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Abstract: Laminectomy is a commonly performed surgical procedure by orthopedic and neurosur-
geons, aimed at alleviating nerve compression and reducing pain. However, in some cases, excessive
proliferation of fibrous scar tissue in the epidural space post-surgery can lead to persistent and in-
tractable lower back pain, a condition known as Failed Back Surgery Syndrome (FBSS). The persistent
fibrous tissue causes both physical and emotional distress for patients and also makes follow-up
surgeries more challenging due to reduced visibility and greater technical difficulty. It has been
established that the application of biomaterials to prevent epidural fibrosis post-lumbar surgery
is more beneficial than revision surgeries to relieve dural fibrosis. Hydrogel-based biomaterials,
with their excellent biocompatibility, degradability, and injectability and tunable mechanical proper-
ties, have been increasingly introduced by clinicians and researchers. This paper, building on the
foundation of epidural fibrosis, primarily discusses the strategies for the preparation of natural and
polymeric biomaterials to prevent epidural fibrosis, their physicochemical properties, and their ability
to mitigate the excessive proliferation of fibroblasts. It also emphasizes the challenges that need to
be addressed to translate laboratory research into clinical practice and the latest advancements in
this field.

Keywords: biomaterials; low back pain; dural mater; anti-adhesion; tissue engineering

1. Introduction

Low back pain, a pervasive health issue transcending nationality and age, signifi-
cantly contributes to global economic slowdown [1]. It is estimated that one in four adults
experience transient low back pain [2], with approximately 600 million individuals world-
wide suffering from this condition [3,4]. Among these patients, roughly 35% do not find
relief from conservative, non-surgical treatments and require surgery to alleviate nerve
compression caused by herniated disks or spinal stenosis [5,6].

Laminectomy, a common spinal surgical procedure, is one of the most effective meth-
ods for relieving neurogenic compression and associated lumbodorsalgia [7,8]. Failed
Back Surgery Syndrome (FBSS), characterized by persistent and intractable pain in the
lower back and extremities, affects about 5–10% of patients postoperatively [9,10]. FBSS is
multifactorial, with epidural fibrosis being the primary etiology. The continuous traction
on the unprotected dura by newly formed fibrotic tissue not only inflicts irreversible pain
on the patient, but also complicates revision surgeries, presenting the operating surgeon
with a more challenging field of view and increased procedural difficulty [11]. In surgeries
for ossification of the ligamentum flavum, dural adhesion has also been confirmed as one
of the significant causes of cerebrospinal fluid leakage and dural rupture. Consequently,
the benefits of preventing epidural scar adhesions post-laminectomy are markedly superior
to those of surgical adhesiolysis for postoperative adhesions.
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In this comprehensive review, we have delineated the pathophysiological mechanisms
underlying epidural fibrosis and the methodologies for adhesion assessment. The focus is
on the development strategies, physicochemical properties, and clinical and fundamental
applications of epidural anti-adhesion biomaterials. Additionally, we have discussed the
advancements in their practical efficacy and other concomitant strategies.

2. Mechanics and Evolution of Dural Adhesion

Post-laminectomy epidural fibrosis is a normal physiological phenomenon of tissue
healing. However, the extent of fibrosis can be mitigated by minimizing the length of
the surgical incision, which is one of the most common causes of postoperative epidural
fibrosis. The spinal cord in healthy individuals moves congruently with the direction of
spinal motion without pain. In contrast, for patients with epidural fibrosis, the scar tissue
can cause persistent pain, exacerbated by daily activities that increase traction on the dura
mater and nerve roots, leading to chronic inflammation and intensified pain [12–14].

Tissue scar adhesion following laminectomy may be associated with inflammatory
conditions, potentially mediated by an increased affinity of cells for collagen types I and IV,
due to elevated levels of integrin subtype α2β1, and environmental factors such as Matrix
Metalloproteinase-1 (MMP-1), Matrix Metalloproteinase-3 (MMP-3), and Vascular Endothelial
Growth Factor (VEGF), and a decrease in Matrix Metalloproteinase-9 (MMP-9) [15,16].

In contemporary clinical practice, a myriad of strategies are employed to avert the
occurrence of epidural scar adhesions. These encompass the refinement of surgical tech-
niques, minimization of surgical incisions [17], utilization of both natural and synthetic
hydrogels, application of electrospun films, implementation of artificial vertebral recon-
struction procedures, epidural fat reimplantation, and pharmacological interventions. The
latter includes the use of agents such as decorin (DCN) [18], hydroxycamptothecin [19,20],
mitomycin-C [21,22], pirfenidone [23], and a spectrum of non-steroidal anti-inflammatory
drugs exemplified by Ibuprofen [24].

Assessing the degree of adhesion is among the most critical steps in the experimental
process. Three primary methodologies are typically employed: gross visual inspection,
histological staining analysis, and magnetic resonance imaging (MRI). Gross visual exami-
nation utilizes a grading system to evaluate the relationship between the dura mater and
surrounding tissues. Histological techniques such as H&E staining and Masson’s trichrome
staining vividly delineate the morphological structure of cells and tissues, highlighting
connective tissues and the degree of staining. MRI has become one of the pivotal tools for
assessing epidural fibrosis, offering detailed insights into the structural composition of the
epidural tissues [10,25,26].

