cells. A dye-sensitized solar cell’s performance depends on the constituent components of
the device. Usually, organic solvent-based electrolytes are highly efficient, even though they
have some limitations, including flammability, volatility, and leakage. Here, the solvent
water faces lower voltage problems (0.4–0.6 volts). To mitigate those problems, hydrogels
are employed as water-based quasi-solid electrolytes that have both liquid and solid
properties [136,137]. The liquid electrolytes corrode the conductive materials and electrodes
used in solar cells, resulting in leakage and evaporation of the solvent [138]. Zarate et al.
successfully implemented zinc–galactomannan hydrogel electrolytes in dye-sensitized
solar cells whose design was green, and showed an open-circuit voltage of 750 mV [139].
Unlu et al. prepared gellan gum/poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate
(GG/PEDOT:PSS) gel and immersed it in an I−/I3

− solution to use as an electrolyte in
quasi-solid dye-sensitive solar cells (DSSCs). On the basis of thickness, different samples of
gels—GG1 (2 mm), GG2 (1 mm), and GG/PEDOT:PSS—were prepared for an efficiency
comparison. The conjugated polymeric 3D gels and free ions in the DSSCs maintain the
electron transfer for electricity. Figure 12 shows the GG/PEDOT:PSS gel network and
I–V (current density versus voltage) curves for the GG1, GG2, and GG/PEDOT:PSS gel
electrolytes, where the last one exhibits the best short-current density (Jsc) over the others,
which are 4.08, 4.57, and 6.92 mA/cm2, respectively [140]. Table 4 lists the recent solar cells
that use hydrogels as their important component, as well as improved efficiency up to 14%.
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Table 4. Hydrogels in different solar cells.

S.N. Type of Gel Characteristics Type of
Solar Cell

Photoelectric
Conversion
Efficiency

Reference

01
Poly(acrylic
acid-co-acrylamide)/polyaniline
hydrogel

Enhanced diffusion
and reduction in
iodine ions

Dye-sensitized solar
cells 2.0% [141]

02 Graphene oxide/gelatin hydrogel High open-circuit
voltage

Quasi-solid-state
dye-sensitized solar
cells

4.02% [142]

03 Polyacrylamide/bis-acrylamide
hydrogel High absorbent ability

Quasi-solid-state
quantum-dot-
sensitized solar cell

4.3% [143]

04 Polyvinyl alcohol/multiwall carbon
nanotube/polyaniline hydrogel

Good ionic
conductivity charge
transportation

Dye-sensitized solar
cells 2.18% [144]

05 Polysaccharide dextran hydrogel Good light intensity

Quasi-solid-state
quantum
dot-sensitized solar
cells

4.58% [18]

06 Polysulfide hydrogel Long-term stability
Quasi-solid-state
quantum-dot-
sensitized solar cells

2.40% [145]

07 Graphene hydrogel Good stability Quantum-dot-
sensitized solar cells 10.71% [146]

08 Carbon nanotube/graphene
hydrogel/copper sulfide

Good conductivity,
catalytic activity

Quantum-dot-
sensitized solar cells 14.02% [147]

09 Chlorophyll–a/polyacrylamide
hydrogel

High pigment
absorption Biomimetic solar cells Power conversion

efficiency is 0.59%. [148]

10 Poly(m-amino benzodioxol)–iron
(ii, iii) oxide nanorods hydrogel

High thermal stability
and photovoltaic
properties

Hybrid
solar cell 6.08% [149]
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3.5. Hydrogels in Flexible Energy Storage and Batteries

Hydrogel has been investigated and evaluated as a potential cathode and anode for
supercapacitors for high-power density energy storage. The charge and discharge cycles
are made possible by the hydrogel’s interconnected porosity structure, which provides an
improved and effective surface area for ion storage [150]. In this case, hydrogels can be
chemically altered or doped with conductive material to improve their overall performance
as supercapacitor electrodes, as well as their effectiveness and efficiency. Since conductive
hydrogels can be employed as electrodes or electrolytes in these devices, which offer high
capacitance, quick charging and discharging rates, and long-term stability, hydrogels have
also been investigated for application in supercapacitors and batteries [151]. Because of
their unique properties and structure, hydrogels are revolutionizing energy storage tech-
nology and changing the game in the field of solid-state supercapacitors [152]. Enhancing
the mechanical flexibility and durability of solid-state supercapacitors is one of the most
popular uses of hydrogel. Hydrogel-based supercapacitors are perfect for flexible and
wearable electronics because they come in a variety of shapes and sizes, unlike traditional
supercapacitors that rely on rigid materials [153]. Wearable bioelectronics are being de-
veloped to accommodate biological tissue and increase the immune system. Due to the
high Young’s modulus of traditional batteries, they are not suitable for adjusting to the soft
tissue of the living body. In contrast, tissue-like batteries made of soft hydrogels match
the skin, heart, and other organs of the living human body. Nowadays, the stability and
biocompatibility of hydrogels make them suitable for wearable and implantable devices
for the body [154]. The use of metals in metal-oriented battery preparation reduces natural
resources and increases the detrimental risk to the soil environment. The replacement
of metals by organic compounds and hydrogels may bring a revolution to the energy
sector [155]. The compressibility of hydrogel electrolytes is highly demanding for flexible
batteries. A protein isolate nanoparticle–acrylamide hydrogel electrolyte showed extraor-
dinary reversible compressibility when used in a Zn–MnO2 battery; consequently, the
battery displayed a 299.3 mA h g−1 specific capacity with a capacity retention rate of 78.2%
after 500 charge and discharge cycles and almost 100% coulombic efficiency at 0.4 C. The
outcome is nearly identical to that of a regular Zn–MnO2 battery [156,157]. Hydrogel-
fabricated ammonium-ion batteries can be an alternative to lithium-ion batteries, where
NH4

