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Abstract: Milk is an ideal environment for the growth of microorganisms, especially psychrotrophic
bacteria, which can survive under cold conditions and produce heat-resistant enzymes. Psychrotrophic
bacteria create the great problem of spoiling milk quality and safety. Several ways that milk might
get contaminated by psychrotrophic bacteria include animal health, cowshed hygiene, water quality,
feeding strategy, as well as milk collection, processing, etc. Maintaining the quality of raw milk is
critically essential in dairy processing, and the dairy sector is still affected by the premature milk
deterioration of market-processed products. This review focused on the recent detection and control
strategies of psychrotrophic bacteria and emphasizes the significance of advanced sensing methods
for early detection. It highlights the ongoing challenges in the dairy industry caused by these mi-
croorganisms and discusses future perspectives in enhancing milk quality through innovative rapid
detection methods and stringent processing controls. This review advocates for a shift towards more
sophisticated on-farm detection technologies and improved control practices to prevent spoilage and
economic losses in the dairy sector.

Keywords: milk spoilage; psychrotrophic bacteria; heat-resistant enzyme; detection methods; control
strategies; cold storage

1. Introduction

Due to its high nutritional content, raw milk can serve as a perfect environment
for various microorganisms to grow. It can be easily contaminated, most notably with
spoilage bacteria, during handling, storage, transportation, and processing [1]. In the
dairy industry, storing raw milk in refrigerators for less than 10 ◦C before processing for
2 to 5 days is common practice to slow down the growth of pathogenic mesophilic and
thermophilic bacteria. Still, this practice also creates ideal conditions for the development
of psychrophilic (cold-loving) and psychrotrophic bacteria, which can continue to grow at
low temperatures (≤7 ◦C) and eventually dominate the milk microflora [2].

Most psychrotrophic bacteria found in milk can produce hydrolytic thermostable
enzymes that break down milk’s major constituents: milk fat, protein, and lecithin [3].
It has been well established by independent research groups in different countries that
Pseudomonas spp. is an essential psychrotroph that dominates the microbiota of raw milk
during cold storage. This genus of Gram-negative, aerobic, and rod-shaped bacteria harbors
species with a well-established physiological mechanism of adaptation and growth at low

Foods 2024, 13, 2908. https://doi.org/10.3390/foods13182908 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods13182908
https://doi.org/10.3390/foods13182908
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0003-1813-2039
https://doi.org/10.3390/foods13182908
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods13182908?type=check_update&version=2


Foods 2024, 13, 2908 2 of 20

temperatures, with the shortest generation times from 0 to 7 ◦C [4]. Among the known
genera, Pseudomonas, P. fluorescens, P. fragi, and P. putida are the most common species, and
they are recognized as producers of extracellular thermostable enzymes, mainly proteolytic
and lipolytic. These bacterial enzymes have been the most studied and best described [5].
Though these bacteria can be destroyed by pasteurization or ultrahigh temperature (UHT),
the thermotolerant hydrolytic enzymes (protease and lipases) produced during milk storage
and transportation under refrigeration can withstand thermal treatment used during the
manufacture of the majority of dairy products. However, several of these enzymes can keep
their activity between 60 and 70% after pasteurization and 30 and 40% after the sterilization
of milk [6]. In general, these residual activities of enzymes, present at low concentrations,
that degrade milk content can alter the physicochemical properties of the processed milk
over time [7], causing technological challenges for the dairy sector economy by limiting
the shelf life and quality of processed milk and dairy products [1]. It is estimated that
psychrotrophic bacteria can lead to up to 30% in production losses in the dairy industry
due to their enzymatic spoilage activities, significantly impacting financial outcomes [8,9].

Controlling the proliferation of spoilage bacteria during refrigerated raw milk storage
is crucial to maintaining the shelf life of the derived dairy product. For a better understand-
ing of the dairy microbiota, numerous techniques have been applied to explore the diversity
of bacteria in raw milk. Traditional phenotypic methods for bacterial identification are
based on the isolation and growth of microorganisms on solid media, followed by the
observation of morphological and biochemical characteristics [10]. Those approaches are
usually inexpensive and straightforward, but they can entail laborious culture procedures,
be time-consuming, and often be insufficient for identifying bacterial strains. Various
techniques rely on the isolation and growth of pure bacterial strains, which is problematic
because some bacteria are non-culturable [11,12].