3. Natural-Hydrogel-Based Biomaterials

Natural hydrogels, predominantly composed of renewable high-molecular-weight
polymers from the natural world, are structured into three-dimensional networks, predom-
inantly derived from polysaccharides and proteins. They exhibit exceptional biocompati-
bility and high water absorption, which has led to their remarkable performance across
various sectors, including biomedical applications, cosmetics, and the agricultural industry.
However, the adhesive and mechanical strength of natural hydrogels on moist surfaces,
such as the dura mater, are insufficient, which significantly limits their in vivo applications.
Consequently, the crosslinking of various natural materials and their chemical modification
to enhance material properties have garnered widespread recognition among the scientific
community [27–29].

3.1. Hyaluronic Acid

Hyaluronic acid (HA) hydrogels are a prevalent class of polysaccharide-based hy-
drogels, renowned for their natural origin. HA is ubiquitously distributed throughout
the human body and has been utilized in biomaterials for nearly half a century [30,31].
These derivatives hold significant roles in a myriad of applications, including cellular
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delivery, molecular transportation, systemic targeted drug delivery, hemostasis and tissue
repair, the regeneration of bone defects, and ophthalmic treatments [32–35]. Crosslinked
hyaluronan, an absorbable adhesive barrier, has been extensively utilized in the postop-
erative prevention of tissue adhesion. Huang et al. synthesized a hydrogel by reacting
HA and carboxymethylcelluose (CMC) with glycidyl methacrylate to form hyaluronic acid
methacrylate (HAMA) and carboxymethyl cellulose methacrylate (CMCMA), respectively.
The hydrogel, designated as HA/CMC (HC), was subsequently photo-crosslinked under
400 nm blue light. This HC hydrogel significantly extends the in vivo degradation time
of HA hydrogels and allows for tunable degradation rates and extents by modulating the
ratios of HA to CMC (Figure 1). Additionally, the hydrogel exhibited a marked reduction
in both cellular adhesion and the in vitro infiltration of fibroblasts, which are pivotal in the
formation of adhesions, thereby underscoring its prospective anti-adhesive capabilities
within a biological milieu. Within a four-week period, the hydrogel exhibited superior
efficacy in preventing epidural scar adhesion in a New Zealand white rabbit model and
may serve as a promising material for dural repair [36].
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Figure 1. Application of natural hydrogels in dural tissue engineering. Synthesis of HAMA (A)
and carboxymethyl cellulose methacrylate (CMCMA) (B) by reacting HA and CMC with glycidyl
methacrylate. (C) Synthesis of HA/CMC hydrogel by photo-crosslinking reactions [36].

Researchers, including Ji et al., synthesized an injectable hydrogel using pyridinone
(PFD) and HAMA at an optimal concentration. This hydrogel is capable of the sustained
release of PFD, which exerts an anti-fibrotic effect by inhibiting the formation of collagen
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both in vitro and in vivo. The study demonstrates that PFD-loaded HAMA hydrogel effec-
tively suppresses the infiltration of cells such as fibroblasts, macrophages, and neutrophils,
and mitigates the generation of reactive oxygen species (ROS) and inflammatory mediators
within the body. PFD-loaded HAMA hydrogel has been proven to be safe and efficacious,
exhibiting remarkable anti-adhesion properties in a rat model where the L1-L2 laminae
were resected. Additionally, this hydrogel exhibits an appropriate degradation rate, a
crucial characteristic for a successful anti-adhesion hydrogel. The mass of the hydrogel de-
creased from an average of 0.81 g pre-implantation to an average of 0.25 g after 8 weeks [23].
In preliminary experiments, pirfenidone has been shown to mitigate fibroblast prolifera-
tion, migration, and adhesion through the inhibition of the PI3K/AKT signaling pathway.
This pathway is integral to cellular processes such as survival, metabolism, proliferation,
migration, adhesion, and protein synthesis. An elevated concentration of pirfenidone (PFD)
markedly suppresses fibroblast proliferation. PFD may represent a safe and efficacious
candidate for the reduction in clinical epidural fibrosis and holds promise for repurposing
in various clinical applications [37].

Lin et al. developed an ibuprofen-conjugated HA–PGA hydrogel capable of in situ
crosslinking for localized drug delivery. This HA–PGA hydrogel, conjugated with ibupro-
fen, demonstrated favorable biocompatibility and efficacy in reducing lipopolysaccharide-
induced prostaglandin E2 production. The utilization of ibuprofen within the hydrogel
serves to delay the coagulation of the dura mater and mitigates the proliferation of giant
cells and collagen fibers [38].

3.2. Chitosan

Chitosan-derived materials, endowed with optimal degradability, superior biocom-
patibility, and potent antimicrobial attributes, are deemed an ideal selection of natural
biomaterials for the prophylaxis of FBSS [39–41]. A novel thermosensitive anti-adhesive
gel, composed of a physical blend of locust bean gum, chitosan, and gelatin, has been
shown to exhibit comparable efficacy in preventing adhesion to that of HA-based pharma-
ceuticals [42]. Li et al. presents an anti-inflammatory, antibacterial, and analgesic bioactive
patch composed of a calcium ion-crosslinked alginate and polyacrylamide hydrogel matrix,
along with a chitosan adhesive (Figure 2). This patch achieves a seal of the dura mater
through the application of minimal pressure. In subsequent in vivo experiments, the ad-
hesive also diminishes the expression of Glial Fibrillary Acidic Protein (GFAP), Ionized
Calcium Binding Adapter molecule-1 (IBA-1), Myelin Basic Protein (MBP), Tumor Necrosis
Factor-alpha (TNF-α), and Cyclooxygenase-2 (COX-2), thereby serving to alleviate pain,
reduce inflammation, and prevent adhesion of the dura mater [43].