+ acts as a charge carrier. Recently, Paudel et al. made a biodegradable hydrogel-based
flexible ammonium-ion battery without incorporating metal. Figure 13 presents the details
of hydrogel electrolytes in a flexible battery.
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In this battery, a hydrogel electrolyte prepared from ammonium sulphate and xanthan
gum was sandwiched in between the polyaniline anode and the polypyrrole cathode [158].
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The capacity of this battery is 44.321 mA h g−1, with 74.56% retention for 100 cycles
at 0.1 A g−1. It also exhibits excellent bending and twisting mechanical deformation
performance. The hydroxyl and carboxyl groups of xanthan gum interact with ammonium
ions to facilitate diffusion and intercalation. The embedded ammonium ions play a role
in the conductance of the gel electrolytes. Here, the partial negative charge of oxygen in
water attracts the hydrogen of ammonium ions. In parallel, the partial positive charge
of hydrogen in water attracts nitrogen in the ammonium ions. Thus, the hydration shell
is established, which improves the mobility of charges. The entrapment of the hydrogel
electrolyte in flexible batteries reflects the electrochemical performance through a glowing
LED bulb. In Table 5, the name of hydrogels is mentioned, along with their constituent raw
materials and applicable types of batteries. The performance of the hydrogel and its role in
the battery are progressive.

Table 5. Hydrogels for batteries.

S.N. Name of Hydrogel Characteristics Type of Battery Performance References

01 Carboxymethyl cellulose (CMC)
hydrogel

Low cost, high cycling
ability Zn-ion batteries 1. Conductivity 34.5 mS cm−1

2. Mechanical strength 1.33 MPa
[159]

02 Chitosan–Zn membrane
electrolyte

High conductivity,
non-flammability Zn-metal batteries 1. Conductivity 71.8 mS cm−1

2. Mechanical strength 7.4 MPa
[160]

03
Kappa
(k)-carrageenan–chitosan
hydrogel

High cycling stability,
mechanical strength Zn-metal batteries 1. Conductivity 5.3 mS cm−1

2. Mechanical strength 14.2 MPa
[161]

04 Natural chitosan–glass fiber
hydrogel High conductivity Zn-ion batteries 1. Conductivity 83.4 mS cm−1

2. Mechanical strength 2.40 MPa
[162]

05 Gelatin-based hydrogel
electrolyte

High conductivity, easy
fabrication Zn-metal batteries 1. Conductivity 37.2 mS cm−1

2. Mechanical strength −100 MPa
[163]

06 Xanthan gum hydrogel High conductivity, easy
fabrication Zn-ion batteries 1. Conductivity 14.6 mS cm−1 [164]

07
Cellulose
nanofiber–polyacrylamide
(PAM) hydrogel electrolyte

High cycling stability,
wide temperature
stable window

Zn-ion batteries 1. Conductivity 6.8 mS cm−1

2. Mechanical strength 192 MPa
[165]

08

Polyacrylamide (PAM)–cotton
cellulose
nanofiber–carboxymethyl
cellulose (CMC) hydrogel

Very high conductivity,
high stretchability Zn-ion batteries 1. Conductivity 2.492 S m−1

2. Mechanical strength 60 MPa
[166]

09
Xanthan gum g-cellulose
nanofiber/cotton cellulose
nanofiber hydrogel

High mechanical
strength and good
adhesion

Zn-ion batteries Ionic conductivity 28.8 mS cm−1,
tensile strength of 84 kPa

[167]

10

Poly(2-acrylamido-2-methyl
propane sulfonic acid
potassium salt)/methyl
cellulose hydrogel

Rapid self-recovery,
good toughness, and
antifatigue properties

Zn–air batteries Ionic conductivity 105 mS cm−1,
compressive strength of 170 kPa

[168]

