
Deep learning-based multimodal spatial transcriptomics 
analysis for cancer

Pankaj Rajdeoa, Bruce Aronowa,b, V.B. Surya Prasatha,b,c,d,*

aDivision of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 
United States

bDepartment of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United 
States

cDepartment of Biomedical Informatics, College of Medicine, University of Cincinnati, Cincinnati, 
OH, United States

dDepartment of Computer Science, University of Cincinnati, Cincinnati, OH, United States

Abstract

The advent of deep learning (DL) and multimodal spatial transcriptomics (ST) has revolutionized 

cancer research, offering unprecedented insights into tumor biology. This book chapter explores 

the integration of DL with ST to advance cancer diagnostics, treatment planning, and precision 

medicine. DL, a subset of artificial intelligence, employs neural networks to model complex 

patterns in vast datasets, significantly enhancing diagnostic and treatment applications. In 

oncology, convolutional neural networks excel in image classification, segmentation, and tumor 

volume analysis, essential for identifying tumors and optimizing radiotherapy.

The chapter also delves into multimodal data analysis, which integrates genomic, proteomic, 

imaging, and clinical data to offer a holistic understanding of cancer biology. Leveraging diverse 

data sources, researchers can uncover intricate details of tumor heterogeneity, microenvironment 

interactions, and treatment responses. Examples include integrating MRI data with genomic 

profiles for accurate glioma grading and combining proteomic and clinical data to uncover drug 

resistance mechanisms.

DL’s integration with multimodal data enables comprehensive and actionable insights for 

cancer diagnosis and treatment. The synergy between DL models and multimodal data analysis 

enhances diagnostic accuracy, personalized treatment planning, and prognostic modeling. Notable 

applications include ST, which maps gene expression patterns within tissue contexts, providing 

critical insights into tumor heterogeneity and potential therapeutic targets.

In summary, the integration of DL and multimodal ST represents a paradigm shift towards more 

precise and personalized oncology. This chapter elucidates the methodologies and applications 

of these advanced technologies, highlighting their transformative potential in cancer research and 

clinical practice.

*Corresponding author. surya.prasath@cchmc.org. 

HHS Public Access
Author manuscript
Adv Cancer Res. Author manuscript; available in PMC 2024 September 27.

Published in final edited form as:
Adv Cancer Res. 2024 ; 163: 1–38. doi:10.1016/bs.acr.2024.08.001.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Introduction

1.1 Deep learning and its significance in oncology

Deep learning (DL), a subset of machine learning, uses artificial neural networks to model 

complex patterns in data. In oncology, this technology has revolutionized the analysis of 

vast datasets, including medical images, genomic data, and clinical records, enhancing 

applications from diagnosis to treatment planning. These capabilities significantly improve 

cancer diagnosis, treatment planning, and prognostication (Li, Jiang, Zhang, & Zhu, 2023; 

Lipkova et al., 2022; Steyaert et al., 2023b).

For instance, convolutional neural networks (CNNs) excel in tasks such as image 

classification, segmentation, and tumor volume segmentation. These capabilities are crucial 

for accurately identifying tumors and optimizing radiotherapy planning. By enabling precise 

mapping of tumors, CNNs facilitate a shift towards precision medicine, where treatment 

strategies are meticulously tailored to the individual characteristics of each patient’s tumor, 

thereby significantly enhancing treatment outcomes (Sharma, Nayak, Balabantaray, Tanveer, 

& Nayak, 2024).

Additionally, advancements in neural network architectures, particularly through the use of 

transfer learning and data augmentation, have tailored DL tools to specific oncology needs, 

enhancing both research and clinical applications.

To illustrate these advancements, Table 1 summarizes some studies that demonstrate DL’s 

transformative role in oncology:

DL’s continued integration has significantly enhanced the accuracy and efficiency of cancer 

care. This is particularly evident in the use of CNNs for precise tumor segmentation and 

the application of transfer learning. Transfer learning involves adapting pre-trained models

—originally developed for one task—to new, related tasks. This approach is highly effective 

in oncology, where models trained on large, diverse datasets are fine-tuned to recognize 

specific cancer types. By using transfer learning, clinicians can leverage the knowledge 

gained from vast amounts of existing data, thereby reducing the need for extensive labeled 

datasets specific to each cancer type. This accelerates the development of diagnostic 

tools and enables more rapid and accurate customization of treatment plans, which helps 

further the goals of the precision medicine (Aneja, Aneja, Abas, & Naim, 2021; Hanczar, 

Bourgeais, & Zehraoui, 2022; Luo & Bocklitz, 2023).

Ultimately, the significance of multimodal data analysis cannot be overstated. It represents a 

substantial shift towards more comprehensive and integrated methods in cancer research and 

treatment, which is the primary focus of this chapter.

1.2 Multimodal data analysis in cancer research

Multimodal data analysis involves integrating diverse data types—such as genomic, 

proteomic, imaging, and clinical data—to gain a holistic understanding of complex 

biological systems (Acosta, Falcone, Rajpurkar, & Topol, 2022). This foundational approach 
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enhances the depth and accuracy of insights into cancer biology by leveraging the strengths 

of varied data sources.

• Genomic data provide insights into genetic mutations and variations.

• Proteomic data reveal details about protein expression and modifications.

• Imaging data offer a detailed view of tumor morphology and microenvironment.

• Clinical data provide context about patient history and treatment outcomes.

For a more detailed look at the practical applications of these integrations in cancer research, 

particularly in the context of spatial transcriptomics (ST), see Section 2.2.

1.2.1 Key examples and benefits of integrating various data types

• Genomic and imaging data integration: This integration enhances tumor 

subtype identification and treatment response prediction. For example, 

integrating MRI data with genomic profiles can distinguish between different 

glioma grades, leading to more accurate treatment decisions (Cebula et al., 

2020).

• Proteomic and clinical data integration: This combination provides insights 

into drug resistance mechanisms and potential therapeutic targets. It also helps 

monitor disease progression and evaluate treatment effectiveness in real-time 

(Price et al., 2022).

• Genomic, proteomic, and imaging data integration: This comprehensive 

approach uncovers complex interactions between genes, proteins, and the 

tumor microenvironment (TME), facilitating the development of multi-targeted 

therapies and improving patient outcomes (Boehm, Khosravi, Vanguri, Gao, & 

Shah, 2022).