In a study conducted by Vediappan et al., chitosan was selected as a carrier for the
iron chelator deferiprone (Def). Def, commonly utilized in the treatment of hematological
disorders, has been demonstrated to diminish both inflammatory cells and reactive oxygen
species (ROS). A linear correlation was observed between the proliferation of fibroblasts
in vitro and the duration and concentration of DEF exposure. During surgery, the L1-L5
laminar segments of male Merino sheep were excised, exposing the dorsal surface of the
dura mater to an approximate area of 2 cm by 1 cm and treated with 0.5 g of Kaolin. Animals
were randomly divided into five groups, with each laminectomy level receiving one of
the following treatments: no treatment, chitosan, chitosan with 20 mM Def, chitosan with
40 mM Def, or a carboxymethylcellulose and polyethylene oxide (CMC/PEO) hydrogel.
The results indicated that Merino sheep treated with chitosan containing 20 mM Def
exhibited the most effective prevention of dural adhesion, underscoring the potential
application of chitosan combined with Def in the prevention of epidural scar adhesion and
the avoidance of FBSS [44].
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Figure 2. Application of natural hydrogels in dural tissue engineering. Macroscopic and microscopic
structure of patch matrix. (A) Schematic diagram of cross-linking structure of patch matrix. Green:
sodium alginate. Red: polyacrylamide. (B) Images of patch matrix before (left) and after (right)
coagulation. (C) Photographs of patch matrix standing and stretching. 1: Patch matrix just removed
from mold. 2: Patch matrix soaked in water for 24 h. 3. Patch matrix soaked in 0.25 M calcium chloride
for 24 h. a: standing. b: stretched. (D) SEM photos of patch matrix soaked in different concentrations
of calcium chloride. No soaked: patch matrix just removed from the mold. 0/0.25/0.50/0.75/1.00 M:
patch matrix soaked in 0/0.25/0.50/0.75/1.00 M calcium chloride for 24 h. a: cross section. b: surface.
Reproduced with permission from ELSEVIER, Copyright 2022 [43].
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3.3. Collagen

Collagen, a family of high-strength, naturally occurring proteins, is ubiquitously
present in the natural world and plays an integral role in the human body due to its
exceptional tensile properties. It is instrumental in maintaining the mechanical integrity
of various tissues and constitutes a significant component of the extracellular matrix in
ligaments, skin, osseous tissue, and other connective tissues [45–48].

Xu et al. fabricated a novel biomimetic fibrous scaffold with a stable stratified struc-
ture through the self-assembly of type I collagen molecules, coupled with electrospinning
and polydopamine (PDA) coating crosslinking strategies (Figure 3). This scaffold inte-
grates dual-component fibers at both micro- and nanoscales, emulating the heterogeneous
micro/nano-architecture of the dura mater. The resultant bio-scaffold is conducive to the
regeneration of large, continuous, and naturally analogous dura mater tissues, thereby
facilitating the repair of dural defects. Magnetic resonance imaging (MRI) at 8 weeks post-
operatively revealed continuous linear dura mater in the SF-PDA-COL scaffold group, with
no evidence of dural adhesion observed in the sagittal MRI. Furthermore, MRI at 24 weeks
demonstrated a distinct gap between the dura mater and surrounding musculature. Com-
paratively, the SF-PDA-COL scaffold group exhibited the lowest adhesion scores across
all control groups. Collectively, these findings underscore hierarchical micro/nanofibrous
scaffolds’ dual functionality as an effective dural substitute, with the added benefit of
preventing postoperative epidural scar adhesion [49].

An ECM-engineered scaffold, meticulously constructed using DCN, micro/nanofibrous
electrospun meshes, and self-assembled type I collagen, was designed to mitigate epidural
fibrosis through the modulation of the immune cascade effect (Figure 4). This intricate
system is adept at balancing the activation of M1 and M2 macrophages during the tissue
repair process, thereby preventing excessive M2 activity that could lead to tissue fibrosis.
Furthermore, DCN, a pivotal component of this scaffold, exerts its antifibrotic influence by
antagonizing TGF-β1 through the TGF-β/Smad3 signaling pathway, thereby inhibiting
the fibrotic activity of fibroblasts [50]. Transforming growth factor-beta 1 (TGF-β1) exerts a
significant influence on the development of epidural scar adhesions through the stimulation
of fibroblast proliferation, transdifferentiation into myofibroblasts, and an overabundance
of extracellular matrix (ECM) protein deposition. DCN, a natural antagonist of TGF-β1,
has been widely utilized for its anti-adhesive properties postoperatively across various
medical fields. Researchers have successfully delineated the efficacy of DCN in a rat model
following laminectomy. MRI assessments at 4 and 8 weeks post-treatment revealed that the
DCN-administered group exhibited only a minimal amount of dense scar tissue around the
dural sac, with no signs of compression. Histological analysis further corroborated these
findings, with the DCN treatment group receiving the lowest score for epidural fibrosis,
substantiating the significant inhibitory effect of DCN on the proliferation of epidural
fibroblasts [51].
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Figure 3. Application of natural hydrogels in dural tissue engineering. Schematic illustration of
fabricated process of hierarchical micro/nanofibrous scaffolds, and using scaffolds with special
function to repair dural defect and prevent epidural scarring. (A) Electrospun microfibrous matrices
coated with mussel-inspired polydopamine, and process of collagen self-assembly to form nanofibers.
(B) Modulation of cell behavior and activating functional response of cells and tissues. (C) In vivo
spinal dural defect model is used to demonstrate that designed biomimetic scaffolds would promote
generation of dura mater and prevent epidural scarring. Reproduced with permission from Wiley,
Copyright 2017 [49].
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Figure 4. Application of natural hydrogels in dural tissue engineering. ECM-engineered micro/
nanofibrous scaffold with immune cascade effect for inhibiting epidural fibrosis. (A) Construction of
ECM-engineered scaffold using DCN-loaded liposome, microsol electrospinning, and self-assembly of type
I collagen and its application in laminectomy surgery. (B) ECM-engineered scaffold regulating balanced
M1/M2 phenotype activity through immune cascade effect. (C) Biological mechanism of ECM-engineered
scaffold inhibiting epidural fibrosis. (D) ECM-engineered scaffold alleviating epidural fibrosis by inhibiting
inflammatory angiogenesis. (a) ECM-engineered 3D micro/nanofibers. (b) Lumbar spine laminectomy
model. (c) Alleviating epidural fibrosis by inhibiting inflammatory angiopoiesis and regulating immune
cascade effects. Reproduced with permission from Elsevier, Copyright 2023 [51].