3.6. Hydrogels in Soft Robotics

Usually, soft robots use silicone as a constituent component. Nowadays, for their
excellent mechanical strength, double- or triple-network structure, ultra-low viscosity,
and transparency, hydrogels are considered an alternative to silicone and are used in soft
robotics. Despite having a greater resistivity than other soft electrical materials, hydrogels
have electrical resistance increases with strain that are orders of magnitude less because
configuration changes in polymer networks rarely impact the movement of mobile ions.
Hydrogels can therefore be employed as electrodes in applications requiring a high degree
of stretchability, such as soft robotics. Yet, there are some limitations to using hydrogels
for soft robot construction, which include difficulties in reproducibility and recovering
softness due to swelling and degradation. Usually, agar, polyethylene glycol, gelatin,
acrylamide, and similar materials make hydrogels suitable for soft robots. Banerjee et al.
prepared a agar/polyacrylamide-based double network (DN) hydrogel for soft robots,
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where agarose forms the first network and, upon photo-initiation, the acrylamide forms the
second network to give the final product for pneumatic robotic application. The hydrogels
show the load bearing and elasticity required for a soft nasal endoscopic robot, as exhibited
in Figure 14. This DN hydrogel bears around 1800% strain and about 300 kPa tensile
stress, which are much better than silicone, indicating its suitability for use in soft robots.
The DN gels (3 mm diameter with 1 mm cavity and wounded with threats) connected
with flexible tubes are usable as actuators in soft nasal endoscopic soft robots. Figure 14
explains the successful implementation of a soft endoscopic robot in a human cadaver skull,
which conveniently demonstrates agar/PAM as an alternative to other rigid materials [169].
By choosing better constituent compounds, the limitations of present soft robots can be
mitigated to provide next-generation instruments with the best performance. Different
types of hydrogels used in soft robotics are listed in Table 6, which clearly presents the
applicability of hydrogels as a part of a robot or as a whole robot.
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Table 6. Hydrogels in different soft robots.

S.N. Name of Hydrogel Characteristics Type of Robotics Performance References

01

Poly(N-
isopropylacrylamide)/
graphene oxide
hydrogel

Fast bending
actuation Soft robotics

1. Response time 16–24 s
2. Tensile strength 83 kPa
3. Bending motion

[170]

02

Poly(N-
isopropylacrylamide)/
poly(acrylic
acid-co-acrylamide)
hydrogel

Reversible
actuation Soft robotics 1. Response time ~60 s

2. Bending motion [101]

03
Chitosan/carboxymethyl
cellulose
hydrogel

Rapid, reversible,
bidirectional
deformation

Soft robotics
1. Response time 240 s
2. Tensile strength 62 kPa
3. Coiling motion

[171]

04

Poly(N-
isopropylacrylamide)/
graphene oxide
hydrogel

Excellent
comprehensive
actuation

Soft robotics 1. Response time 40 s
2. Bending motion [172]
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Table 6. Cont.

S.N. Name of Hydrogel Characteristics Type of Robotics Performance References

05

Poly(N-
isopropylacrylamide-co-
Ru(bpy)3

2+)-ruthenium(ii)
tris(2,2-bipyridine)-co-
hydrophilic 2-acrylamide-2
methylpropane sulfonic acid
hydrogel

Repeated bending
and stretching
motion

Biometric robotics 1. Tensile strength 410 kPa [173]

06

Poly(N-
isopropylacrylamide)/2-
acrylamido-2-
methylpropane sulphonic
acid
hydrogel

Different shrinkage
and elastic moduli
on applied external
stimuli

Programmable soft
robotics

1. Response time 2 h
2. Twisting motion [174]

07

Polyethylene glycol
diacrylate/gelatin
methacrylate-co-
Polyethylene glycol
dimethacrylate
hydrogel

Shape-change
ability Soft robotics 1. Tensile strength 20.3/1.8 kPa

2. Folding and twisting motion [175]

08

Poly(N-
isopropylacrylamide)/
polyethylene glycol
diacrylate
hydrogel

Untethered,
self-folding

Micro transport
robotics

1. Response time 60–120 s
2. Bending and rotating motion [176]

09

Graphene oxide–
polydimethylsiloxane/
polydimethylsiloxane
hydrogel

Excellent stability Soft robotics 1. Response time 1–5 s
2. Swimming motion [177]

10
Graphene oxide/graphene
oxide–polydopamine
hydrogel

Light sensitivity Soft robotics 1. Response time 1.5 s
2. Crawl motion [178]