Refer to Table 2 for additional examples of multimodal data integration in cancer research.

1.3 Synergistic potential of deep learning and multimodal approaches

The synergy between DL and multimodal data analysis holds immense potential for 

advancing precision medicine and enhancing patient outcomes in oncology. CNNs, in 

particular, excel in processing and interpreting complex medical data, such as imaging, 

genomics, and clinical records.

One notable application is the use of ST, which allows the mapping of gene expression 

patterns within the spatial context of tissues. This provides critical insights into tumor 

heterogeneity, microenvironment interactions, and treatment response. Combining this with 

multimodal approaches, which incorporate various data types like genomic, proteomic, 

and imaging data, enables DL models to uncover more comprehensive and actionable 

information for cancer diagnosis and treatment (Halawani, Buchert, & Chen, 2023; Hu, 

Sajid, Lv, Liu, & Sun, 2022; Li, Li, You, Wei, & Xu, 2023).

Fig. 1 illustrates the comprehensive workflow for analyzing cancer using DL-based 

multimodal ST:
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This figure illustrates the comprehensive workflow for analyzing cancer using multimodal 

ST and DL.

A. Tissue sample preparation, including sectioning, staining, and ST profiling.

B. Data acquisition phase, capturing ST data, imaging data (e.g., hematoxylin and 

eosin [H&E] staining), and optional genomic/proteomic data.

C. Preprocessing and integration of multimodal data, ensuring consistency and 

compatibility.

D. Application of DL models, such as CNNs, autoencoders, transformers, and 

GANs, for cell type identification, spatial domain prediction, gene expression 

pattern analysis, and integration of multi-omics features.

E. Biological interpretation of results, revealing insights into tumor heterogeneity, 

tumor-microenvironment interactions, and potential therapeutic targets, 

advancing precision oncology.

1.3.1 Benefits of this synergy—Enhanced diagnostic accuracy is achieved through 

DL models that analyze vast imaging data volumes to identify subtle cancer patterns, which 

might be missed by human observers. By integrating genomic and proteomic data, these 

models correlate molecular signatures with imaging findings, leading to more accurate 

diagnoses (Jiang, Hu, Wang, & Zhang, 2023). Personalized treatment planning benefits from 

multimodal data providing a holistic view of a patient’s condition, enabling DL models 

to predict treatment responses and outcomes more effectively. For example, combining 

imaging data with genomic profiles can tailor chemotherapy or radiotherapy plans to the 

individual patient’s tumor characteristics, increasing treatment efficacy and reducing adverse 

effects (Joo et al., 2021). Improved prognostic models emerge from DL models that integrate 

longitudinal data from various sources to predict disease progression and patient survival 

more accurately. This capability is crucial for developing personalized follow-up strategies 

and improving long-term patient management (Cascarano et al., 2023). Real-time decision 

support is facilitated by the synergy between DL and multimodal approaches, allowing 

real-time clinical decision support during surgery or radiotherapy. Real-time data from 

imaging modalities processed by DL algorithms guide procedures, ensuring precise targeting 

of cancerous tissues while sparing healthy ones (Steyaert et al., 2023b). Accelerated 

research and development are achieved by harnessing DL to analyze multimodal datasets, 

helping researchers uncover new biomarkers and therapeutic targets more efficiently. This 

acceleration leads to faster development of innovative treatments and diagnostics, ultimately 

benefiting patients (Johnson et al., 2021).

The synergy between DL and multimodal data analysis, especially through the integration 

of ST, signifies a paradigm shift in oncology. This transition is paving the way for a new 

era of precision medicine characterized by enhanced diagnostic accuracy, more personalized 

treatment strategies, and overall improved patient outcomes.

Having explored the synergistic potential of DL and multimodal approaches, we now have 

established a solid foundation for understanding how these advanced methodologies are 
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revolutionizing the field of oncology. Next, we will delve deeper into the core concepts 

of multimodal ST. This cutting-edge area further exemplifies the transformative power of 

integrating diverse data types to unravel the complexities of cancer, which is offering new 

avenues for research and treatment that promise to enhance the precision and effectiveness 

of oncology therapies.

2. Core concepts of multimodal spatial transcriptomics

2.1 Basics of spatial transcriptomics

ST is a transformative technique in molecular biology that allows for the visualization 

and quantification of gene expression within tissue sections, preserving the spatial context 

of the cells. This innovative approach provides essential insights into the variability of 

gene expression across different regions of tissues, enhancing our understanding of cellular 

functions and tissue organization in both health and disease (Ståhl et al., 2016).

Key principles of ST include spatial resolution, which maintains spatial information about 

where gene expression occurs within the tissue, providing crucial context for understanding 

cell interactions within their microenvironments and how these interactions influence 

overall tissue function. High-throughput sequencing is utilized by ST to analyze the 

transcriptome across thousands of spatially resolved locations within a tissue sample, 

enabling a comprehensive analysis of gene expression patterns. Additionally, the integration 

with imaging combines transcriptomic data with high-resolution tissue imaging, creating 

a detailed map of gene expression patterns corresponding to specific histological features, 

which helps to correlate morphological characteristics with molecular data, enhancing the 

precision of biological insights.

2.1.1 Methods

• In situ hybridization: Techniques like MERFISH and seqFISH use fluorescent 

probes to detect RNA molecules within tissues, allowing for high spatial 

resolution localization of gene expression (Du et al., 2023).

• Spatially resolved transcriptomics platforms: Technologies like 10x 

Genomics’ Visium and Slide-seq use spatial barcoding to map gene expression. 

These platforms facilitate precise mapping of RNA molecules to their spatial 

coordinates within the tissue (Williams, Lee, Asatsuma, Vento-Tormo, & Haque, 

2022).

• Laser capture microdissection (LCM): LCM involves using a laser to precisely 

cut out specific regions of tissue for RNA extraction and sequencing. This 

method provides high spatial resolution and is particularly useful for analyzing 

small or rare cell populations within a tissue (Emmert-Buck et al., 1996).

