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Abstract

The advent of deep learning (DL) and multimodal spatial transcriptomics (ST) has revolutionized
cancer research, offering unprecedented insights into tumor biology. This book chapter explores
the integration of DL with ST to advance cancer diagnostics, treatment planning, and precision
medicine. DL, a subset of artificial intelligence, employs neural networks to model complex
patterns in vast datasets, significantly enhancing diagnostic and treatment applications. In
oncology, convolutional neural networks excel in image classification, segmentation, and tumor
volume analysis, essential for identifying tumors and optimizing radiotherapy.

The chapter also delves into multimodal data analysis, which integrates genomic, proteomic,
imaging, and clinical data to offer a holistic understanding of cancer biology. Leveraging diverse
data sources, researchers can uncover intricate details of tumor heterogeneity, microenvironment
interactions, and treatment responses. Examples include integrating MRI data with genomic
profiles for accurate glioma grading and combining proteomic and clinical data to uncover drug
resistance mechanisms.

DL’s integration with multimodal data enables comprehensive and actionable insights for

cancer diagnosis and treatment. The synergy between DL models and multimodal data analysis
enhances diagnostic accuracy, personalized treatment planning, and prognostic modeling. Notable
applications include ST, which maps gene expression patterns within tissue contexts, providing
critical insights into tumor heterogeneity and potential therapeutic targets.

In summary, the integration of DL and multimodal ST represents a paradigm shift towards more
precise and personalized oncology. This chapter elucidates the methodologies and applications
of these advanced technologies, highlighting their transformative potential in cancer research and
clinical practice.
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1. Introduction

1.1 Deep learning and its significance in oncology

Deep learning (DL), a subset of machine learning, uses artificial neural networks to model
complex patterns in data. In oncology, this technology has revolutionized the analysis of
vast datasets, including medical images, genomic data, and clinical records, enhancing
applications from diagnosis to treatment planning. These capabilities significantly improve
cancer diagnosis, treatment planning, and prognostication (Li, Jiang, Zhang, & Zhu, 2023;
Lipkova et al., 2022; Steyaert et al., 2023b).

For instance, convolutional neural networks (CNNs) excel in tasks such as image
classification, segmentation, and tumor volume segmentation. These capabilities are crucial
for accurately identifying tumors and optimizing radiotherapy planning. By enabling precise
mapping of tumors, CNNs facilitate a shift towards precision medicine, where treatment
strategies are meticulously tailored to the individual characteristics of each patient’s tumor,
thereby significantly enhancing treatment outcomes (Sharma, Nayak, Balabantaray, Tanveer,
& Nayak, 2024).

Additionally, advancements in neural network architectures, particularly through the use of
transfer learning and data augmentation, have tailored DL tools to specific oncology needs,
enhancing both research and clinical applications.

To illustrate these advancements, Table 1 summarizes some studies that demonstrate DL’s
transformative role in oncology:

DL’s continued integration has significantly enhanced the accuracy and efficiency of cancer
care. This is particularly evident in the use of CNNs for precise tumor segmentation and

the application of transfer learning. Transfer learning involves adapting pre-trained models
—originally developed for one task—to new, related tasks. This approach is highly effective
in oncology, where models trained on large, diverse datasets are fine-tuned to recognize
specific cancer types. By using transfer learning, clinicians can leverage the knowledge
gained from vast amounts of existing data, thereby reducing the need for extensive labeled
datasets specific to each cancer type. This accelerates the development of diagnostic

tools and enables more rapid and accurate customization of treatment plans, which helps
further the goals of the precision medicine (Aneja, Aneja, Abas, & Naim, 2021; Hanczar,
Bourgeais, & Zehraoui, 2022; Luo & Bocklitz, 2023).

Ultimately, the significance of multimodal data analysis cannot be overstated. It represents a
substantial shift towards more comprehensive and integrated methods in cancer research and
treatment, which is the primary focus of this chapter.

1.2 Multimodal data analysis in cancer research

Multimodal data analysis involves integrating diverse data types—such as genomic,
proteomic, imaging, and clinical data—to gain a holistic understanding of complex
biological systems (Acosta, Falcone, Rajpurkar, & Topol, 2022). This foundational approach
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enhances the depth and accuracy of insights into cancer biology by leveraging the strengths
of varied data sources.

. Genomic data provide insights into genetic mutations and variations.

. Proteomic data reveal details about protein expression and modifications.

. Imaging data offer a detailed view of tumor morphology and microenvironment.
. Clinical data provide context about patient history and treatment outcomes.

For a more detailed look at the practical applications of these integrations in cancer research,
particularly in the context of spatial transcriptomics (ST), see Section 2.2.

1.2.1 Key examples and benefits of integrating various data types

. Genomic and imaging data integration: This integration enhances tumor
subtype identification and treatment response prediction. For example,
integrating MRI data with genomic profiles can distinguish between different
glioma grades, leading to more accurate treatment decisions (Cebula et al.,
2020).

. Proteomic and clinical data integration: This combination provides insights
into drug resistance mechanisms and potential therapeutic targets. It also helps
monitor disease progression and evaluate treatment effectiveness in real-time
(Price et al., 2022).

. Genomic, proteomic, and imaging data integration: This comprehensive
approach uncovers complex interactions between genes, proteins, and the
tumor microenvironment (TME), facilitating the development of multi-targeted
therapies and improving patient outcomes (Boehm, Khosravi, Vanguri, Gao, &
Shah, 2022).

Refer to Table 2 for additional examples of multimodal data integration in cancer research.

1.3 Synergistic potential of deep learning and multimodal approaches

The synergy between DL and multimodal data analysis holds immense potential for
advancing precision medicine and enhancing patient outcomes in oncology. CNNs, in
particular, excel in processing and interpreting complex medical data, such as imaging,
genomics, and clinical records.

