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Abstract

Objective—To determine the potential disease association between variants in LMBRD2 and 

complex multisystem neurological and developmental delay phenotypes.

Methods—Here we describe a series of de novo missense variants in LMBRD2 in 10 unrelated 

individuals with overlapping features. Exome sequencing or genome sequencing was performed 

on all individuals, and the cohort was assembled through GeneMatcher.

Results—LMBRD2 encodes an evolutionary ancient and widely expressed transmembrane 

protein with no known disease association, although two paralogues are involved in developmental 

and metabolic disorders. Exome or genome sequencing revealed rare de novo LMBRD2 missense 

variants in 10 individuals with developmental delay, intellectual disability, thin corpus callosum, 

microcephaly and seizures. We identified five unique variants and two recurrent variants, 

c.1448G>A (p.Arg483His) in three cases and c.367T>C (p.Trp123Arg) in two cases. All variants 

are absent from population allele frequency databases, and most are predicted to be deleterious by 

multiple in silico damage-prediction algorithms.

Conclusion—These findings indicate that rare de novo variants in LMBRD2 can lead to 

a previously unrecognised early-onset neurodevelopmental disorder. Further investigation of 

individuals harbouring LMBRD2 variants may lead to a better understanding of the function 

of this ubiquitously expressed gene.

INTRODUCTION

Exome and genome sequencing have been instrumental in the identification of novel 

variants in genes associated with disease as well as identification of novel gene–disease 

relationships. The latter is of great importance in providing clinical correlations in patients 

in whom a genetic condition is suspected, but no variants are identified based on single 
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gene tests, panels, microarray or karyotyping. In this paper, we describe individuals with 

neurological and developmental phenotypes who carry variants in the LMBR1 domain-
containing 2 (LMBRD2) gene. LMBRD2 encodes a membrane-bound protein with a poorly 

described function, but high interspecies conservation including the ancestral Drosophila 
melanogaster and Caenorhabditis elegans homologues CG8135 and C47G2.4, respectively. 

The predicted LMBRD2 protein structure shows alternating cytoplasmic, helical and 

transmembrane domains (figure 1) with high levels of amino acid conservation (figure 1, 

online supplementary figures S1 and S2). LMBRD2 is widely expressed across tissues 

in humans, with notable expression in the brain in multiple species including humans, 

mice, D. melanogaster and Xenopus laevis suggesting a possible role in brain function and 

neurodevelopment (online supplementary figures S3 and S4).

LMBRD2 is paralogous to three genes: LMBR1 domain-containing 1 (LMBRD1), limb 
development membrane protein 1 (LMBR1) and limb region 1 homologue like (LMBR1L). 

LMBR1 and LMBRD1 are associated with polydactyly1 and methylmalonic aciduria with 

homocystinuria,2 respectively, and recent reports have shown that LMBRD1 is essential 

for gastrulation.3 LMBRD2 has not yet been linked to human disease, but Paek et al4 

have suggested that LMBRD2 might be a potential regulator of β2 adrenoceptor signalling 

through involvement in G protein receptor signalling. Additionally, LMBRD2 was identified 

in a study under review by Kaplanis et al,5 which evaluated rare (minor allele frequency 

<0.01%) de novo variants (variants in coding regions including synonymous variants) 

found in a cohort of 31 058 individuals with developmental delay for novel gene-disease 

associations. Taken together, this suggests a possible role for LMBRD2 in developmental 

and neurological processes.

Through GeneMatcher,6 we identified a total of 10 patients with de novo missense variants 

in LMBRD2 with a broad spectrum of neurological and developmental phenotypes. The 

missense z-score 7 of LMBRD2 is 2.27, suggesting that the gene is intolerant to missense 

variation. The case series presented here indicates that LMBRD2 is associated with a novel 

multisystem disorder that predominantly affects the nervous system.

PATIENTS AND METHODS

This cohort of affected individuals was assembled using GeneMatcher.6Written 

informedconsent was obtained with ethics committee approval for individuals 1, 3–5, 7, 

9, and 10. The patients from Canada (individual 2), Switzerland (individual 6) and Italy 

(individual 8) were examined in a diagnostic setting.