2.1.2 Importance in mapping the transcriptome to tissue locations—Mapping 

the transcriptome to specific tissue locations is transformative for several reasons (Williams 

et al., 2022). Understanding tissue heterogeneity is enhanced as ST allows researchers 

to identify distinct gene expression profiles across different tissue regions, shedding 
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light on how various cell types contribute to tissue function and pathology. In terms of 

disease mechanisms, ST reveals interactions between cancer cells and surrounding stromal 

and immune cells, providing insights into tumor growth and metastasis mechanisms. 

In developmental biology, ST is invaluable for studying gene expression during tissue 

development, aiding in understanding the processes of tissue formation, differentiation, and 

organization.

Case studies illustrate the application of ST in uncovering complex cellular interactions 

and identifying therapeutic targets in diseases, particularly in cancer research. In colorectal 

cancer, a recent study by Peng et al. (2023b) utilized ST to explore the interactions between 

fibroblasts and myeloid cells. By integrating single-cell RNA sequencing, ST, and bulk 

RNA sequencing data, the researchers identified a pro-tumorigenic interaction between 

MFAP5+ fibroblasts and C1QC+ macrophages. These interactions were mapped spatially 

within the tumor, highlighting specific signaling pathways that contribute to the malignant 

behavior of colorectal cancer. This study underscores the importance of ST in elucidating 

the complex cellular interactions within the TME and identifying potential therapeutic 

targets. In glioblastoma, another example is the work by Liu et al. (2023), who integrated 

single-cell RNA sequencing with ST to analyze the cellular heterogeneity. They identified 

distinct clusters of malignant cells with unique transcriptional and functional properties. ST 

allowed them to map these clusters within the tumor, revealing their spatial colocalization 

and interactions with the TME. This integrated approach provided novel insights into the 

mechanisms of tumor progression and resistance to therapy in glioblastoma.

These examples underscore how ST, by preserving the spatial context of gene expression, 

helps deepen our understanding of tissue architecture and cellular interactions, which is 

crucial for developing targeted therapies and improving clinical outcomes.

The following case studies illustrate the application of ST in uncovering complex cellular 

interactions and identifying therapeutic targets in diseases, particularly in cancer research.

2.2 Multimodal spatial transcriptomics: integrating varied data types

As discussed in Section 1.3, multimodal ST marks a significant advancement in studying 

complex biological systems, especially in the context of cancer research. By integrating 

diverse data types such as genomics, proteomics, imaging, and clinical data, researchers 

can achieve a holistic view of disease mechanisms. This section focuses on how these 

integrations are uniquely beneficial in the context of ST.

2.2.1 Integrating genomics and proteomics with spatial transcriptomics

Genomic data integration:  Combining ST with genomic data offers a comprehensive view 

of the genetic landscape within tissues. This integration is crucial for revealing mutations 

and structural variations that drive cancer progression. Tools like MethCNA integrate DNA 

methylation and copy number variation data, aiding in the identification of oncogenic drivers 

within their spatial context in tissues (Deng, Yang, Zhang, Xiao, & Cai, 2018). For example, 

integrating ST with genomic perturbation data enhances gene regulatory network inference, 

allowing researchers to predict how specific genomic alterations impact gene expression 

Rajdeo et al. Page 6

Adv Cancer Res. Author manuscript; available in PMC 2024 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



across different tissue regions (Liang, Young, Hung, Raftery, & Yeung, 2019). This helps 

in understanding how mutations within the same tumor can lead to varied phenotypic 

outcomes.

Proteomic data integration:  Proteomics complements ST by providing insights into 

protein expression and modifications, the functional executors of genetic information. 

Proteogenomic approaches integrate patient-specific genomic and proteomic data to 

characterize the mutational landscape and protein signaling pathways in tumors, identifying 

patient-specific drug targets and resistance mechanisms (Schmitt et al., 2021).

2.2.2 Complementing ST with imaging and clinical data

Imaging data integration:  Integrating imaging data with ST allows for correlating 

morphological features with molecular changes, enhancing the understanding of tumor 

phenotypes and treatment responses. For instance, the FDTrans model developed by Cai 

et al. (2023) integrates histopathological images with genomic data to classify lung cancer 

subtypes, demonstrating the potential of this approach.

Clinical data integration:  Combining ST with clinical data helps identify biomarkers 

predictive of therapy response and disease prognosis. Integrating clinical information with 

molecular profiles, as done by Wilson, Li, Yu, Kuan, and Wang (2019) identifies gene sets 

relevant to prognostic predictions across cancer types.

Fig. 2 illustrates the application of ST techniques in a cancer tissue section, highlighting the 

detailed visualization methods used to study the TME.

a. Multiplexed immunofluorescence image: This image shows the spatial 

distribution of three different proteins within the tissue, each protein is denoted 

by a specific color.

b. H&E stained tissue section: Displays the overall tissue morphology and cellular 

structure, providing a visual context for the underlying tissue architecture.

c. ST heatmap: This heatmap demonstrates the relative expression levels of a gene 

of interest across different regions of the tissue, indicating areas of high and low 

expression.

d. Integrated view: This circle contains a zoomed-in view of the H&E-stained 

tissue, overlaid with color-coded indicators for tumor cells (yellow), immune 

cells (red), and stromal cells (green and purple), illustrating the cellular 

composition and interaction within the microenvironment.

2.2.3 Successful multimodal ST studies in cancer research—The following 

case studies demonstrate the successful application of multimodal ST in cancer research, 

providing insights that guide the development of more effective and personalized treatment 

strategies. Harikumar, Quinn, Rana, Gupta, and Venkatesh (2021) proposed a framework 

to predict gene responses to drugs using patient-specific single-cell expression data and 

population-level drug-response data. This dual-channel approach integrates single-cell RNA-

seq with drug response data, providing personalized predictions of drug efficacy. This 
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framework has been applied to glioblastoma, illustrating how multimodal integration can 

enhance personalized treatment strategies.

Another notable example is the FDTrans model by Cai et al. (2023), which exemplifies 

successful multimodal integration by combining histopathological images with genomic 

data to classify lung cancer subtypes. This model achieved high accuracy and AUC scores, 

demonstrating the potential of integrating imaging and genomic data to improve diagnostic 

precision and treatment planning. Similarly, Schmitt et al. (2021) used proteogenomics 

to study the mutational landscape of melanoma patients. By integrating genomic and 

proteomic data, they identified pathways associated with melanoma development and 

immunotherapy response, highlighting the importance of combining multiple data types to 

uncover molecular mechanisms and identify therapeutic targets.