One notable application is the use of ST, which allows the mapping of gene expression
patterns within the spatial context of tissues. This provides critical insights into tumor
heterogeneity, microenvironment interactions, and treatment response. Combining this with
multimodal approaches, which incorporate various data types like genomic, proteomic,

and imaging data, enables DL models to uncover more comprehensive and actionable
information for cancer diagnosis and treatment (Halawani, Buchert, & Chen, 2023; Hu,
Sajid, Lv, Liu, & Sun, 2022; Li, Li, You, Wei, & Xu, 2023).

Fig. 1 illustrates the comprehensive workflow for analyzing cancer using DL-based
multimodal ST:
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This figure illustrates the comprehensive workflow for analyzing cancer using multimodal
ST and DL.

A Tissue sample preparation, including sectioning, staining, and ST profiling.

B. Data acquisition phase, capturing ST data, imaging data (e.g., hematoxylin and
eosin [H&E] staining), and optional genomic/proteomic data.

C. Preprocessing and integration of multimodal data, ensuring consistency and
compatibility.

D. Application of DL models, such as CNNs, autoencoders, transformers, and
GANs, for cell type identification, spatial domain prediction, gene expression
pattern analysis, and integration of multi-omics features.

E. Biological interpretation of results, revealing insights into tumor heterogeneity,
tumor-microenvironment interactions, and potential therapeutic targets,
advancing precision oncology.

1.3.1 Benefits of this synergy—Enhanced diagnostic accuracy is achieved through
DL models that analyze vast imaging data volumes to identify subtle cancer patterns, which
might be missed by human observers. By integrating genomic and proteomic data, these
models correlate molecular signatures with imaging findings, leading to more accurate
diagnoses (Jiang, Hu, Wang, & Zhang, 2023). Personalized treatment planning benefits from
multimodal data providing a holistic view of a patient’s condition, enabling DL models

to predict treatment responses and outcomes more effectively. For example, combining
imaging data with genomic profiles can tailor chemotherapy or radiotherapy plans to the
individual patient’s tumor characteristics, increasing treatment efficacy and reducing adverse
effects (Joo et al., 2021). Improved prognostic models emerge from DL models that integrate
longitudinal data from various sources to predict disease progression and patient survival
more accurately. This capability is crucial for developing personalized follow-up strategies
and improving long-term patient management (Cascarano et al., 2023). Real-time decision
support is facilitated by the synergy between DL and multimodal approaches, allowing
real-time clinical decision support during surgery or radiotherapy. Real-time data from
imaging modalities processed by DL algorithms guide procedures, ensuring precise targeting
of cancerous tissues while sparing healthy ones (Steyaert et al., 2023b). Accelerated

research and development are achieved by harnessing DL to analyze multimodal datasets,
helping researchers uncover new biomarkers and therapeutic targets more efficiently. This
acceleration leads to faster development of innovative treatments and diagnostics, ultimately
benefiting patients (Johnson et al., 2021).

The synergy between DL and multimodal data analysis, especially through the integration
of ST, signifies a paradigm shift in oncology. This transition is paving the way for a new

era of precision medicine characterized by enhanced diagnostic accuracy, more personalized
treatment strategies, and overall improved patient outcomes.

Having explored the synergistic potential of DL and multimodal approaches, we now have
established a solid foundation for understanding how these advanced methodologies are

Adv Cancer Res. Author manuscript; available in PMC 2024 September 27.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Rajdeo et al. Page 5

revolutionizing the field of oncology. Next, we will delve deeper into the core concepts

of multimodal ST. This cutting-edge area further exemplifies the transformative power of
integrating diverse data types to unravel the complexities of cancer, which is offering new
avenues for research and treatment that promise to enhance the precision and effectiveness
of oncology therapies.

2. Core concepts of multimodal spatial transcriptomics

2.1 Basics of spatial transcriptomics

ST is a transformative technique in molecular biology that allows for the visualization

and quantification of gene expression within tissue sections, preserving the spatial context
of the cells. This innovative approach provides essential insights into the variability of
gene expression across different regions of tissues, enhancing our understanding of cellular
functions and tissue organization in both health and disease (Stahl et al., 2016).

Key principles of ST include spatial resolution, which maintains spatial information about
where gene expression occurs within the tissue, providing crucial context for understanding
cell interactions within their microenvironments and how these interactions influence
overall tissue function. High-throughput sequencing is utilized by ST to analyze the
transcriptome across thousands of spatially resolved locations within a tissue sample,
enabling a comprehensive analysis of gene expression patterns. Additionally, the integration
with imaging combines transcriptomic data with high-resolution tissue imaging, creating

a detailed map of gene expression patterns corresponding to specific histological features,
which helps to correlate morphological characteristics with molecular data, enhancing the
precision of biological insights.

2.1.1 Methods

. In situ hybridization: Techniques like MERFISH and seqFISH use fluorescent
probes to detect RNA molecules within tissues, allowing for high spatial
resolution localization of gene expression (Du et al., 2023).

. Spatially resolved transcriptomics platforms: Technologies like 10x
Genomics’ Visium and Slide-seq use spatial barcoding to map gene expression.
These platforms facilitate precise mapping of RNA molecules to their spatial
coordinates within the tissue (Williams, Lee, Asatsuma, Vento-Tormo, & Haque,
2022).

. Laser capture microdissection (LCM): LCM involves using a laser to precisely
cut out specific regions of tissue for RNA extraction and sequencing. This
method provides high spatial resolution and is particularly useful for analyzing
small or rare cell populations within a tissue (Emmert-Buck et al., 1996).

2.1.2 Importance in mapping the transcriptome to tissue locations—Mapping
the transcriptome to specific tissue locations is transformative for several reasons (Williams
et al., 2022). Understanding tissue heterogeneity is enhanced as ST allows researchers

to identify distinct gene expression profiles across different tissue regions, shedding
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light on how various cell types contribute to tissue function and pathology. In terms of
disease mechanisms, ST reveals interactions between cancer cells and surrounding stromal
and immune cells, providing insights into tumor growth and metastasis mechanisms.