Recently, the use of molecular identification methods has circumvented this obstacle.
Rapid molecular methods with high sensitivity and specificity have been developed to
overcome the limitations of conventional approaches to detect spoilage microorganisms in
raw milk [13]. The advancement in rapid detection methods for spoilage microorganisms in
milk and the scientific community’s contribution towards developing time-saving, specific,
fast, and efficient methods of detection are underlined. Therefore, this review provides a
comprehensive review of psychrotrophic bacteria, their characteristics, heat-stable enzymes,
detection methods, control strategies, and future perspectives based on recent publications
that could help ensure milk quality.

2. The Role of Psychrotrophic Bacterial Challenges in Milk Quality

Dairy products and milk provide optimal conditions for the growth of a broad spec-
trum of microorganisms, primarily due to their high nutritional content, near-neutral pH,
and substantial water content [14–16]. Bacterial spoilage in food represents a significant
global challenge, impacting the economic stability of the food industry due to inadequate
processing and refrigeration facilities [4]. To maintain consumer loyalty, it is imperative
for dairy industries worldwide to ensure the high quality and extended shelf life of their
products [2]. The microbial diversity in unprocessed milk is complex. It varies based on
numerous factors, including the cattle’s health, personnel hygiene, feed type, mammary
gland condition, milking equipment, surrounding air, bedding, and water, as well as the
regional climate and seasonal changes (Figure 1) [10]. Although various factors contribute
to milk spoilage during the milking process, the predominant microbiota is primarily
influenced by the conditions under which raw milk is stored and transported, as well as
the duration of storage before processing [17].

While refrigeration is widely used to extend the shelf life of raw milk and inhibit
spoilage by mesophilic bacteria, it also alters the bacterial community in a way that favors
the growth of psychrotrophs as well as psychrophiles. These bacteria, capable of producing
heat-resistant enzymes, are commonly found in water, soil, vegetation, and occasionally
in the air [18]. Since the introduction of bulk refrigerated storage, psychrotrophic bacteria
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have become predominant in raw milk microbiota, even under sanitary conditions. Post-
refrigeration, their numbers can increase from about 10% of total mesophilic aerobes to an
average of 90% [19]. Under unsanitary conditions, psychrotrophic bacteria, which thrive at
freezing temperatures, can constitute up to 75% of the original microbiota in raw milk. This
widespread distribution indicates a high degree of genetic and physiological adaptability,
including the production of cold shock proteins, changes in membrane composition to
maintain fluidity, and the production of antifreeze proteins, enabling them to thrive in
harsh and cold environments [20].
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Figure 1. Diverse factors contributing to microbial milk spoilage.

In healthy udder cells, milk is typically sterile. It has low bacterial concentrations
upon leaving the udder, generally meeting European Commission (EC) standards for milk
quality as measured in colony-forming units [18]. Levels of psychrotrophic bacteria ex-
ceeding 1.3 × 105 CFU/mL are considered significant enough to compromise raw milk
quality spoilage. Concentrations of this microbial community in unprocessed raw milk vary
with location and season, typically ranging from 102 to 107 CFU/mL. The microbiological
quality of drinking and cleaning water, animal diet, and the hygiene of milking equip-
ment and operations are all closely linked to the levels of microbial contamination in raw
milk [2,11]. These bacteria play important roles in nutrient cycling in cold environments,
the decomposition of organic matter in polar regions, and as part of microbial communities
in permafrost soils. In addition, they are significantly studied in the food industry as they
can grow slowly at refrigeration temperatures, leading to the spoilage of refrigerated foods
such as dairy products, meat, and seafood [21].

3. The Impact of Heat-Resistant Enzymes and Their Technological Challenges

The extracellular enzymes produced in milk by psychrotrophic bacteria, including
proteases, lipases, phospholipases, exopeptidases, and glycosidases, are recognized for
their heat stability. Proteases and lipases, in particular, are well understood due to their
enhanced hydrolytic characteristics [6,9,22]. The dairy industry faces technological chal-
lenges due to hydrolytic enzymes produced by psychrotrophic bacteria during cold stor-
age. Although high-temperature treatments eliminate microorganisms, the thermore-



Foods 2024, 13, 2908 4 of 20

sistant enzymes produced by the microorganisms can withstand the thermal processes
commonly employed in dairy production during milk transportation and refrigerated
storage [9,23–25]. Yet, these hydrolytic enzymes can be beneficial in the dairy industry, as
they contribute to the development of flavor and texture in cheese during the ripening pro-
cess. However, these heat-resistant hydrolytic enzymes also pose technological challenges
in milk and dairy products, as they remain active throughout product processing [5,26,27].
Some of the genera and strains of psychrotrophic bacteria with significant proteolytic and
lipolytic activity are listed (Table 1).