In a comprehensive study by Wei, Zhang, Weng, Chen, and Cai (2021), various 

computational methods for integrating multi-omics data across pan-cancer datasets were 

assessed. This study demonstrated the ability of integrative methods to identify distinct 

tumor compositions and molecular patterns, providing valuable insights for pan-cancer 

analysis and highlighting the importance of multimodal data integration in cancer research. 

In summary, multimodal ST provides a comprehensive framework for understanding the 

complex molecular landscape of cancers, enhancing our knowledge of tumor biology and 

paving the way for personalized medicine.

2.3 Unraveling cancer complexity with multimodal spatial transcriptomics

Multimodal ST empowers researchers to dissect tumor heterogeneity, analyze the TME, and 

evaluate therapy responses with unprecedented detail and precision. These capabilities lead 

to several key insights.

2.3.1 Key insights from multimodal ST

Tumor heterogeneity:  One of the primary insights gained from multimodal ST is the 

detailed characterization of tumor heterogeneity. Tumors are composed of a mosaic of 

genetically distinct cell populations, each contributing differently to disease progression and 

therapy resistance. ST, combined with single-cell sequencing, allows for the mapping of 

these heterogeneous cell populations within their spatial context. For instance, Halawani 

et al. (2023) highlighted how DL frameworks applied to single-cell and ST data can 

unravel the complex gene transcription profiles and mutation spectra within tumors. 

This approach has been crucial in identifying subclonal populations that drive disease 

progression and metastasis. In esophageal cancer, the integration of multi-omics data has 

provided insights into the cellular and genetic heterogeneity within tumors. Li et al. (2023) 

discussed how artificial intelligence (AI) can analyze and interpret multi-omics data, which 

enables a comprehensive understanding of tumor heterogeneity and its implications for 

disease progression and treatment strategies. This high-dimensional characterization helps in 

identifying novel cell types and understanding their roles in tumor biology.

TME: The TME plays a pivotal role in cancer development and therapy response. 

Multimodal ST allows for the spatial profiling of immune and stromal cells within 
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the TME, providing insights into their interactions with tumor cells. Hu et al. (2022) 

emphasized the importance of spatial profiling technologies in evaluating the transcriptional 

activity of immune and stromal cells within the TME. This multidimensional classification 

facilitates the study of tumor-immune interactions, the evolutionary trajectory of tumors, 

and the identification of immune evasion mechanisms. A study by Zhang et al. (2024a) 

on hepatocellular carcinoma revealed how single-cell sequencing and ST can uncover the 

spatial distribution and functional states of tumor-infiltrating lymphocytes. The identification 

of stimulatory dendritic cells and macrophages as potential biomarkers underscores the 

importance of understanding the spatial organization of immune cells in predicting therapy 

responses.

Therapy response:  Understanding the spatial and molecular determinants of therapy 

response is crucial for developing effective cancer treatments. Multimodal ST provides a 

platform for identifying biomarkers and therapeutic targets by linking molecular profiles 

to spatial contexts. For example, Lyubetskaya et al. (2022) demonstrated how ST can 

capture key tumor features such as hypoxia, necrosis, and vasculature, which are critical 

for understanding therapy responses. The ability to map these features within the tumor 

landscape helps in identifying regions of therapeutic resistance and potential targets for 

intervention. In breast cancer, Bottosso et al. (2024) highlighted the use of precision 

medicine to predict drug sensitivity based on a deeper molecular understanding of the 

disease. The integration of genomic, transcriptomic, and imaging data allows for the 

identification of biomarkers that predict response to specific therapies and can aid in the 

personalization of treatment strategies.

Having established the foundational concepts and diverse applications of multimodal ST, we 

now shift our focus to the innovative role of DL in this domain. This transition marks a 

pivotal move towards harnessing sophisticated computational models to further unravel the 

complexities of cancer at a molecular and spatial level.

3. Deep learning approaches in multimodal spatial transcriptomics

Building upon our exploration of multimodal ST, Section 3 delves into the transformative 

role of DL in refining and advancing this field. As depicted in Fig. 3, these models integrate 

diverse data types—including genomic, proteomic, imaging, clinical, and ST—to enable 

comprehensive analysis and interpretation of cancer data. Here, we focus on cutting-edge 

deep learning models that bring unprecedented precision to analyzing ST data. These 

models not only interpret complex biological relationships within tissues but also push the 

boundaries of diagnostic and prognostic capabilities, marking a significant evolution in the 

tools available to oncologists and researchers.

This figure illustrates the process of multimodal data fusion and the application of DL to 

achieve improved diagnostic accuracy, personalized treatments, and a better understanding 

of tumor heterogeneity and the TME.
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3.1 Deep learning models for spatial transcriptomics data

ST technologies provide a detailed map of gene expression patterns within the spatial 

architecture of tissues. The complexity of this data necessitates the use of advanced DL 

models that can identify and interpret intricate spatial patterns and relationships.

This section introduces various DL models suitable for analyzing ST data, including graph 

neural networks (GNNs), CNNs, transformer models, and hybrid approaches (see Fig. 4).

This figure highlights the key DL models used in ST, including GNNs, CNNs, transformer 

models, and hybrid approaches, showcasing their unique processing techniques and 

applications in cancer research.

3.1.1 Graph-based deep learning models—Graph-based models excel at 

contextualizing the complex morphology and structure within whole slide images by 

representing spatial relationships through graph structures. These models efficiently encode 

the intricate patterns of tissue architecture, enabling a detailed analysis of ST data. This 

approach facilitates the exploration of cellular interactions and molecular pathways across 

diverse tissue regions, enhancing our understanding of disease mechanisms and progression 

(Wu et al., 2022; Yuan & Bar-Joseph, 2020). Azher et al. (2023) demonstrated the 

potential of leveraging ST data with a contrastive crossmodal pretraining mechanism to 

improve graph-based learning tasks. This approach enhanced the extraction of molecular 

and histological information, which improved outcomes in cancer staging, lymph node 

metastasis prediction, survival prediction, and tissue clustering analyses. The integration 

of spatial omics data significantly improved the performance of graph-based models in 

pathology workflows, thus highlighting their potential to enhance cancer diagnostics and 

prognostics.