In developmental biology, ST is invaluable for studying gene expression during tissue
development, aiding in understanding the processes of tissue formation, differentiation, and
organization.

Case studies illustrate the application of ST in uncovering complex cellular interactions
and identifying therapeutic targets in diseases, particularly in cancer research. In colorectal
cancer, a recent study by Peng et al. (2023b) utilized ST to explore the interactions between
fibroblasts and myeloid cells. By integrating single-cell RNA sequencing, ST, and bulk
RNA sequencing data, the researchers identified a pro-tumorigenic interaction between
MFAP5+ fibroblasts and C1QC+ macrophages. These interactions were mapped spatially
within the tumor, highlighting specific signaling pathways that contribute to the malignant
behavior of colorectal cancer. This study underscores the importance of ST in elucidating
the complex cellular interactions within the TME and identifying potential therapeutic
targets. In glioblastoma, another example is the work by Liu et al. (2023), who integrated
single-cell RNA sequencing with ST to analyze the cellular heterogeneity. They identified
distinct clusters of malignant cells with unique transcriptional and functional properties. ST
allowed them to map these clusters within the tumor, revealing their spatial colocalization
and interactions with the TME. This integrated approach provided novel insights into the
mechanisms of tumor progression and resistance to therapy in glioblastoma.

These examples underscore how ST, by preserving the spatial context of gene expression,
helps deepen our understanding of tissue architecture and cellular interactions, which is
crucial for developing targeted therapies and improving clinical outcomes.

The following case studies illustrate the application of ST in uncovering complex cellular
interactions and identifying therapeutic targets in diseases, particularly in cancer research.

2.2 Multimodal spatial transcriptomics: integrating varied data types

As discussed in Section 1.3, multimodal ST marks a significant advancement in studying
complex biological systems, especially in the context of cancer research. By integrating
diverse data types such as genomics, proteomics, imaging, and clinical data, researchers
can achieve a holistic view of disease mechanisms. This section focuses on how these
integrations are uniquely beneficial in the context of ST.

2.2.1 Integrating genomics and proteomics with spatial transcriptomics

Genomic data integration: Combining ST with genomic data offers a comprehensive view
of the genetic landscape within tissues. This integration is crucial for revealing mutations
and structural variations that drive cancer progression. Tools like MethCNA integrate DNA
methylation and copy number variation data, aiding in the identification of oncogenic drivers
within their spatial context in tissues (Deng, Yang, Zhang, Xiao, & Cai, 2018). For example,
integrating ST with genomic perturbation data enhances gene regulatory network inference,
allowing researchers to predict how specific genomic alterations impact gene expression
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across different tissue regions (Liang, Young, Hung, Raftery, & Yeung, 2019). This helps
in understanding how mutations within the same tumor can lead to varied phenotypic
outcomes.

Proteomic data integration: Proteomics complements ST by providing insights into
protein expression and modifications, the functional executors of genetic information.
Proteogenomic approaches integrate patient-specific genomic and proteomic data to
characterize the mutational landscape and protein signaling pathways in tumors, identifying
patient-specific drug targets and resistance mechanisms (Schmitt et al., 2021).

2.2.2 Complementing ST with imaging and clinical data

Imaging data integration: Integrating imaging data with ST allows for correlating
morphological features with molecular changes, enhancing the understanding of tumor
phenotypes and treatment responses. For instance, the FDTrans model developed by Cai
et al. (2023) integrates histopathological images with genomic data to classify lung cancer
subtypes, demonstrating the potential of this approach.

Clinical data integration: Combining ST with clinical data helps identify biomarkers
predictive of therapy response and disease prognosis. Integrating clinical information with
molecular profiles, as done by Wilson, Li, Yu, Kuan, and Wang (2019) identifies gene sets
relevant to prognostic predictions across cancer types.

Fig. 2 illustrates the application of ST techniques in a cancer tissue section, highlighting the
detailed visualization methods used to study the TME.

a. Multiplexed immunofluorescence image: This image shows the spatial
distribution of three different proteins within the tissue, each protein is denoted
by a specific color.

b. H&E stained tissue section: Displays the overall tissue morphology and cellular
structure, providing a visual context for the underlying tissue architecture.

c. ST heatmap: This heatmap demonstrates the relative expression levels of a gene
of interest across different regions of the tissue, indicating areas of high and low
expression.

d. Integrated view: This circle contains a zoomed-in view of the H&E-stained

tissue, overlaid with color-coded indicators for tumor cells (yellow), immune
cells (red), and stromal cells (green and purple), illustrating the cellular
composition and interaction within the microenvironment.

2.2.3 Successful multimodal ST studies in cancer research—The following
case studies demonstrate the successful application of multimodal ST in cancer research,
providing insights that guide the development of more effective and personalized treatment
strategies. Harikumar, Quinn, Rana, Gupta, and Venkatesh (2021) proposed a framework

to predict gene responses to drugs using patient-specific single-cell expression data and
population-level drug-response data. This dual-channel approach integrates single-cell RNA-
seq with drug response data, providing personalized predictions of drug efficacy. This
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framework has been applied to glioblastoma, illustrating how multimodal integration can
enhance personalized treatment strategies.

Another notable example is the FDTrans model by Cai et al. (2023), which exemplifies
successful multimodal integration by combining histopathological images with genomic
data to classify lung cancer subtypes. This model achieved high accuracy and AUC scores,
demonstrating the potential of integrating imaging and genomic data to improve diagnostic
precision and treatment planning. Similarly, Schmitt et al. (2021) used proteogenomics

to study the mutational landscape of melanoma patients. By integrating genomic and
proteomic data, they identified pathways associated with melanoma development and
immunotherapy response, highlighting the importance of combining multiple data types to
uncover molecular mechanisms and identify therapeutic targets.