4. Synthetic Polymer-Based Biomaterials

The deployment of synthetic polymers within the medical sector has witnessed marked
escalation, attributable to their malleable attributes that facilitate their adaptation to be-
spoke biomedical endeavors. These substances are frequently favored for their amenable
interaction with biological systems, robust mechanical resilience, and plasticity in struc-
tural configuration, rendering them optimally suited for an array of medical interventions.
Such applications encompass the realms of tissue engineering and pharmaceutical com-
pound dispensation mechanisms, and they are also increasingly being utilized in advanced
therapies and diagnostics [52–54].

4.1. PLGA

PLGA, polylactic-co-glycolic acid, a biodegradable polymer synthesized through the
copolymerization of polylactic acid (PLA) and polyglycolic acid (PGA), is renowned for
its exceptional biocompatibility, tunable degradation rate, and adjustable physicochem-
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ical properties. These characteristics have propelled its widespread application across
the biomedical spectrum [55–57]. In the research undertaken by Fan and colleagues,
PLGA-g-PVP(Polyvinylpyrrolidone)/PC(Phosphatidylcholine) nanofiber membranes were
meticulously crafted via the electrospinning technique. This innovative process substan-
tially augmented the hydrophilicity of the PLGA nanofibers (NFm), thereby efficaciously
attenuating the environmental perturbations stemming from pH fluctuations induced by
degradation byproducts. Moreover, the procedure markedly diminished the incidence of
inflammation and tissue adhesion. In addition, the novel formulation Interleukin curtailed
the mucosal irritation commonly linked with PVP/I, culminating in a more biocompatible
material primed for medical utilization. PLGA-g-PVP/PC has exhibited remarkable anti-
inflammatory and antibacterial attributes, achieving superior efficacy in the prevention of
adhesions in the dura mater [58].

Researchers engineered a PLGA/CS scaffold via a chemical crosslinking method-
ology, which capitalizes on the electrostatic interactions of the amide bonds to enhance
the scaffold’s stability. This approach effectively improved the hemostatic properties and
significantly reduced the occurrence of epidural scar adhesions (Figure 5). The study’s
outcomes suggest that the PLGA/CS scaffold is an efficacious option for the prevention
of postoperative epidural scar adhesions [59]. Ibuprofen (IBU) and poly(hydroxyethyl
methacrylate) (PHEMA) were synthesized to form an ibuprofen prodrug (PIUB) via the
electrospinning technique, which was then integrated onto a PLGA substrate, yielding a
novel PLGA fibrous physical film barrier. This construct sustains the release of IBU for
approximately eight weeks in vitro, preventing epidural scar adhesion and inflammatory
responses by inhibiting the COX-2 pathway [24].

In a recent study, Yue et al. synthesized PLA-MFQ grafted membranes through the
technique of electrospinning, utilizing polylactic acid (PLA) grafted with mefloquine (MFQ).
These membranes exhibit an initial burst release of mefloquine, followed by a sustained
release, which serves to prevent postoperative adhesion. Furthermore, the polylactic acid–
mefloquine grafted electrospun fibrous membranes demonstrated potent anti-inflammatory
properties, significantly reducing the expression of inflammatory markers (IL-1β and
TNF-α) in macrophages and neo-vasculature within the surgical site [60].

4.2. PCL

Polycaprolactone (PCL) is a biocompatible and biodegradable polymeric material that
is distinguished by its inherently slow degradation kinetics within biological environments.
This polymer is frequently selected for a myriad of medical applications, including, but not
limited to, drug delivery systems, where its sustained release properties are advantageous.
Additionally, PCL’s malleable nature allows for its use in the fabrication of scaffolds for
tissue engineering, as well as in the development of orthopedic devices and sutures that
demand a balance of strength and flexibility [61,62]. Andrychowski and colleagues reported
on the fabrication of a nanofibrous mesh barrier composed of poly(L-lactide-co-caprolactone)
(PLCL) via the electrospinning technique, which was demonstrated to mitigate excessive
scarring within the surgical site post-laminectomy [63]. Shi et al. engineered a bilayered, drug-
impregnated electrospun nanofiber membrane, tailored to prevent epidural scar adhesion.
This composite was synthesized from a blend of polycaprolactone (PCL) and chitosan (CS),
leveraging the precision of electrospinning technology. The construct boasts a meloxicam-
enriched lower stratum, capitalizing on its potent anti-inflammatory properties, and an upper
stratum suffused with mitomycin-C, designed to suppress DNA and collagen synthesis. Over
the course of approximately 12 days, the stratified membrane ensured the efficacious release
of both pharmaceutical agents. This synergistic strategy efficaciously forestalled the onset of
epidural scar adhesions, concurrently mitigating inflammatory responses and attenuating the
expression of collagen types I and III [64].