Peng, He, Peng, Li, and Zhang (2023a) developed STGNNks, a method that combines 

GNNs, denoising auto-encoders, and k-sums clustering to process spatially resolved 

transcriptomics data. This model constructs a hybrid adjacency matrix and integrates gene 

expressions with spatial context, mapping learned features to a low-dimensional space 

for clustering. STGNNks significantly outperformed existing ST analysis algorithms and 

provided valuable insights into tumor progression through spatial trajectory inference 

and differentially expressed gene detection. Additionally, Wu et al. (2022) applied 

GNNs to model TMEs as local subgraphs using spatial protein profiles. This strategy 

captures distinctive cellular interactions associated with differential clinical outcomes. The 

model demonstrated substantial improvements in predicting patient outcomes compared to 

traditional DL approaches, underscoring its potential to enhance the understanding of TME 

dynamics.

3.1.2 Convolutional neural networks (CNNs)—CNNs are adept at analyzing 

histopathological images and predicting gene expression patterns due to their ability to 

extract high-level features from complex visual data. These networks use multiple layers of 

filters to process spatial hierarchies in images and capture details from cell morphology 

to tissue architecture (Dabeer, Khan, & Islam, 2019). This enables CNNs to identify 

subtle patterns and structures that are crucial for accurate gene expression prediction, 
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which enhances our understanding of the molecular underpinnings of cancer and other 

diseases. Zheng, Carrillo-Perez, Pizurica, Heiland, and Gevaert (2023) developed a DL 

model to predict transcriptional subtypes of glioblastoma cells from histology images. 

This model phenotypically analyzed millions of tissue spots and identified consistent 

associations between tumor architecture and prognosis across independent cohorts. The 

approach underscored the critical connection between spatial cellular architecture and 

clinical outcomes, thus offering a scalable method to predict gene expression and understand 

the spatial organization of tumor cells.

In a related advancement, Wang, Zhou, Kong, and Lu (2023) proposed a CNN-based 

method for enhancing spot resolution in ST, termed superresolved ST. Their approach, 

utilizing a shift-predict operation, achieved 9× superresolution and outperformed traditional 

superresolution techniques. This method provides a deeper understanding of gene expression 

patterns and their underlying biological significance, highlighting the potential of CNNs to 

revolutionize ST by improving spatial resolution and analytical precision.

3.1.3 Transformer models—Transformers excel in capturing long-range dependencies, 

which enhances gene expression predictions from histology images by leveraging the self-

attention mechanism introduced in the seminal paper Attention Is All You Need (Vaswani 

et al., 2023). This approach allows transformers to simultaneously process distant parts 

of an image, identifying crucial patterns and correlations for accurate prediction. This 

mechanism enables the comprehensive analysis of the whole tissue section, improving the 

mapping of gene expressions and aiding in the study of complex interactions within the 

TME. Liu, Zhang, and Luo (2024) proposed a contrastive learning-based framework to infer 

molecular subtypes and clinical outcomes of breast cancer from unannotated whole slide 

images. By leveraging patch-level features and a gated attention mechanism, the model 

produced slide-level predictions. This method effectively established high-order genotype-

phenotype associations, enhancing the application of digital pathology in clinical practice. 

Xiao, Kong, Li, Wang, and Lu (2024) introduced TCGN, a model combining convolutional 

layers, transformer encoders, and GNNs to estimate gene expressions from histopathological 

images. TCGN operates with a single spot image input, maintaining interpretability while 

enhancing accuracy. The model provided a powerful tool for inferring gene expressions in 

precision health applications.

The versatility of transformers to capture long-range dependencies complements the 

localized feature extraction of CNNs. Combining these approaches can further enhance 

model performance, leading us to hybrid approaches.

3.1.4 Hybrid approaches—Hybrid models combine multiple DL architectures to 

enhance the analysis of ST data. By integrating the unique advantages of each model, they 

achieve a more comprehensive and accurate interpretation of complex biological data. This 

synergy allows for a deeper understanding of the spatial and molecular dynamics within 

tissues, aiding in the identification of key biological insights and potential therapeutic targets 

(Song et al., 2024; Yan et al., 2019).
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Steyaert et al. (2023a) emphasized the importance of developing multimodal fusion 

approaches to integrate complementary data types such as molecular, histopathology, 

radiology, and clinical records. By leveraging DL models that can handle multiple 

modalities, researchers can capture the heterogeneity of complex diseases more accurately, 

advancing precision medicine. Chen, Zhang, Tang, Liu, and Huang (2024) proposed 

the Edge-relational Window-attentional GNN (ErwaNet) for predicting gene expression 

from standard tissue images. This model constructs heterogeneous graphs to model local 

window interactions and incorporates an attention mechanism for global information 

analysis. ErwaNet stands out as a cost-effective and accurate method for gene expression 

prediction, offering a significant advantage in cancer research by providing more efficient 

and accessible analytical paradigms.

By integrating the strengths of different models, hybrid approaches offer a robust framework 

for ST analysis, combining the localized feature extraction of CNNs, the contextual 

understanding of transformers, and the relational mapping of GNNs.

3.2 Successful applications of deep learning in multimodal spatial transcriptomics

This subsection showcases how DL significantly enhances the analysis of ST by enabling 

precise cell-type identification, biomarker discovery, and treatment response prediction. 

Each case study directly correlates with the models discussed, illustrating the practical 

impact of these technological advancements.

Table 3 lists recent DL applications in ST, emphasizing diverse methodologies and their 

impacts on cancer research. Each entry will be succinctly described, highlighting its 

relevance and connection to the DL models introduced earlier.

These case studies illustrate the diverse applications of DL in enhancing ST analysis. 

By integrating multimodal data, such as histological images and ST, DL models have 

significantly improved our understanding of cellular and molecular mechanisms in various 

diseases.

Reflecting on this comprehensive review, some key areas highlight the significant strides 

where DL optimizes multimodal ST:

DL methods, such as STGNNks and RESEPT, have revolutionized cell-type identification 

and spatial domain mapping in tissue samples. By precisely characterizing cellular 

heterogeneity and tissue organization, these advancements open new avenues for 

understanding disease mechanisms and developing targeted therapies tailored to specific 

cell populations (Chang et al., 2022; Peng et al., 2023a). Additionally, DL approaches, 

exemplified by the work of Halawani et al. (2023) and Liu et al. (2024), have accelerated 

biomarker discovery by analyzing spatial gene expression patterns and tumor heterogeneity. 