In a comprehensive study by Wei, Zhang, Weng, Chen, and Cai (2021), various
computational methods for integrating multi-omics data across pan-cancer datasets were
assessed. This study demonstrated the ability of integrative methods to identify distinct
tumor compositions and molecular patterns, providing valuable insights for pan-cancer
analysis and highlighting the importance of multimodal data integration in cancer research.
In summary, multimodal ST provides a comprehensive framework for understanding the
complex molecular landscape of cancers, enhancing our knowledge of tumor biology and
paving the way for personalized medicine.

2.3 Unraveling cancer complexity with multimodal spatial transcriptomics

Multimodal ST empowers researchers to dissect tumor heterogeneity, analyze the TME, and
evaluate therapy responses with unprecedented detail and precision. These capabilities lead
to several key insights.

2.3.1 Key insights from multimodal ST

Tumor heterogeneity: One of the primary insights gained from multimodal ST is the
detailed characterization of tumor heterogeneity. Tumors are composed of a mosaic of
genetically distinct cell populations, each contributing differently to disease progression and
therapy resistance. ST, combined with single-cell sequencing, allows for the mapping of
these heterogeneous cell populations within their spatial context. For instance, Halawani

et al. (2023) highlighted how DL frameworks applied to single-cell and ST data can

unravel the complex gene transcription profiles and mutation spectra within tumors.

This approach has been crucial in identifying subclonal populations that drive disease
progression and metastasis. In esophageal cancer, the integration of multi-omics data has
provided insights into the cellular and genetic heterogeneity within tumors. Li et al. (2023)
discussed how artificial intelligence (Al) can analyze and interpret multi-omics data, which
enables a comprehensive understanding of tumor heterogeneity and its implications for
disease progression and treatment strategies. This high-dimensional characterization helps in
identifying novel cell types and understanding their roles in tumor biology.

TME: The TME plays a pivotal role in cancer development and therapy response.
Multimodal ST allows for the spatial profiling of immune and stromal cells within
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the TME, providing insights into their interactions with tumor cells. Hu et al. (2022)
emphasized the importance of spatial profiling technologies in evaluating the transcriptional
activity of immune and stromal cells within the TME. This multidimensional classification
facilitates the study of tumor-immune interactions, the evolutionary trajectory of tumors,

and the identification of immune evasion mechanisms. A study by Zhang et al. (2024a)

on hepatocellular carcinoma revealed how single-cell sequencing and ST can uncover the
spatial distribution and functional states of tumor-infiltrating lymphocytes. The identification
of stimulatory dendritic cells and macrophages as potential biomarkers underscores the
importance of understanding the spatial organization of immune cells in predicting therapy
responses.

Therapy response: Understanding the spatial and molecular determinants of therapy
response is crucial for developing effective cancer treatments. Multimodal ST provides a
platform for identifying biomarkers and therapeutic targets by linking molecular profiles
to spatial contexts. For example, Lyubetskaya et al. (2022) demonstrated how ST can
capture key tumor features such as hypoxia, necrosis, and vasculature, which are critical
for understanding therapy responses. The ability to map these features within the tumor
landscape helps in identifying regions of therapeutic resistance and potential targets for
intervention. In breast cancer, Bottosso et al. (2024) highlighted the use of precision
medicine to predict drug sensitivity based on a deeper molecular understanding of the
disease. The integration of genomic, transcriptomic, and imaging data allows for the
identification of biomarkers that predict response to specific therapies and can aid in the
personalization of treatment strategies.

Having established the foundational concepts and diverse applications of multimodal ST, we
now shift our focus to the innovative role of DL in this domain. This transition marks a
pivotal move towards harnessing sophisticated computational models to further unravel the
complexities of cancer at a molecular and spatial level.

3. Deep learning approaches in multimodal spatial transcriptomics

Building upon our exploration of multimodal ST, Section 3 delves into the transformative
role of DL in refining and advancing this field. As depicted in Fig. 3, these models integrate
diverse data types—including genomic, proteomic, imaging, clinical, and ST—to enable
comprehensive analysis and interpretation of cancer data. Here, we focus on cutting-edge
deep learning models that bring unprecedented precision to analyzing ST data. These
models not only interpret complex biological relationships within tissues but also push the
boundaries of diagnostic and prognostic capabilities, marking a significant evolution in the
tools available to oncologists and researchers.

This figure illustrates the process of multimodal data fusion and the application of DL to
achieve improved diagnostic accuracy, personalized treatments, and a better understanding
of tumor heterogeneity and the TME.
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3.1 Deep learning models for spatial transcriptomics data

ST technologies provide a detailed map of gene expression patterns within the spatial
architecture of tissues. The complexity of this data necessitates the use of advanced DL
models that can identify and interpret intricate spatial patterns and relationships.

This section introduces various DL models suitable for analyzing ST data, including graph
neural networks (GNNs), CNNs, transformer models, and hybrid approaches (see Fig. 4).

This figure highlights the key DL models used in ST, including GNNs, CNNs, transformer
models, and hybrid approaches, showcasing their unique processing techniques and
applications in cancer research.

3.1.1 Graph-based deep learning models—Graph-based models excel at
contextualizing the complex morphology and structure within whole slide images by
representing spatial relationships through graph structures. These models efficiently encode
the intricate patterns of tissue architecture, enabling a detailed analysis of ST data. This
approach facilitates the exploration of cellular interactions and molecular pathways across
diverse tissue regions, enhancing our understanding of disease mechanisms and progression
(Wu et al., 2022; Yuan & Bar-Joseph, 2020). Azher et al. (2023) demonstrated the

potential of leveraging ST data with a contrastive crossmodal pretraining mechanism to
improve graph-based learning tasks. This approach enhanced the extraction of molecular
and histological information, which improved outcomes in cancer staging, lymph node
metastasis prediction, survival prediction, and tissue clustering analyses. The integration

of spatial omics data significantly improved the performance of graph-based models in
pathology workflows, thus highlighting their potential to enhance cancer diagnostics and
prognostics.