The icariin-loaded polycaprolactone (PCL) and gelatin fibers were fabricated into
nanofibrous membranes via an innovative and highly efficient electrospinning technique.
The amalgamation of PCL with natural polymers such as gelatin may yield superior ultra-
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fine fibers, characterized by enhanced biodegradability and hydrophilicity. The ICA-loaded
PCL–gelatin electrospun membrane serves as an effective anti-adhesion barrier through
the controlled release of icariin, which modulates the transforming growth factor-beta and
Smad signaling pathways to inhibit the proliferation of fibroblasts and downregulate the
expression of collagen I/III and α-smooth muscle actin (α-SMA) [65].
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terization of different fibrous membranes. (a) Synthesis procedure of PIBU. (b–e) SEM morphology
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distribution of PLGA, PLGA-IBU, PLGA-PIBU, and PLGA-PIBU-IBU fibers (n = 3, mean ± SD).
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IBU fibrous membranes. Reproduced with permission from Elsevier, Copyright 2017 [24].



Gels 2024, 10, 579 11 of 18

4.3. PEG

Polyethylene glycol (PEG) is a versatile, water-soluble polymer that has found broad
application within the medical and pharmaceutical industries, attributable to its biocompat-
ibility, non-toxicity, and formulation adaptability [66–69]. Coseal, a commercially available
hemostatic polyethylene glycol (PEG) hydrogel, is utilized as an adhesive in vascular
reconstruction and is also recognized for its efficacy in preventing postoperative adhesion
following cardiac and intra-abdominal surgeries. In an experimental application post-
laminectomy, KESKİN et al. demonstrated that Coseal is effective in preventing epidural
scarring adhesion. A histopathological examination of tissue sections confirmed the utility
of Coseal in preventing adhesions in the epidural space [70]. Li et al. synthesized a ther-
mogel polymer, PLGA-PEG-PLGA, to investigate its efficacy in preventing epidural scar
adhesion. The PLGA-PEG-PLGA thermogel demonstrated utility in a rat model of dural
adhesion, suggesting its potential as an effective protective material against postoperative
adhesion following intra-abdominal surgery [71].

5. Other Strategies

Chen et al. engineered a composite sponge by integrating biodegradable CMC with
Bletilla striata polysaccharide (BSP) and resveratrol (RES), culminating in a bilayer CMC
sponge that exhibits potential for hemostasis, anti-fibrotic effects, and anti-adhesion prop-
erties. The sponge evinced remarkable biocompatibility and demonstrated an ability to
downregulate the expression of S100A4 and P4HB in NIH/3T3 cells. This suggests that
the CMC-BSP-RES sponge may effectively curtail fibroblast activity, thereby serving as a
proficient preventive measure against adhesion [72].

Researchers have meticulously selected optimal concentrations of Poloxamer 407
(PX), a thermosensitive triblock copolymer; TPCD NP, a nanoparticle with reactive oxy-
gen species (ROS) elimination and anti-inflammatory properties; and tannic acid (TA), a
compound that enhances adhesion, to engineer an advanced injectable multifunctional
supramolecular hydrogel denoted as PXNT (Figure 6). PX, utilized as the hydrogel-forming
material, exhibits a pronounced thermosensitive sol–gel transition below 37 ◦C. The TPCD
NP nanoparticles possess antioxidant attributes, effectively neutralizing ROS and mit-
igating oxidative stress, concurrently contributing to the hydrogel’s anti-inflammatory
profile by diminishing the expression of inflammatory cytokines. The incorporation of
TA significantly bolsters the hydrogel’s tissue adhesivity, ensuring secure retention at the
surgical site and reducing the likelihood of displacement. The PXNT hydrogel demon-
strates a remarkable capacity to attenuate local inflammatory responses and oxidative
stress, endowed with multifaceted functionalities such as in situ thermosensitive gelation,
self-healing, and bioadhesion. It has shown exceptional efficacy in preventing epidural
fibrosis and adhesion post-laminectomy in both rabbit and rat models. Compared to other
biomaterials developed for the prevention of post-laminectomy adhesion, the PXNT hydro-
gel offers broader coverage for surgical sites, superior adhesivity to prevent detachment
during movement, an optimal residence time within the body, desirable viscoelasticity that
facilitates spinal mobility without causing compression of the spinal cord, and excellent
biocompatibility with no adverse effects or foreign body reactions. Furthermore, the PXNT
hydrogel holds potential for preventing postoperative adhesions in various other surgical
contexts, including cardiac, hepatic, splenic, and renal surgeries, as well as within the
abdominal and uterine cavities [73].
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Figure 6. Schematic illustration of engineering of multifunctional hydrogel for prevention of postop-
erative epidural fibrosis after lumbar laminectomy. (A) Chemical structures of three functional com-
ponents for construction of multifunctional hydrogels. (B) Sketch showing temperature-responsive
sol−gel transition of newly designed hydrogel formulation. (C) Prevention of epidural fibrosis and
adhesion post-laminectomy by local treatment with engineered advanced hydrogel. Reproduced
with permission from American Chemical Society, Copyright 2020 [73].