The identification of novel molecular markers through these techniques offers the potential 

for earlier disease detection, more accurate prognosis, and the development of targeted 

therapies that address the unique molecular signatures of individual tumors.

Furthermore, DL models, as demonstrated by Wu et al. (2022) and Zheng et al. (2023), 

have shown remarkable promise in predicting patient outcomes and treatment responses. By 
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analyzing spatial relationships and cellular interactions within tumors, these models offer a 

powerful tool for tailoring treatment strategies to individual patients, ultimately leading to 

improved clinical outcomes and more effective cancer care.

These advancements underscore the transformative potential of DL in ST, which is 

paving the way for more precise and personalized medical interventions. The integration 

of multimodal data, supported by robust DL frameworks is continuing to drive 

significant progress in cancer research and precision medicine. By leveraging these 

advanced techniques, researchers can significantly improve the accuracy, robustness, and 

interpretability of ST analysis, ultimately accelerating the development of novel diagnostics 

and therapeutics in precision medicine.

4. Impact of multimodal spatial transcriptomics on cancer diagnostics and 

therapeutics

In the preceding sections, we explored how multimodal ST integrates various data types to 

revolutionize cancer research. This section will focus on how these integrations enhance 

cancer diagnostics and therapeutics, thus highlighting specific instances where ST has 

uniquely contributed to advancements in these areas. Here, we emphasize novel applications 

and methodologies that demonstrate the transformative potential of ST in clinical settings.

4.1 Enhancing cancer diagnosis

Recent advancements have demonstrated the power of pathogenomics in integrating 

advanced molecular diagnostics from genomic data with morphological information from 

histopathological imaging and codified clinical data. Feng et al. (2024) describe how this 

integration leads to the discovery of new multimodal cancer biomarkers, and thus enhances 

the precision of oncology diagnoses. Their study emphasizes the importance of synthesizing 

complementary modalities with emerging multimodal AI methods in pathogenomics, 

including the correlation and fusion of histology and genomics profiles of cancer. This 

approach overcomes the limitations of unimodal data and propels precision oncology into 

the next decade.

Similarly, Xi et al. (2022) presented a modality-correlation embedding model for breast 

tumor diagnosis using mammography and ultrasound images. By optimizing the correlation 

between these modalities, their model improved tumor classification accuracy significantly, 

with a sensitivity of 91.67% and a specificity of 95.83%. This study demonstrates the 

importance of maintaining pairwise closeness of multimodal data in a common label space 

with consistent diagnostic results from multimodal images of the same patient.

Abdollahyan et al. (2023) highlight the role of dynamic biobanking in advancing breast 

cancer research. The Breast Cancer Now Tissue Bank at the Barts Cancer Institute serves as 

a dynamic biobanking ecosystem and integrates longitudinal biospecimens with multimodal 

data, including EHRs, genomic, and imaging data. This ecosystem supports precision 

medicine efforts in breast cancer research by offering high-quality annotated biospecimens 

and advanced analytics tools, demonstrating how integrated data can inform diagnostic 

accuracy.
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4.2 Personalized treatment strategies

Chen et al. (2023) introduced the Multimodal Data Fusion Diagnosis Network (MDFNet), 

a framework that effectively fuses clinical skin images with patient clinical data for skin 

cancer classification. MDFNet establishes a mapping among heterogeneous data features 

which addresses issues of feature paucity and richness that arise from using single-mode 

data. Their model showed an improvement in diagnostic accuracy by about 9% and 

illustrates the fusion advantages exhibited by MDFNet and its potential as an effective 

auxiliary diagnostic tool for skin cancer, enhancing clinical decision-making.

Yan et al. (2019) developed a hybrid DL method for breast cancer classification by 

integrating pathological images and structured data from clinical EMRs. This approach 

significantly outperforms state-of-the-art methods and demonstrates the importance of 

combining multimodal data for precise patient stratification and personalized therapy. Their 

method provides a practical tool for breast cancer diagnosis in real clinical practice.

Rani, Ahmad, Masood, and Saxena (2023) highlighted the importance of using machine 

learning models on unimodal and multimodal datasets for diagnosing breast cancer 

molecular subtypes. By operating on multimodal data samples for each patient, their 

custom DL-based model pipeline achieved 94% accuracy and thus showed the superiority 

of multimodal data over unimodal in breast cancer subtype classification. These findings 

underscore the value of multimodal data in enhancing the precision of treatment strategies.

Li et al. (2022) utilized multi-omics data for lung cancer stage prediction, showing that 

microbial combinatorial transcriptome fusion analysis had the highest accuracy, reaching 

0.809. This study reveals the role of multimodal data and fusion algorithms in accurately 

diagnosing lung cancer stages, which aids doctors in clinics and emphasizes the potential of 

multimodal integration in personalized treatment planning.

4.3 Deep learning’s contribution to ST-based precision oncology

Steyaert et al. (2023a) discussed the challenges and opportunities in multimodal data fusion 

for cancer biomarker discovery with DL. They highlighted the need for developing effective 

multimodal fusion approaches as a single modality might not be sufficient to capture 

the heterogeneity of complex diseases like cancer. By tackling data sparsity and scarcity, 

enhancing multimodal interpretability, and standardizing datasets, DL can significantly 

advance the analysis of biomedical data to the discovery of key cancer biomarkers.

Lobato-Delgado, Priego-Torres, and Sanchez-Morillo (2022) combined molecular, imaging, 

and clinical data analysis for predicting cancer prognosis and demonstrated how integration 

of these data types using machine learning and DL techniques improves patient stratification 

and clinical management. This review emphasizes that multimodal models can better stratify 

patients and can contribute to personalized medicine and provide valuable insights into 

cancer biology and progression.

Zhang et al. (2024b) explored the use of AI in liver imaging, summarizing AI methodologies 

and their applications in managing liver diseases. They stressed the importance of feature 
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interpretability, multimodal data integration, and multicenter study in enhancing the clinical 

applications of AI, supporting precise disease detection, diagnosis, and treatment planning.