Peng, He, Peng, Li, and Zhang (2023a) developed STGNNKks, a method that combines
GNNs, denoising auto-encoders, and k-sums clustering to process spatially resolved
transcriptomics data. This model constructs a hybrid adjacency matrix and integrates gene
expressions with spatial context, mapping learned features to a low-dimensional space

for clustering. STGNNKks significantly outperformed existing ST analysis algorithms and
provided valuable insights into tumor progression through spatial trajectory inference

and differentially expressed gene detection. Additionally, Wu et al. (2022) applied

GNNs to model TMEs as local subgraphs using spatial protein profiles. This strategy
captures distinctive cellular interactions associated with differential clinical outcomes. The
model demonstrated substantial improvements in predicting patient outcomes compared to
traditional DL approaches, underscoring its potential to enhance the understanding of TME
dynamics.

3.1.2 Convolutional neural networks (CNNs)—CNNSs are adept at analyzing
histopathological images and predicting gene expression patterns due to their ability to
extract high-level features from complex visual data. These networks use multiple layers of
filters to process spatial hierarchies in images and capture details from cell morphology

to tissue architecture (Dabeer, Khan, & Islam, 2019). This enables CNNs to identify

subtle patterns and structures that are crucial for accurate gene expression prediction,
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which enhances our understanding of the molecular underpinnings of cancer and other
diseases. Zheng, Carrillo-Perez, Pizurica, Heiland, and Gevaert (2023) developed a DL
model to predict transcriptional subtypes of glioblastoma cells from histology images.

This model phenotypically analyzed millions of tissue spots and identified consistent
associations between tumor architecture and prognosis across independent cohorts. The
approach underscored the critical connection between spatial cellular architecture and
clinical outcomes, thus offering a scalable method to predict gene expression and understand
the spatial organization of tumor cells.

In a related advancement, Wang, Zhou, Kong, and Lu (2023) proposed a CNN-based
method for enhancing spot resolution in ST, termed superresolved ST. Their approach,
utilizing a shift-predict operation, achieved 9x superresolution and outperformed traditional
superresolution techniques. This method provides a deeper understanding of gene expression
patterns and their underlying biological significance, highlighting the potential of CNNs to
revolutionize ST by improving spatial resolution and analytical precision.

3.1.3 Transformer models—Transformers excel in capturing long-range dependencies,
which enhances gene expression predictions from histology images by leveraging the self-
attention mechanism introduced in the seminal paper Attention Is All You Need (Vaswani

et al., 2023). This approach allows transformers to simultaneously process distant parts

of an image, identifying crucial patterns and correlations for accurate prediction. This
mechanism enables the comprehensive analysis of the whole tissue section, improving the
mapping of gene expressions and aiding in the study of complex interactions within the
TME. Liu, Zhang, and Luo (2024) proposed a contrastive learning-based framework to infer
molecular subtypes and clinical outcomes of breast cancer from unannotated whole slide
images. By leveraging patch-level features and a gated attention mechanism, the model
produced slide-level predictions. This method effectively established high-order genotype-
phenotype associations, enhancing the application of digital pathology in clinical practice.
Xiao, Kong, Li, Wang, and Lu (2024) introduced TCGN, a model combining convolutional
layers, transformer encoders, and GNNSs to estimate gene expressions from histopathological
images. TCGN operates with a single spot image input, maintaining interpretability while
enhancing accuracy. The model provided a powerful tool for inferring gene expressions in
precision health applications.

The versatility of transformers to capture long-range dependencies complements the
localized feature extraction of CNNs. Combining these approaches can further enhance
model performance, leading us to hybrid approaches.

3.1.4 Hybrid approaches—Hybrid models combine multiple DL architectures to
enhance the analysis of ST data. By integrating the unique advantages of each model, they
achieve a more comprehensive and accurate interpretation of complex biological data. This
synergy allows for a deeper understanding of the spatial and molecular dynamics within
tissues, aiding in the identification of key biological insights and potential therapeutic targets
(Song et al., 2024; Yan et al., 2019).
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Steyaert et al. (2023a) emphasized the importance of developing multimodal fusion
approaches to integrate complementary data types such as molecular, histopathology,
radiology, and clinical records. By leveraging DL models that can handle multiple
modalities, researchers can capture the heterogeneity of complex diseases more accurately,
advancing precision medicine. Chen, Zhang, Tang, Liu, and Huang (2024) proposed

the Edge-relational Window-attentional GNN (ErwaNet) for predicting gene expression
from standard tissue images. This model constructs heterogeneous graphs to model local
window interactions and incorporates an attention mechanism for global information
analysis. ErwaNet stands out as a cost-effective and accurate method for gene expression
prediction, offering a significant advantage in cancer research by providing more efficient
and accessible analytical paradigms.

By integrating the strengths of different models, hybrid approaches offer a robust framework
for ST analysis, combining the localized feature extraction of CNNSs, the contextual
understanding of transformers, and the relational mapping of GNNs.

3.2 Successful applications of deep learning in multimodal spatial transcriptomics

This subsection showcases how DL significantly enhances the analysis of ST by enabling
precise cell-type identification, biomarker discovery, and treatment response prediction.
Each case study directly correlates with the models discussed, illustrating the practical
impact of these technological advancements.

Table 3 lists recent DL applications in ST, emphasizing diverse methodologies and their
impacts on cancer research. Each entry will be succinctly described, highlighting its
relevance and connection to the DL models introduced earlier.

These case studies illustrate the diverse applications of DL in enhancing ST analysis.

By integrating multimodal data, such as histological images and ST, DL models have
significantly improved our understanding of cellular and molecular mechanisms in various
diseases.

Reflecting on this comprehensive review, some key areas highlight the significant strides
where DL optimizes multimodal ST:

DL methods, such as STGNNks and RESEPT, have revolutionized cell-type identification
and spatial domain mapping in tissue samples. By precisely characterizing cellular
heterogeneity and tissue organization, these advancements open new avenues for
understanding disease mechanisms and developing targeted therapies tailored to specific
cell populations (Chang et al., 2022; Peng et al., 2023a). Additionally, DL approaches,
exemplified by the work of Halawani et al. (2023) and Liu et al. (2024), have accelerated
biomarker discovery by analyzing spatial gene expression patterns and tumor heterogeneity.
The identification of novel molecular markers through these techniques offers the potential
for earlier disease detection, more accurate prognosis, and the development of targeted
therapies that address the unique molecular signatures of individual tumors.