In this study, hydroxyapatite (HA) laminae with distinct surface topographies were
fabricated utilizing the cold isostatic pressing (CIP) and slip casting (SC) methodologies.
The HA-CIP surface exhibited a higher degree of compaction compared to the HA-SC
surface. Both biomaterials demonstrated a capacity to promote bone tissue regeneration
and repair following laminectomy, facilitating the infiltration of proliferative fibrous tissue
into the post-excision lamina region. Additionally, they effectively mitigated the occurrence
of epidural fibrosis and scar adhesion (Figure 7). In a rabbit model, the HA-CIP displayed
superior anti-adhesion properties compared to the HA-SC [74]. Artificial laminoplasty rep-
resents a promising approach to prevent postoperative epidural scar adhesion. Researchers
have developed a composite material known as N-HA/PA66, which is synthesized from
bioactive ceramics n-HA and organic polymer PA to emulate natural bone. This composite
was utilized in the reconstruction of the spinal canal following laminectomy in patients
with lumbar spinal stenosis and lumbar disk herniation, serving as a physical barrier to
achieve anti-adhesion effects. It was approved for clinical use by the China National Medi-
cal Products Administration in 2005. A follow-up period of 4 to 7 years, with an average
of 5.2 years, was conducted for the patients. Postoperative assessments were performed
at 3-, 6-, and 12-month intervals using plain radiography, computed tomography (CT), or
magnetic resonance imaging (MRI) to evaluate the lumbar region. The N-HA/PA66 com-
posites were observed to be fully integrated and retained postoperatively. Radiographic
findings indicated optimal positioning of all internal fixation devices, with no signs of
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screw loosening. MRI evaluations revealed complete expansion of the thecal sac, with no
evidence of nerve root compression or epidural scarring. The application of N-HA/PA66
in post-lumbar surgery has demonstrated remarkable outcomes. This indicates that this
novel biomaterial holds potential for translational value from the laboratory to clinical
applications [75].

Gels 2024, 10, x FOR PEER REVIEW 13 of 18 
 

 

occurrence of epidural fibrosis and scar adhesion (Figure 7). In a rabbit model, the HA-
CIP displayed superior anti-adhesion properties compared to the HA-SC [74]. Artificial 
laminoplasty represents a promising approach to prevent postoperative epidural scar 
adhesion. Researchers have developed a composite material known as N-HA/PA66, which 
is synthesized from bioactive ceramics n-HA and organic polymer PA to emulate natural 
bone. This composite was utilized in the reconstruction of the spinal canal following 
laminectomy in patients with lumbar spinal stenosis and lumbar disk herniation, serving 
as a physical barrier to achieve anti-adhesion effects. It was approved for clinical use by 
the China National Medical Products Administration in 2005. A follow-up period of 4 to 
7 years, with an average of 5.2 years, was conducted for the patients. Postoperative 
assessments were performed at 3-, 6-, and 12-month intervals using plain radiography, 
computed tomography (CT), or magnetic resonance imaging (MRI) to evaluate the lumbar 
region. The N-HA/PA66 composites were observed to be fully integrated and retained 
postoperatively. Radiographic findings indicated optimal positioning of all internal 
fixation devices, with no signs of screw loosening. MRI evaluations revealed complete 
expansion of the thecal sac, with no evidence of nerve root compression or epidural 
scarring. The application of N-HA/PA66 in post-lumbar surgery has demonstrated 
remarkable outcomes. This indicates that this novel biomaterial holds potential for 
translational value from the laboratory to clinical applications [75]. 

 
Figure 7. (A) The postoperative X-ray films showed that the internal fixation was in a good position 
with a good spinal alignment. (B) The postoperative CT and MRI of the post-op showed that the 
lumbar vertebral canal had good morphology and was covered by the n-HA/PA66 artificial lamina. 
(C) The postoperative axial MRI of the post-op and follow-up at 5 years showed no epidural scar 

Figure 7. (A) The postoperative X-ray films showed that the internal fixation was in a good position
with a good spinal alignment. (B) The postoperative CT and MRI of the post-op showed that the
lumbar vertebral canal had good morphology and was covered by the n-HA/PA66 artificial lamina.
(C) The postoperative axial MRI of the post-op and follow-up at 5 years showed no epidural scar
formation and no compression of the nerve root. Reproduced with permission from Medical Science
Monitor, Copyright 2018 [75].

Derived from a patient’s own venous blood, Platelet-Rich Plasma (PRP) is an autologous
concentrate replete with a plethora of growth factors, such as Platelet-Derived Growth Factor
(PDGF), VEGF, Epidermal Growth Factor, Platelet Factor 4 (PF-4), Insulin-Like Growth Factor-
1 (IGF-1), and Transforming Growth Factor-beta (TGF-β) [76]. These bioactive agents have
been extensively utilized in spinal surgery applications, including lumbar disk herniation,
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spinal cord injury, spinal fusion, and the promotion of degeneration in the intervertebral disk.
Despite the auspicious prospects of PRP across various medical domains, its efficacy remains
inconsistent within specific areas. Notably, researchers have reported on the efficacy of PRP in
preventing epidural scar adhesions post-laminectomy [77–79]. The study’s findings suggest
that PRP possesses superior bio-physical barrier properties when compared to hyaluronic acid
(HA) and activated Polyethylene Glycol (PEG) substitutes, thereby offering significant poten-
tial in the mitigation of epidural scar adhesions. These adhesions, which are characterized
by the formation of scar tissue subsequent to spinal surgery, can lead to chronic pain and a
cascade of complications. The pronounced efficacy of PRP in reducing the prevalence of such
adhesions is predominantly attributed to its growth factors, which are instrumental in facili-
tating a scarless healing process. This unique characteristic positions PRP as an exceptionally
beneficial agent in the postoperative care regimen following spinal surgeries, emphasizing its
indispensable role in the maximization of favorable patient outcomes [80,81].