Table 1. List of psychrotrophic bacteria producing extracellular hydrolytic enzymes (lipase/protease).

Enzyme Genus Species References

Protease

Pseudomonas

Pseudomonas fluorescens
Pseudomonas putida
Pseudomonas veronii
Pseudomonas fragi
Pseudomonas lundensis
Pseudomonas proteolytica

[11,27–31]Bacillus Bacillus cereus

Serratia Serratia liquefaciens
Serratia grimesii

Hafnia Hafnia alvei

Chryseobacterium
Chryseobacterium piscium
Chryseobacterium oncorhynchi
Chryseobacterium jejuense

Yersinia Yersinia intermedia

Lipase

Pseudomonas

Pseudomonas fluorescens
Pseudomonas proteolytica
Pseudomonas fragi
Pseudomonas lundensis

[11,27–33]

Bacillus Bacilluscereus

Acinetobacter Acinetobacter guillouiae
Acinetobacter johnsonii

Serratia Serratia liquefaciens

Chryseobacterium Chryseobacterium joostei
Chryseobacterium scophthalmum

Lactococcus Lactococcus raffinolactis
Enterobacter Enterobacter kobei

Predominantly, Pseudomonas, a genus isolated from cold raw milk, is known for secret-
ing heat-resistant hydrolytic enzymes, according to various studies [34]. The predominance
of Pseudomonas is consistent across most sampling locations, regardless of the isolation
and identification methods used or the duration of milk storage. The different literature
revealed that Pseudomonas is the main genus associated with the breakdown of key milk
components, with P. fluorescens being the most common species responsible for reducing the
shelf life of raw milk and processed dairy products through spoilage, significantly reducing
their economic value. In addition to this, the enzymatic activity of these bacteria leads to
the breakdown of proteins and fats, causing off-flavors, bitterness, and textural changes,
which are undesirable characteristics in dairy products [24,35]. In cheese production,
psychrotrophic bacteria and their enzymes result in reduced yield and tainting problems
through the degradation of casein into peptides and amino acids by proteases, resulting in
these components being lost into the whey rather than forming the curd, thereby decreasing
the cheese yield. Tainting is primarily caused by proteolytic and lipolytic activities produc-
ing bitter peptides and free fatty acids, resulting in strong and often undesirable flavors. In
addition to spoilage, as mentioned earlier, blue discoloration in fresh mozzarella cheese
was greatly reported and drew the attention of many researchers in the dairy industry, who
named its blue mozzarella [19,36].
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Another significant issue is the “age gelation” phenomenon in UHT milk, which
is characterized by an increase in viscosity and the eventual formation of a gel, leading
to a loss of fluidity. Studies have indicated that the psychrotrophic bacterial population
of 5.5 log CFU/mL in raw milk can cause UHT milk gelation after 20 weeks of storage.
In contrast, higher populations can induce this defect in a shorter period, between 2 to
10 weeks [37,38]. Psychrotrophic bacteria can also interfere with the activity of starter
cultures used in dairy fermentation processes. The presence of proteases and lipases
may alter the growth rates and activity of these cultures, consequently affecting the final
product’s fermentation process and quality, leading to increased rennet coagulation times
and deteriorated texture in fermented dairy products such as cheese and yogurt [11].
Biofilm formation by psychrotrophic bacteria on dairy processing equipment poses a
persistent contamination risk. These biofilms consist of bacterial communities embedded
in a self-produced extracellular polymeric substance (EPS) matrix, making them difficult
to eradicate. They can act as a continuous source of bacterial contamination, leading to
repeated spoilage issues in subsequent batches of milk [39]. Though defects are challenges
for processing high-quality milk by different dairy industries, scientists are still doing their
best to achieve their target in the production of safe and high-quality dairy products by
advancing their rapid detection methods.

4. Factors Affecting Enzyme Production in Psychrotrophic Bacteria

Enzyme production by psychrotrophic bacteria in dairy processing industries is af-
fected by different factors, among which the incubation temperature, storage time, strain
specificity, bacterial community, and quorum sensing (QS) are some of them, as reported
by Jimenez et al. [40]. The quality of dairy products is determined by the enzymatic pro-
duction capacity of the different genera, species, and strains of psychrotrophic bacteria [32].
Spoilage by bacterial species in milk is primarily driven by cell density-dependent sig-
naling molecules released by Gram-negative bacteria, such as P. fluorescens, as well as by
Gram-positive bacteria [41,42]. At high cell densities, bacteria communicate with each
other using chemical signaling molecules in a process known as quorum sensing [43,44].