Furthermore, DL models, as demonstrated by Wu et al. (2022) and Zheng et al. (2023),
have shown remarkable promise in predicting patient outcomes and treatment responses. By
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analyzing spatial relationships and cellular interactions within tumors, these models offer a
powerful tool for tailoring treatment strategies to individual patients, ultimately leading to
improved clinical outcomes and more effective cancer care.

These advancements underscore the transformative potential of DL in ST, which is

paving the way for more precise and personalized medical interventions. The integration

of multimodal data, supported by robust DL frameworks is continuing to drive

significant progress in cancer research and precision medicine. By leveraging these
advanced techniques, researchers can significantly improve the accuracy, robustness, and
interpretability of ST analysis, ultimately accelerating the development of novel diagnostics
and therapeutics in precision medicine.

4. Impact of multimodal spatial transcriptomics on cancer diagnostics and

therapeutics

In the preceding sections, we explored how multimodal ST integrates various data types to
revolutionize cancer research. This section will focus on how these integrations enhance
cancer diagnostics and therapeutics, thus highlighting specific instances where ST has
uniquely contributed to advancements in these areas. Here, we emphasize novel applications
and methodologies that demonstrate the transformative potential of ST in clinical settings.

4.1 Enhancing cancer diagnosis

Recent advancements have demonstrated the power of pathogenomics in integrating
advanced molecular diagnostics from genomic data with morphological information from
histopathological imaging and codified clinical data. Feng et al. (2024) describe how this
integration leads to the discovery of new multimodal cancer biomarkers, and thus enhances
the precision of oncology diagnoses. Their study emphasizes the importance of synthesizing
complementary modalities with emerging multimodal Al methods in pathogenomics,
including the correlation and fusion of histology and genomics profiles of cancer. This
approach overcomes the limitations of unimodal data and propels precision oncology into
the next decade.

Similarly, Xi et al. (2022) presented a modality-correlation embedding model for breast
tumor diagnosis using mammography and ultrasound images. By optimizing the correlation
between these modalities, their model improved tumor classification accuracy significantly,
with a sensitivity of 91.67% and a specificity of 95.83%. This study demonstrates the
importance of maintaining pairwise closeness of multimodal data in a common label space
with consistent diagnostic results from multimodal images of the same patient.

Abdollahyan et al. (2023) highlight the role of dynamic biobanking in advancing breast
cancer research. The Breast Cancer Now Tissue Bank at the Barts Cancer Institute serves as
a dynamic biobanking ecosystem and integrates longitudinal biospecimens with multimodal
data, including EHRs, genomic, and imaging data. This ecosystem supports precision
medicine efforts in breast cancer research by offering high-quality annotated biospecimens
and advanced analytics tools, demonstrating how integrated data can inform diagnostic
accuracy.
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4.2 Personalized treatment strategies

Chen et al. (2023) introduced the Multimodal Data Fusion Diagnosis Network (MDFNet),
a framework that effectively fuses clinical skin images with patient clinical data for skin
cancer classification. MDFNet establishes a mapping among heterogeneous data features
which addresses issues of feature paucity and richness that arise from using single-mode
data. Their model showed an improvement in diagnostic accuracy by about 9% and
illustrates the fusion advantages exhibited by MDFNet and its potential as an effective
auxiliary diagnostic tool for skin cancer, enhancing clinical decision-making.

Yan et al. (2019) developed a hybrid DL method for breast cancer classification by
integrating pathological images and structured data from clinical EMRs. This approach
significantly outperforms state-of-the-art methods and demonstrates the importance of
combining multimodal data for precise patient stratification and personalized therapy. Their
method provides a practical tool for breast cancer diagnosis in real clinical practice.

Rani, Ahmad, Masood, and Saxena (2023) highlighted the importance of using machine
learning models on unimodal and multimodal datasets for diagnosing breast cancer
molecular subtypes. By operating on multimodal data samples for each patient, their
custom DL-based model pipeline achieved 94% accuracy and thus showed the superiority
of multimodal data over unimodal in breast cancer subtype classification. These findings
underscore the value of multimodal data in enhancing the precision of treatment strategies.

Li et al. (2022) utilized multi-omics data for lung cancer stage prediction, showing that
microbial combinatorial transcriptome fusion analysis had the highest accuracy, reaching
0.809. This study reveals the role of multimodal data and fusion algorithms in accurately
diagnosing lung cancer stages, which aids doctors in clinics and emphasizes the potential of
multimodal integration in personalized treatment planning.

4.3 Deep learning’s contribution to ST-based precision oncology

Steyaert et al. (2023a) discussed the challenges and opportunities in multimodal data fusion
for cancer biomarker discovery with DL. They highlighted the need for developing effective
multimodal fusion approaches as a single modality might not be sufficient to capture

the heterogeneity of complex diseases like cancer. By tackling data sparsity and scarcity,
enhancing multimodal interpretability, and standardizing datasets, DL can significantly
advance the analysis of biomedical data to the discovery of key cancer biomarkers.

Lobato-Delgado, Priego-Torres, and Sanchez-Morillo (2022) combined molecular, imaging,
and clinical data analysis for predicting cancer prognosis and demonstrated how integration
of these data types using machine learning and DL techniques improves patient stratification
and clinical management. This review emphasizes that multimodal models can better stratify
patients and can contribute to personalized medicine and provide valuable insights into
cancer biology and progression.

Zhang et al. (2024b) explored the use of Al in liver imaging, summarizing Al methodologies
and their applications in managing liver diseases. They stressed the importance of feature
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interpretability, multimodal data integration, and multicenter study in enhancing the clinical
applications of Al, supporting precise disease detection, diagnosis, and treatment planning.