Exome sequencing or genome sequencing was performed for all individuals to investigate 

unexplained clinical presentations (table 1). Prior to exome sequencing or genome 

sequencing, all individuals had undergone at least one other type of genetic test including 

chromosomal microarray, Mendeliome sequencing, karyotyping and gene panel testing, 

none of which resulted in identification of candidate variants. Details for each individual are 

provided in table 1 and in the online supplementary materials.
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Exome sequencing was conducted for individuals 1–3 and 5–10; individual 4 had genome 

sequencing. All parents also had exome sequencing or genome sequencing to determine 

inheritance patterns. For exome sequencing, average coverage across the affected individuals 

and parents was 90×, with exome capture conducted using Agilent (Santa Clara, California, 

USA) SureSelect technology and sequencing using Illumina HiSeq or NovaSeq (San Diego, 

California, USA) platforms. Variant types evaluated included SNVs and small indels within 

exons and exon-intron boundaries. Individual 6 also had larger multiexon CNVs evaluated. 

Genome sequencing for individual 4 was conducted using the Illumina HiSeq X system8 

at an average of 30× coverage that evaluated single nucleotide variants (SNVs), small 

indels, copy number variants and mitochondrial DNA SNVs. The LMBRD2 variants were 

confirmed using Sanger sequencing in individuals 1, 3, 5, 7, 8 and 10. Additional details on 

the testing methodology are provided in the online supplementary materials.

In silico tools were used to evaluate the potential impact of the variants and included 

Primate AI,9 SIFT, PolyPhen, Combined Annotation Dependent Depletion (CADD),10 

Revel,11 Deleterious Annotation of genetic variants using Neural Networks (DANN)12 

and Constrained Coding Region (CCR) score.13 Additional details on these methods are 

provided in online supplementary table S1. In addition, allele frequencies for each variant 

were assessed by querying the Genome Aggregation Database (gnomAD).

RESULTS

We identified a total of 10 individuals harbouring de novo variants in LMBRD2, none 

of which were detected in the control population from gnomAD. Five presented with 

unique missense variants (c.532G>A (p.Glu178Lys), c.577T>C (p.Trp193Arg), c.820A>G 

(p.Lys274Glu), c.976C>G (p.Gln326Glu) and c.1436T>G (p.Met479Arg)), two shared the 

same variant, c.367T>C (p.Trp123Arg), and three more shared another recurrent variant, 

c.1448G>A (p.Arg483His) (table 1). No other candidate variants were identified in all 

but one individual (individual 7), where three additional variants were reported, but 

all with very weak evidence (online supplementary materials). We observed a range 

of phenotypic features across individuals, with all showing signs of developmental or 

neurological abnormalities (table 1; online supplementary figures S5 and S6 in online 

supplementary materials). For example, intellectual disability and dysmorphic facial features 

were each noted in six individuals and microcephaly was found in seven individuals. 

Likewise, five individuals presented with ocular abnormalities ranging from mild features, 

including hyperopia and hypertelorism, to more severe presentations of congenital 

cataracts and microphthalmia. Six individuals also showed brain structure abnormalities 

(online supplementary figure S5). Brain MRIs of individuals 1–3, who harbour the 

recurring p.Arg483His variant, revealed a thin corpus callosum. Similarly, individual 9 

(p.Met479Arg), individual 10 (p.Trp123Arg) and individual 4 (p.Trp193Arg) showed a 

thin corpus callosum, with white matter volume loss and delayed myelination also noted 

in individual 4. All the individuals with the p.Arg483His recurrent variant also presented 

with motor and language delays. Additional overlapping clinical features across the cohort 

included seizures (n=5), developmental regression (n=2) and spasticity (n=3). We also noted 

features described in individual patients that are consistent with a broad neurodevelopmental 

disorder that included hypotonia, hypertonia and short stature.
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All seven variants show features consistent with a role in disease pathology. All are absent 

from gnomAD and five are predicted to be damaging by all seven prediction algorithms 

evaluated in this study (online supplementary table S1). The remaining two variants, 

c.532G>A (p.Glu178Lys) and c.820A>G (p.Lys274Glu), show mixed results but both have 

a CADD score >20,10 which is suggestive of pathogenicity (online supplementary table 

S1). Using the CCR score13 as an assessment of genomic conservation revealed that the 

recurrent p.Arg483His variant and the p.Trp193Arg variant fall within the 99th and 95th 

most conserved percentiles (online supplementary table S1). Two variants (p.Trp123Arg and 

p.Trp193Arg) involve a substitution of a highly conserved tryptophan to an arginine, both of 

which are near the cytosolic region of transmembrane domains 3 and 5, respectively (figure 

1).