Shao, Ma, Zhang, Li, and Wang (2023) discussed predicting gene mutation status via 

AI technologies based on multimodal integration to advance precision oncology. Their 

review synthesized the general framework of MMI for molecular intelligent diagnostics 

and summarized emerging applications of AI in predicting mutational profiles of common 

cancers. This work highlights the potential of AI as a decision-support tool to aid 

oncologists in future cancer treatment management and the challenges and prospects of 

AI in medical fields.

As we conclude our exploration of the impact that multimodal ST and DL have 

on enhancing cancer diagnostics and therapeutics, we recognize the transformative 

advancements these technologies bring to precision oncology. The integration of diverse 

data types, coupled with sophisticated analytical models, has not only revolutionized our 

approach to understanding and treating cancer but also set the stage for addressing the 

complexities of implementation in clinical settings.

Looking ahead, Section 5 will delve into the challenges, future outlook, and ethical 

considerations of these technologies. We will explore the barriers that must be overcome 

to fully realize their potential, the ethical frameworks that need to be established for their 

responsible use, and the directions future research might take to continue advancing the field 

of cancer research and treatment.

5. Challenges, future outlook, and ethical considerations

As we delve into the transformative world of AI-driven multimodal ST in cancer 

research and treatment, it’s critical to navigate the complex challenges and ethical 

considerations while also looking toward future advancements. By addressing these 

elements comprehensively, we can fully harness the transformative potential of these 

technologies.

5.1 Challenges and future directions

5.1.1 Challenges in multimodal spatial transcriptomics—While traditional ST 

has revolutionized our understanding of tissue architecture and cellular function, it faces 

several issues that hinder its broader application. These include data sparsity and noise, 

potential batch effects, and missing data, all of which can obscure meaningful biological 

insights. Despite significant advancements, the field of multimodal ST continues to 

encounter numerous challenges that must be addressed to fully unlock its transformative 

potential. Integrating and interpreting high-dimensional data from diverse sources requires 

sophisticated computational tools and algorithms. Moreover, the heterogeneity and sparsity 

of single-cell and ST data add layers of complexity to the analysis.

A major barrier in the field is the lack of standardization and interoperability among 

different imaging and omics modalities. Standardized protocols and interdisciplinary 

collaboration are essential to overcome these challenges (Jaiswal, Agarwal, & Jaiswal, 
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2023). Robust imputation techniques and model-based approaches are critical for addressing 

missing and sparse data, which are pivotal for maintaining the integrity of ST studies 

(Rathore, Abdulkadir, & Davatzikos, 2020). Technical variability and batch effects can 

significantly skew analyses, necessitating robust preprocessing pipelines and advanced batch 

correction methods to mitigate these effects (Feng et al., 2024; Khalighi et al., 2024). The 

scalability of data analysis and the ethical, legal, and social implications must be addressed 

for the responsible implementation of AI and ST in healthcare (Khalighi et al., 2024; Liu et 

al., 2024).

Standardization and robust imputation techniques are crucial for combating issues of 

missing data and ensuring interoperability across platforms (Capobianco, 2022; Rathore 

et al., 2020). These measures will help maintain data integrity and enhance the comparability 

of results across different studies. Addressing these challenges will pave the way for the 

more effective and widespread use of multimodal ST in research and clinical settings, 

ultimately advancing our understanding of complex biological systems and improving 

patient care.

5.1.2 Future directions—To overcome the existing challenges and pave the way for 

new discoveries, research in multimodal ST is focusing on several key areas:

Increasing sequencing depth and using robust preprocessing pipelines are necessary 

strategies to enhance the signal-to-noise ratio and address data sparsity issues (Akhoundova 

& Rubin, 2022; Feng et al., 2024). Implementing advanced batch correction methods and 

developing multimodal fusion techniques are essential to mitigate batch effects and improve 

data integration (Khalighi et al., 2024; Steyaert et al., 2023a). Ensuring the reliability and 

generalizability of models through practices like cross-validation and external validation is 

crucial. Additionally, incorporating interpretability techniques, such as attention mechanisms 

and SHAP values, helps translate complex ST data into actionable insights (Steyaert et al., 

2023a; Yu et al., 2023). Rigorous biological validation of model predictions is essential 

to ensure that identified patterns reflect true biological phenomena. Integrating ST data 

with experimental data, such as functional assays, is crucial for confirming the biological 

significance of the findings.

Promoting collaborative efforts and establishing standardized workflows for data sharing 

are key to advancing ST research and developing standardized analytical tools (Tortora et 

al., 2023). Continued advancements in computational models, including DL and Bayesian 

statistics, will enhance data analysis capabilities and offer new insights into complex 

biological systems (Li, 2023). Building comprehensive databases and repositories for 

multimodal data will facilitate data sharing and collaborative research, which are crucial 

for accelerating discoveries in cancer research. Integrating clinical data with multimodal 

ST is vital for translating research into clinical practice and developing more effective and 

personalized therapies.

By addressing these challenges and leveraging future directions, the field of multimodal ST 

is poised for significant advancements, promising to enhance our understanding of complex 

biological systems and improve therapeutic strategies in precision medicine.
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5.2 Ethical dimensions and responsible AI use

The use of AI and ST in healthcare introduces significant ethical considerations that must be 

managed to ensure responsible application:

5.2.1 Ethical considerations in data collection and analysis—Ensuring that 

patient data is collected and used in a manner that respects consent and confidentiality 

is paramount to balancing the benefits of AI-driven diagnostics against potential risks to 

patient autonomy and privacy (Love, 2023). Building trust among patients and healthcare 

providers requires transparent AI algorithms that provide clear explanations of their 

decision-making processes, ensuring that decisions are made in the best interests of patients. 

Ethical guidelines for data anonymization and sharing should be established to protect 

patient identities and outline the purposes for which data can be used, fostering responsible 

research practices.

5.2.2 Addressing biases and ensuring fairness—Training AI algorithms on 

diverse datasets is essential to prevent biases that could lead to healthcare disparities 

(Wang et al., 2024). Ensuring that AI models provide equitable care and identifying any 

biases that could disadvantage certain patient groups are crucial for fostering fair healthcare 

practices (Fusar-Poli et al., 2022). Developing comprehensive ethical frameworks to address 

the challenges and risks associated with AI in healthcare is necessary to guide ethical 

implementation and ensure model accuracy and fairness (Sundaramurthy & Vaithiyalingam, 

2023).