3.7. Gels in Thermal Insulators

The interaction of solar light with gels and other materials leads to the conversion of
photon energy into thermal energy through a process known as light-to-heat conversion.
Materials with high thermal conductivity facilitate the transfer of this heat to areas with
lower thermal zones, while materials with lower thermal conductivity act as insulators. Due
to this principle, gels, mainly aerogels with low thermal conductivity, are now commonly
used as thermal insulators in various electronic devices. Aerogels are a type of open-
cell, mesoporous foam that possess exceptional physical and chemical properties, such
as ultra-high porosity (up to 99.9%), significantly large internal void spaces, low density,
and excellent thermal insulating capabilities. As a porous amorphous solid, aerogels
exhibit promising advantages in reducing solid heat conduction and limiting thermal
convection within their porous structure. They have demonstrated 0.02 W m−1 K−1

thermal conductivity at an ambient temperature of 25 ◦C, which is much lower than
other conventional commercial insulators, like mineral wool and polymer foam (thermal
conductivity around 0.03–0.04 W m−1 K−1) [179,180]. Due to their unique properties,
aerogels are being used as photothermal insulators in photothermal materials for solar
steam generation. Dong et al. reported photothermal materials made from SiO2 aerogel
and CNT that can be used as an effective solar steam generator, where SiO2 aerogel plays a
role as a thermal insulator for heat localization [181]. The fireproof and heatproof grade
of silica aerogel (SA) can be achieved as a construction material of class A1, which means
it will not produce smoke, droplets, or hazardous gases when exposed to a flame. Silica



Gels 2024, 10, 548 22 of 30

aerogel is now being used in building paints for thermal insulation, which affects the
reduction in temperature with increasing volumes of silica aerogel. Altay et al. prepared
two materials painted with and without the presence of SA and tested them for heat
reduction. After heating, they found that with SA, the heat reduction properties of the paint
had improved (up to 15 ◦C). In the manufacturing of firefighting gear and comfortable
clothing with high thermal resistivity, aerogels show good performance [182]. Guo et al.
synthesized ceramic-based hypocrystalline zircon nanofibrous aerogels (ZAG) with a zig-
zag architecture, which possessed a super thermomechanically stable and high-temperature
thermal insulation [183].

Figure 15a,b illustrates variations in thermal conductivity concerning changes in
the temperature, density, and wavelength of nanofibrous zirconium aerogel materials
(ZAG) in their prepared state. In accordance with general thermodynamic principles,
thermal conductivity generally increases with rising temperature. However, as shown
in Figure 15a, the increase in thermal conductivity of ZAG is only 104 mW m−1 K−1

and 28 mW m−1 K−1 at temperatures around 1000 ◦C and densities around 55 mg cm−3,
respectively. In addition, the thermal conductivity of ZAG has been compared with different
materials for variations in wavelength. It also shows a correlation with increasing radiation
energy. Additionally, the material was tested as thermal insulation for an aero-engine
tube, compared to the commercially used CFM56 tube. It is evident from Figure 15c of
the data that the temperature increase of ZAG is lower than that of the CFM56 tube. The
unique properties of ZAG make it suitable for use in spacecraft, deep-earth detectors,
furnaces, and space and fire suits. Recent studies have also explored the use of gels as
thermal insulators in electronic devices. Small electronic devices and metal oxide (MOX)
gas sensors need materials with low thermal conductivity, such as electrical insulators.
Ordinary low-thermal-conductivity materials require high-temperature treatment. Here,
gels can be used in thermal insulation systems. Fagnard et al. developed a xerogel–epoxy
composite for use in electronics, where they found thermal conductivity as low as 64.2%
compared to pure epoxy, that is, 107.9 mW m−1 K−1 [184].
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4. Conclusions

The next generation of devices and instruments demands flexible, self-healing, and
wearable properties to make them user-friendly. On the basis of unique characteristics,
hydrogels are chosen for constructing specific devices like sensors, actuators, soft robots,
solar cells, and flexible energy equipment. This review article discussed the state of the art
of different devices using hydrogels as a significant part, the advantages of using hydrogels
rather than other materials, and the scope of improvement. The motion of human organs
can be detected using gel-based sensors. Actuators convert input energy into mechanical
energy that is usable in various machines. Flexible energy storage and touch panels are the
most significant parts of devices in this smart era that use hydrogels as essential constituent
elements. The replacement of metal-ion batteries with hydrogels can be a revolutionary
sector that is in progress. Due to their double or triple network structure, ultra-low viscosity,
and transparency, hydrogels are replacing the silicon constituent components of soft robots.
Solar cells are a highly demanding research area in energy. Hydrogels play an important
role in the construction of efficient solar cells. The working mechanism of hydrogels in
various devices has been illustrated with relevant figures and graphs. The eligible raw
materials, preparation methods, and properties of hydrogels were presented through
figures. Recent research on hydrogel-based devices has been listed in tables, along with
their performance. Finally, it can be stated that hydrogels are emerging materials for the
better future of different devices.
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