Loose adipose tissue can also effectively prevent epidural fibrosis induced by laminec-
tomy, whether it is placed around the dura mater or around the nerve roots [14,82]. Lin et al.
developed an injectable HA hydrogel, fortified with decellularized adipose matrix (DAM)
and adipose-derived stromal cells (ASCs), with the objective of reconstructing epidural fat
to prevent epidural fibrosis and adhesion. This composite hydrogel, integrating DAM and
ASCs, is engineered to encompass all essential elements for the regeneration of epidural
fat. Following implantation, the HA functions as a physical barrier to impede the ingress
of proliferative fibrous tissue. Concurrently, the DAM initiates the differentiation of ASCs
into adipocytes. As the HA hydrogel degrades over time, it is progressively replaced by
the newly formed adipose tissue, which then serves as a barrier to prevent epidural scar
adhesion. Although the DAM/ASC-enriched HA hydrogel demonstrated potential in
reducing adhesion, further studies in larger animal models are imperative to substantiate
its efficacy and safety [83].

6. Conclusions and Prospects

Epidural scar adhesion following laminectomy is one of the most significant contribu-
tors to FBSS, presenting a myriad of challenging issues for both patients and clinicians. In
this comprehensive review, we distill insights from in vitro cellular assays, animal models
post-laminectomy, and clinical observations to elucidate the practical efficacy and underlying
mechanisms of existing materials designed to prevent epidural scar adhesions and mitigate
excessive epidural fibrosis following laminectomy. In this review, we have delineated the
pathophysiological mechanisms leading to FBSS following laminectomy, the signaling path-
ways and biological factors that influence epidural scar adhesion, and methodologies for
adhesion assessment and grading. A focused discussion is presented on the practical applica-
tions of both natural and synthetic polymeric biomaterials in the context of post-laminectomy
procedures. The current preventive strategies for FBSS encompass a spectrum of approaches,
including refining surgical techniques, abbreviating operative duration, employing physical
barriers, artificial vertebral reconstruction, drug delivery systems, and epidural fat reimplanta-
tion. The principal tactic in averting epidural fibrosis is to curtail fibroblast migration, ensure
thorough hemostasis in the surgical field, and segregate the dura mater from fibrous tissues.
While commercially available anti-adhesion materials have gained clinical approval, their
high cost, suboptimal adhesion, and inadequate mechanical strength underscore an ongoing
and pressing need in modern spinal surgery for innovative anti-adhesion materials to prevent
postoperative epidural fibrosis.

The optimal epidural anti-adhesion material should exhibit highly tunable viscoelastic
mechanical properties, including adjustable shear thinning capabilities and rapid self-healing,
enabling straightforward application via standard devices such as simple spraying or spread-
ing, or deployment through catheter delivery or direct injection. These materials also possess
excellent tissue adhesion to ensure localized retention over clinically relevant timeframes and
demonstrate high biocompatibility. Moreover, they maintain viscoelasticity, allowing organs
and tissues to move freely relative to each other, effectively preventing adhesion.
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The mechanical property enhancement of existing known materials has gained in-
creasing acceptance among clinicians and researchers. However, the journey from the
conception of a novel biomaterial to its clinical application is fraught with challenges. To
date, no sufficiently outstanding and rational solutions have been presented to address this
clinical conundrum. This article aims to provide a deeper understanding of the clinical
intricacies associated with post-dural puncture adhesion prevention. It is anticipated that
further investment in research and funding will be directed towards the field of dural
adhesion prevention, ultimately benefiting a broad spectrum of patients. With ongoing
research and technological advancements, the successful translation of preclinical studies
into clinical practice is envisioned for the future.
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70. Keskin, E.; Aydin, H.A.; Kalayci, M.; Işik, E.; Özgen, U.; Şimşek, K.; Baklaci, D.; Gökçe, M. The histopathological effects of
reabsorbable polyethylene glycol hydrogel (Coseal) on epidural fibrosis in an experimental postlaminectomy model in rats.
Turk. J. Med. Sci. 2021, 51, 1512–1520. [CrossRef]

71. Li, X.; Chen, L.; Lin, H.; Cao, L.; Cheng, J.; Dong, J.; Yu, L.; Ding, J. Efficacy of Poly(D,L-Lactic Acid-co-Glycolic acid)-Poly(Ethylene
Glycol)-Poly(D,L-Lactic Acid-co-Glycolic Acid) Thermogel As a Barrier to Prevent Spinal Epidural Fibrosis in a Postlaminectomy
Rat Model. Clin. Spine Surg. 2017, 30, E283–E290. [CrossRef] [PubMed]