Shao, Ma, Zhang, Li, and Wang (2023) discussed predicting gene mutation status via

Al technologies based on multimodal integration to advance precision oncology. Their
review synthesized the general framework of MMI for molecular intelligent diagnostics
and summarized emerging applications of Al in predicting mutational profiles of common
cancers. This work highlights the potential of Al as a decision-support tool to aid
oncologists in future cancer treatment management and the challenges and prospects of
Al in medical fields.

As we conclude our exploration of the impact that multimodal ST and DL have

on enhancing cancer diagnostics and therapeutics, we recognize the transformative
advancements these technologies bring to precision oncology. The integration of diverse
data types, coupled with sophisticated analytical models, has not only revolutionized our
approach to understanding and treating cancer but also set the stage for addressing the
complexities of implementation in clinical settings.

Looking ahead, Section 5 will delve into the challenges, future outlook, and ethical
considerations of these technologies. We will explore the barriers that must be overcome

to fully realize their potential, the ethical frameworks that need to be established for their
responsible use, and the directions future research might take to continue advancing the field
of cancer research and treatment.

5. Challenges, future outlook, and ethical considerations

As we delve into the transformative world of Al-driven multimodal ST in cancer
research and treatment, it’s critical to navigate the complex challenges and ethical
considerations while also looking toward future advancements. By addressing these
elements comprehensively, we can fully harness the transformative potential of these
technologies.

5.1 Challenges and future directions

5.1.1 Challenges in multimodal spatial transcriptomics—While traditional ST
has revolutionized our understanding of tissue architecture and cellular function, it faces
several issues that hinder its broader application. These include data sparsity and noise,
potential batch effects, and missing data, all of which can obscure meaningful biological
insights. Despite significant advancements, the field of multimodal ST continues to
encounter numerous challenges that must be addressed to fully unlock its transformative
potential. Integrating and interpreting high-dimensional data from diverse sources requires
sophisticated computational tools and algorithms. Moreover, the heterogeneity and sparsity
of single-cell and ST data add layers of complexity to the analysis.

A major barrier in the field is the lack of standardization and interoperability among
different imaging and omics modalities. Standardized protocols and interdisciplinary
collaboration are essential to overcome these challenges (Jaiswal, Agarwal, & Jaiswal,
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2023). Robust imputation techniques and model-based approaches are critical for addressing
missing and sparse data, which are pivotal for maintaining the integrity of ST studies
(Rathore, Abdulkadir, & Davatzikos, 2020). Technical variability and batch effects can
significantly skew analyses, necessitating robust preprocessing pipelines and advanced batch
correction methods to mitigate these effects (Feng et al., 2024; Khalighi et al., 2024). The
scalability of data analysis and the ethical, legal, and social implications must be addressed
for the responsible implementation of Al and ST in healthcare (Khalighi et al., 2024; Liu et
al., 2024).

Standardization and robust imputation techniques are crucial for combating issues of
missing data and ensuring interoperability across platforms (Capobianco, 2022; Rathore

et al., 2020). These measures will help maintain data integrity and enhance the comparability
of results across different studies. Addressing these challenges will pave the way for the
more effective and widespread use of multimodal ST in research and clinical settings,
ultimately advancing our understanding of complex biological systems and improving
patient care.

5.1.2 Future directions—To overcome the existing challenges and pave the way for
new discoveries, research in multimodal ST is focusing on several key areas:

Increasing sequencing depth and using robust preprocessing pipelines are necessary
strategies to enhance the signal-to-noise ratio and address data sparsity issues (Akhoundova
& Rubin, 2022; Feng et al., 2024). Implementing advanced batch correction methods and
developing multimodal fusion techniques are essential to mitigate batch effects and improve
data integration (Khalighi et al., 2024; Steyaert et al., 2023a). Ensuring the reliability and
generalizability of models through practices like cross-validation and external validation is
crucial. Additionally, incorporating interpretability techniques, such as attention mechanisms
and SHAP values, helps translate complex ST data into actionable insights (Steyaert et al.,
2023a; Yu et al., 2023). Rigorous biological validation of model predictions is essential

to ensure that identified patterns reflect true biological phenomena. Integrating ST data
with experimental data, such as functional assays, is crucial for confirming the biological
significance of the findings.

Promoting collaborative efforts and establishing standardized workflows for data sharing
are key to advancing ST research and developing standardized analytical tools (Tortora et
al., 2023). Continued advancements in computational models, including DL and Bayesian
statistics, will enhance data analysis capabilities and offer new insights into complex
biological systems (Li, 2023). Building comprehensive databases and repositories for
multimodal data will facilitate data sharing and collaborative research, which are crucial
for accelerating discoveries in cancer research. Integrating clinical data with multimodal
ST is vital for translating research into clinical practice and developing more effective and
personalized therapies.

By addressing these challenges and leveraging future directions, the field of multimodal ST
is poised for significant advancements, promising to enhance our understanding of complex
biological systems and improve therapeutic strategies in precision medicine.
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5.2 Ethical dimensions and responsible Al use

The use of Al and ST in healthcare introduces significant ethical considerations that must be
managed to ensure responsible application:

5.2.1 Ethical considerations in data collection and analysis—Ensuring that
patient data is collected and used in a manner that respects consent and confidentiality

is paramount to balancing the benefits of Al-driven diagnostics against potential risks to
patient autonomy and privacy (Love, 2023). Building trust among patients and healthcare
providers requires transparent Al algorithms that provide clear explanations of their
decision-making processes, ensuring that decisions are made in the best interests of patients.
Ethical guidelines for data anonymization and sharing should be established to protect
patient identities and outline the purposes for which data can be used, fostering responsible
research practices.