In summary, addressing the challenges in ST data analysis demands a multifaceted approach 

that includes improving data quality, developing robust validation strategies, enhancing 

model interpretability, and performing rigorous biological validation. By tackling these 

challenges head-on, researchers can fully leverage the potential of ST technologies to 

revolutionize precision medicine and deepen our understanding of complex biological 

systems. By addressing these challenges and ethical considerations, we can enhance 

the robustness, interpretability, and application of ST in cancer research. Continued 

development and integration of these advanced tools promise to transform our understanding 

of cancer, improve diagnostic and therapeutic strategies, and ultimately enhance patient 

outcomes.

6. Conclusion

The integration of multimodal ST and DL has already begun to transform cancer research, 

offering deep insights into tumor biology and enabling personalized treatment strategies. 

As we reflect on the journey through this chapter, the diverse applications and potential of 

multimodal ST have been thoroughly explored, emphasizing its critical role in enhancing 

diagnostic precision, guiding personalized therapies, and advancing our understanding of 

cancer at the molecular level.

Key takeaways revisited.
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• Enhanced diagnostic accuracy: The integration of various data types through 

multimodal ST has proven to improve diagnostic accuracy and precision, 

highlighting the importance of comprehensive views of tumor biology.

• Personalized treatment strategies: By utilizing the detailed molecular and 

spatial information provided by ST, researchers have developed targeted 

therapeutic strategies, enhancing personalized medicine approaches.

• DL and AI integration: DL models, such as CNNs and GNNs, have been 

essential in analyzing complex ST data, supporting the advancement of precision 

oncology.

• Ethical considerations and responsible AI use: Ensuring ethical practices in 

AI and ST integration remains crucial for maintaining transparency, fairness, and 

patient data protection in clinical settings.

Transformative potential of multimodal ST and DL.

The advancements in multimodal ST and DL are not merely incremental; they are 

transformative, enabling a holistic understanding of cancer. These technologies facilitate 

the development of more effective and less toxic treatments by providing insights into the 

TME and the interactions of different cell types and molecular pathways within the spatial 

context of tissues.

As we look to the future, the promise of these technologies to revolutionize cancer research, 

improve diagnostic and therapeutic strategies, and ultimately enhance patient outcomes is 

immense. Addressing the remaining ethical and technical challenges will be crucial to fully 

realize the potential of these cutting-edge tools in cancer research and clinical practice.

In conclusion, the journey through multimodal ST and DL in cancer research has been 

enlightening, demonstrating the profound impact these technologies will continue to have 

on advancing our understanding of cancer and improving patient care. As we continue to 

develop and integrate these tools, the future of cancer research looks brighter than ever.
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Fig. 1. 
Deep learning-based multimodal spatial transcriptomics workflow for cancer analysis.
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Fig. 2. 
Visualization of multimodal spatial transcriptomics data in a cancer tissue section.
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Fig. 3. 
Integration of genomic, proteomic, imaging, clinical, and spatial transcriptomics data using 

deep learning models in cancer research.
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Fig. 4. 
Different deep learning models for analyzing spatial transcriptomics data.
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Table 1

Studies on deep learning in oncology.

Title Key insights

Cancer Detection Using Convolutional Neural Network 
(Dabral, Singh, & Kumar, 2021)

Developed a CNN-based method for classifying cancer cells into benign and 
malignant, enhancing early cancer detection accuracy

Deep convolutional neural network with transfer learning for 
rectum toxicity prediction in cervical cancer radiotherapy: a 
feasibility study (Zhen et al., 2017)

Used a pre-trained convolutional neural network (VGG-16 CNN) and transfer 
learning to predict rectum toxicity in cervical cancer radiotherapy, showing 
significant opportunities for deep learning in radiation oncology

Exascale deep learning to accelerate cancer research (Patton et 
al., 2019)

Demonstrated that neural network architectures could be automatically 
generated and tailored for specific applications, significantly accelerating 
cancer pathology research

A comparative analysis of two deep learning architectures for 
the automatic segmentation of vestibular schwannoma (Kattau, 
Glocker, & Darambara, 2021)

Investigated the performance of two existing deep learning frameworks for 
tumor segmentation, highlighting advancements in automatic segmentation 
techniques for treatment planning

Prediction of five-year survival rate for rectal cancer using 
Markov models of convolutional features of RhoB expression 
on tissue microarray (Pham, 2023)

Combined deep learning, data coding, and probabilistic modeling to predict 
five-year survival rates in rectal cancer patients, achieving higher accuracy 
compared to traditional methods
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Table 2

Examples of multimodal data integration in cancer research.

Title Key insights

Building and sustaining a comprehensive pediatric oncology 
care team: The roles and integration of psychosocial and 
rehabilitative team members (Price et al., 2022)

Highlighted the importance of integrating psychosocial and rehabilitative care 
services in pediatric oncology to improve patient outcomes and quality of life

The cryo-immunologic effect: A therapeutic advance in the 
treatment of glioblastomas? (Cebula et al., 2020)

Discussed the potential of combining cryotherapy with immunotherapy to 
enhance the immune response against glioblastomas, demonstrating the 
benefits of a multimodal therapeutic approach

Predicting response to chemotherapy in patients with newly 
diagnosed high-risk neuroblastoma (Mayampurath et al., 
2021)

Utilized convolutional neural networks and clinical models to predict 
chemotherapy response in high-risk neuroblastoma patients, highlighting the 
effectiveness of integrating imaging and clinical data for treatment planning

Development of a cancer rehabilitation dashboard to collect 
data on physical function in cancer patients and survivors 
(Cristian et al., 2024)

Described the creation of a dashboard that integrates self-reported and 
objective physical function data, facilitating personalized rehabilitation plans 
and improving patient management in oncology

RadioPathomics: Multimodal learning in non-small cell lung 
cancer for adaptive radiotherapy (Tortora et al., 2023)

Developed a multimodal late fusion approach combining radiomics, 
pathomics, and clinical data to predict radiotherapy outcomes in non-small-cell 
lung cancer patients, demonstrating improved precision in treatment planning 
through data integration
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