72. Chen, H.-Y.; Lin, T.-C.; Chiang, C.-Y.; Wey, S.-L.; Lin, F.-H.; Yang, K.-C.; Chang, C.-H.; Hu, M.-H. Antifibrotic Effect of Bletilla
striata Polysaccharide-Resveratrol-Impregnated Dual-Layer Carboxymethyl Cellulose-Based Sponge for The Prevention of
Epidural Fibrosis after Laminectomy. Polymers 2021, 13, 2129. [CrossRef] [PubMed]

73. Wang, Y.; Li, L.; Ma, Y.; Tang, Y.; Zhao, Y.; Li, Z.; Pu, W.; Huang, B.; Wen, X.; Cao, X.; et al. Multifunctional Supramolecular
Hydrogel for Prevention of Epidural Adhesion after Laminectomy. ACS Nano 2020, 14, 8202–8219. [CrossRef] [PubMed]

74. Wu, Y.; Liu, D.; Zhou, Q.; Wang, L.; Li, X.; Yang, X.; Zhu, X.; Zhang, K.; Song, Y.; Zhang, X. Effect of surface microstructure on
the anti-fibrosis/adhesion of hydroxyapatite ceramics in spinal repair of rabbits. J. Biomed. Mater. Res. B Appl. Biomater. 2019,
107, 2629–2637. [CrossRef]

75. Zhao, Z.; Guo, L.; Zhu, Y.; Luo, W.; Ou, Y.; Quan, Z.; Jiang, D. Clinical Use of a New Nano-Hydroxyapatite/Polyamide66 Composite
Artificial Lamina in Spinal Decompression Surgery: More Than 4 Years’ Follow-Up. Med. Sci. Monit. 2018, 24, 5573–5579. [CrossRef]

76. Andia, I.; Abate, M. Platelet-rich plasma: Underlying biology and clinical correlates. Regen. Med. 2013, 8, 645–658. [CrossRef]
77. Wang, H.; Zhu, J.; Xia, Y.; Li, Y.; Fu, C. Application of platelet-rich plasma in spinal surgery. Front. Endocrinol. 2023, 14, 1138255.

[CrossRef]
78. Grzelak, A.; Hnydka, A.; Higuchi, J.; Michalak, A.; Tarczynska, M.; Gaweda, K.; Klimek, K. Recent Achievements in the

Development of Biomaterials Improved with Platelet Concentrates for Soft and Hard Tissue Engineering Applications. Int. J.
Mol. Sci. 2024, 25, 1525. [CrossRef]

79. Li, T.; Du, W.; Ding, Z.; Liu, J.; Ding, Y. Percutaneous endoscopic lumbar discectomy combined with platelet-rich plasma injection
for lumbar disc herniation: Analysis of clinical and imaging outcomes. BMC Musculoskelet. Disord. 2024, 25, 328. [CrossRef]

80. Keser, N.; Is, M.; Ceman, D.; Somay, A. Locally Used Antibiotics for Spinal Infection Prophylaxis and Their Effects on Epidural
Fibrosis: An Experimental Laminectomy Study in Rats Using Rifamycin and Gentamycin. Inflammation 2019, 42, 714–720.
[CrossRef]

81. Akkurt, I.; Bakar, B.; Dincel, G.C.; Yıldıran, F.A.B.; Ogden, M.; Nursoy, E.; Sari, E. Effectiveness of the Biophysical Barriers to the
Peridural Fibrosis in Rat Laminectomy Model. J. Investig. Surg. 2019, 32, 361–368. [CrossRef] [PubMed]

82. Liu, X.; Zhang, F.; Li, L.; He, Y.; Dong, Y. Reconstruction of Epidural Fat to Prevent Epidural Fibrosis After Laminectomy in
Rabbits. Tissue Eng. Part. A 2022, 28, 366–372. [CrossRef]

83. Lin, C.-Y.; Liu, T.-Y.; Chen, M.-H.; Sun, J.-S.; Chen, M.-H. An injectable extracellular matrix for the reconstruction of epidural fat
and the prevention of epidural fibrosis. Biomed. Mater. 2016, 11, 035010. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jconrel.2019.01.026
https://doi.org/10.1016/j.bioactmat.2024.02.019
https://doi.org/10.3906/sag-2009-241
https://doi.org/10.1097/BSD.0000000000000221
https://www.ncbi.nlm.nih.gov/pubmed/28323713
https://doi.org/10.3390/polym13132129
https://www.ncbi.nlm.nih.gov/pubmed/34209540
https://doi.org/10.1021/acsnano.0c01658
https://www.ncbi.nlm.nih.gov/pubmed/32520519
https://doi.org/10.1002/jbm.b.34352
https://doi.org/10.12659/MSM.907958
https://doi.org/10.2217/rme.13.59
https://doi.org/10.3389/fendo.2023.1138255
https://doi.org/10.3390/ijms25031525
https://doi.org/10.1186/s12891-024-07444-8
https://doi.org/10.1007/s10753-018-0929-x
https://doi.org/10.1080/08941939.2017.1423422
https://www.ncbi.nlm.nih.gov/pubmed/29345503
https://doi.org/10.1089/ten.tea.2021.0097
https://doi.org/10.1088/1748-6041/11/3/035010
https://www.ncbi.nlm.nih.gov/pubmed/27271471

	Introduction 
	Mechanics and Evolution of Dural Adhesion 
	Natural-Hydrogel-Based Biomaterials 
	Hyaluronic Acid 
	Chitosan 
	Collagen 

	Synthetic Polymer-Based Biomaterials 
	PLGA 
	PCL 
	PEG 

	Other Strategies 
	Conclusions and Prospects 
	References