5.2.2 Addressing biases and ensuring fairness—Training Al algorithms on
diverse datasets is essential to prevent biases that could lead to healthcare disparities

(Wang et al., 2024). Ensuring that Al models provide equitable care and identifying any
biases that could disadvantage certain patient groups are crucial for fostering fair healthcare
practices (Fusar-Poli et al., 2022). Developing comprehensive ethical frameworks to address
the challenges and risks associated with Al in healthcare is necessary to guide ethical
implementation and ensure model accuracy and fairness (Sundaramurthy & Vaithiyalingam,
2023).

In summary, addressing the challenges in ST data analysis demands a multifaceted approach
that includes improving data quality, developing robust validation strategies, enhancing
model interpretability, and performing rigorous biological validation. By tackling these
challenges head-on, researchers can fully leverage the potential of ST technologies to
revolutionize precision medicine and deepen our understanding of complex biological
systems. By addressing these challenges and ethical considerations, we can enhance

the robustness, interpretability, and application of ST in cancer research. Continued
development and integration of these advanced tools promise to transform our understanding
of cancer, improve diagnostic and therapeutic strategies, and ultimately enhance patient
outcomes.

6. Conclusion

The integration of multimodal ST and DL has already begun to transform cancer research,
offering deep insights into tumor biology and enabling personalized treatment strategies.
As we reflect on the journey through this chapter, the diverse applications and potential of
multimodal ST have been thoroughly explored, emphasizing its critical role in enhancing
diagnostic precision, guiding personalized therapies, and advancing our understanding of
cancer at the molecular level.

Key takeaways revisited.
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. Enhanced diagnostic accuracy: The integration of various data types through
multimodal ST has proven to improve diagnostic accuracy and precision,
highlighting the importance of comprehensive views of tumor biology.

. Personalized treatment strategies: By utilizing the detailed molecular and
spatial information provided by ST, researchers have developed targeted
therapeutic strategies, enhancing personalized medicine approaches.

. DL and Al integration: DL models, such as CNNs and GNNs, have been
essential in analyzing complex ST data, supporting the advancement of precision
oncology.

. Ethical considerations and responsible Al use: Ensuring ethical practices in
Al and ST integration remains crucial for maintaining transparency, fairness, and
patient data protection in clinical settings.

Transformative potential of multimodal ST and DL.

The advancements in multimodal ST and DL are not merely incremental; they are
transformative, enabling a holistic understanding of cancer. These technologies facilitate
the development of more effective and less toxic treatments by providing insights into the
TME and the interactions of different cell types and molecular pathways within the spatial
context of tissues.

As we look to the future, the promise of these technologies to revolutionize cancer research,
improve diagnostic and therapeutic strategies, and ultimately enhance patient outcomes is
immense. Addressing the remaining ethical and technical challenges will be crucial to fully
realize the potential of these cutting-edge tools in cancer research and clinical practice.

In conclusion, the journey through multimodal ST and DL in cancer research has been
enlightening, demonstrating the profound impact these technologies will continue to have
on advancing our understanding of cancer and improving patient care. As we continue to
develop and integrate these tools, the future of cancer research looks brighter than ever.
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Deep learning-based multimodal spatial transcriptomics workflow for cancer analysis.
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Visualization of multimodal spatial transcriptomics data in a cancer tissue section.
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Studies on deep learning in oncology.

Title

Page 28

Table 1

Key insights

Cancer Detection Using Convolutional Neural Network
(Dabral, Singh, & Kumar, 2021)

Developed a CNN-based method for classifying cancer cells into benign and
malignant, enhancing early cancer detection accuracy

Deep convolutional neural network with transfer learning for
rectum toxicity prediction in cervical cancer radiotherapy: a
feasibility study (Zhen et al., 2017)

Used a pre-trained convolutional neural network (VGG-16 CNN) and transfer
learning to predict rectum toxicity in cervical cancer radiotherapy, showing
significant opportunities for deep learning in radiation oncology

Exascale deep learning to accelerate cancer research (Patton et
al., 2019)

Demonstrated that neural network architectures could be automatically
generated and tailored for specific applications, significantly accelerating
cancer pathology research

A comparative analysis of two deep learning architectures for
the automatic segmentation of vestibular schwannoma (Kattau,
Glocker, & Darambara, 2021)

Investigated the performance of two existing deep learning frameworks for
tumor segmentation, highlighting advancements in automatic segmentation
techniques for treatment planning

Prediction of five-year survival rate for rectal cancer using
Markov models of convolutional features of RhoB expression
on tissue microarray (Pham, 2023)

Combined deep learning, data coding, and probabilistic modeling to predict
five-year survival rates in rectal cancer patients, achieving higher accuracy
compared to traditional methods
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Table 2

Examples of multimodal data integration in cancer research.

Title

Key insights

Building and sustaining a comprehensive pediatric oncology
care team: The roles and integration of psychosocial and
rehabilitative team members (Price et al., 2022)

Highlighted the importance of integrating psychosocial and rehabilitative care
services in pediatric oncology to improve patient outcomes and quality of life

The cryo-immunologic effect: A therapeutic advance in the
treatment of glioblastomas? (Cebula et al., 2020)

Discussed the potential of combining cryotherapy with immunotherapy to
enhance the immune response against glioblastomas, demonstrating the
benefits of a multimodal therapeutic approach

Predicting response to chemotherapy in patients with newly
diagnosed high-risk neuroblastoma (Mayampurath et al.,
2021)

Utilized convolutional neural networks and clinical models to predict
chemotherapy response in high-risk neuroblastoma patients, highlighting the
effectiveness of integrating imaging and clinical data for treatment planning

Development of a cancer rehabilitation dashboard to collect
data on physical function in cancer patients and survivors
(Cristian et al., 2024)

Described the creation of a dashboard that integrates self-reported and
objective physical function data, facilitating personalized rehabilitation plans
and improving patient management in oncology

RadioPathomics: Multimodal learning in non-small cell lung
cancer for adaptive radiotherapy (Tortora et al., 2023)

Developed a multimodal late fusion approach combining radiomics,
pathomics, and clinical data to predict radiotherapy outcomes in non-small-cell
lung cancer patients, demonstrating improved precision in treatment planning
through data integration
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