DISCUSSION

Here we have described 10 cases with LMBRD2 variants with a broad spectrum of 

neurodevelopmental phenotypes. Five unique missense variants and two recurrent variants, 

c.1448G>A (p.Arg483His) and c.367T>C (p.Trp123Arg), were identified, all de novo and 

highly conserved. The c.1448G>A (p.Arg483His) recurrent variant was also found in three 

individuals in a study currently under review by Kaplanis et al5 describing a cohort of 31 

058 individuals with developmental delay. Evaluation of this region suggests that a CpG 

dinucleotide at this position might drive the mutability of this site. The probability of loss 

of function intolerance (pLI) score7 is ~0 for this gene, which suggests haploinsufficiency 

is unlikely to be the principal disease mechanism. However, the loss-of-function observed/

expected fraction provided in the Genome Aggregation Database ranges from 0.23 to 0.55, 

which does not completely preclude haploinsufficiency as a disease mechanism. It is more 

likely that the de novo variants identified here result in a gain of function, which affects 

G protein-coupled receptor (GPCR) regulation including the adrenergic receptor pathway.4 

Recurring variants are often associated with a gain of function or a dominant negative 

effect,14 which may explain the low pLI score. Furthermore, the missense z-score of 

LMBRD2 is >2. Positive z-scores are indicative of increased selective constraint. A score 

of 3.09 has been suggested as a threshold for significance (p=0.001). However, z-scores 

can vary based on the conditions evaluated, for example, average z-scores when evaluating 

variants in genes associated with autism spectrum disorder and intellectual disability were 

1.68 and 2.68, respectively.15 Therefore, a score of 2.27 for LMBRD2 is indicative of 

relative intolerance to missense variation.

All affected individuals had an age of onset in infancy, and while there is some variability 

in phenotype, 9 of the 10 cases had developmental delay, which is consistent with the 

observations by Kaplanis et al.5 Furthermore, intellectual disability (n=6), dysmorphic 

facial features (n=7), microcephaly (n=7), seizures (n=5) and spasticity (n=3) are also 

observed among several individuals. Phenotypic variability is observed even among patients 

harbouring the same variant. For example, spasticity or epilepsy is found in only one of 

the three individuals with the p.Arg483His variant while microcephaly is not present in one 

individual. Taken together, these data suggest that missense variants in LMBRD2 can cause 

a broad-spectrum neurodevelopmental disorder.
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All the variants identified here fall in different exons (online supplementary table S1), and 

it is possible that they have different mechanisms of action resulting in variable phenotypes 

with varying degrees of severity. Of note, four of the seven variants are located in a 

transmembrane domain (figure 1). The seven individuals with these variants appear to have 

a more severe phenotype. A larger cohort and functional evaluation will be required to better 

delineate this phenotype/genotype correlation.

LMBRD2 protein levels were shown to be strongly upregulated by β2-adrenoreceptor 

(β2AR) signalling agonist and to a lesser level by angiotensin II type 1 receptor agonist.4 

β2AR was mainly studied for its role concerning cardiovascular function regulation. 

However, consistent with the phenotype of the described individuals, β2AR is also known 

to regulate several neurotransmitters such as GABA16 and Mglur17 and has been shown to 

mediate synaptic plasticity and brain development.18 In addition, like LMBRD2, β2AR is 

strongly expressed in astrocytes and neurons.19 Characterising the impact of the LMBRD2 
variants on β2AR cerebral function may provide insight into its biological role and potential 

therapeutic avenues.

In summary, the presence of de novo missense variants in LMBRD2, including two 

recurrent variants, in the 10 affected individuals described here suggests association with 

a neurological phenotype. Given the high evolutionary conservation of LMBRD2, highly 

ubiquitous expression and its potential emerging role as a regulator of GPCR signalling, 

further studies of the mechanism of pathogenicity in these individuals may shed light on the 

extent of its mechanism.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Schematic representation of LMBRD2 and variants described. Membrane spanning 

helices were predicted using transmembrane helices hidden Markov model. 20 Conservation 

across species for (B) p.Trp123Arg, (C) p.Glu178Lys, (D) p.Trp193Arg, (E) p.Lys274Glu, 

(F) p.Gln326Glu, (G) p.Met479Arg and (H) p.Arg483His.
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