The primary chemical signaling molecules involved in QS include acylated homoserine
lactone (AHL) in Gram-negative bacteria, autoinducing peptides (AIPs) using modified
oligopeptides in Gram-positive bacteria, and interspecies autoinducer-2 (AI-2) hybrid
systems in both bacterial types, aiding researchers in understanding biological phenomena
such as biofilm formation and pollutant degradation across various bacterial species [45,46].
However, these signaling molecules are degraded by an enzymatic process known as
quorum quenching (QQ), which is known for its role in inhibiting biofilm formation and
suppressing the production of virulence factors [47,48]. QQ is defined as the enzymatic
degradation of quorum-sensing signaling molecules. This reduction in signaling molecule
concentration due to QQ enzymes in milk storage tanks and processing lines inhibits biofilm
formation by psychrotrophic bacteria, thereby reducing the risk of microbial contamination
load. Consequently, QQ negatively impacts bacterial enzyme production through the
enzymatic breakdown of signaling molecules involved in quorum sensing [48,49].

The temperature during bacterial incubation, pasteurization, and UHT treatment
significantly affects enzymatic activity, as demonstrated by the marked differences in
enzyme synthesis in psychrotrophic bacteria incubated at 30 ◦C compared to 7 ◦C [50].
Seasonal variations also have a significant impact on enzymatic activity; as per a report by
Dai et al. [51], samples collected in autumn showed higher spoilage rates compared to those
collected in summer from different provinces of China, because the high temperatures in
summer inhibit the growth of psychrotrophic bacteria by mesophilic bacteria as compared
to the favorable autumn temperatures. While samples collected in winter also had more
spoilage potential as compared to samples collected in summer, this was more related to
cross-contamination from inadequate hygiene practices related to animal bedding, water,
and sanitation [9,19].
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5. Detection Methods of Psychrotrophic Bacteria

Modern techniques for quick milk spoilage detection and identification are becoming
more and more necessary due to the wide range of spoilage microorganisms that affect
milk quality in the dairy industry and other food sectors [12,52]. Numerous detection meth-
ods have been employed to gain a comprehensive understanding of the milk microbiota
and to explore the diversity of psychrotrophic bacteria in raw milk [53]. In addition to
this, these recent advanced sensing methods utilize biomarkers, which possess unique
physical and chemical properties that provide specificity, speed, and efficiency in detect-
ing microbial spoilage through targeted hybridization and amplification techniques (as
shown in Figure 2), such as using nucleic acids, proteins, macromolecules, and metabolic
products [2,54,55].
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biomarker base.

Some of the recent advanced sensing (Figure 2) methods currently used for detect-
ing foodborne microbial spoilage in milk include the following: (1) nucleic acid base
methods like conventional polymerase chain reaction (PCR), quantitative PCR (qPCR),
multiplex PCR (mPCR), droplet digital PCR (ddPCR), and other methods such as DNA
microarray, isothermal amplification, which is loop-mediated isothermal amplification
(LAMP), recombinase polymerase amplification (RPA), recombinase-aided amplification
(RAA), fluorescent in situ hybridization (FISH), and sequencing (Sanger sequencing, next-
generation sequencing (NGS), and third-generation sequencing (TGS)) [55]; (2) biosensor-
based methods such as optical, piezoelectric, immunosensor, and electrochemical biosen-
sors; (3) immunological methods like enzyme-linked immunosorbent assay (ELISA), lateral
flow immunoassay, immunofluorescence assay (IFA), serum neutralization tests (SNTs),
and immunomagnetic separation assay [56]; and (4) mass spectrometry methods such as
matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF
MS) [57].
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5.1. Nucleic Acid Base Detection
5.1.1. Polymerase Chain Reaction (PCR)

PCR is a widely utilized molecular method for detecting foodborne bacterial
pathogens [29]. To evaluate the detection of spoilage microorganisms by PCR, strains
are inoculated separately into a selected broth and were subjected to DNA extraction after
18 to 24 h of incubation. The process involves three main steps: initially, the double-stranded
target DNA is denatured at high temperatures to form single-strand DNA (SSD) [13]. Orig-
inally, the detection limit for PCR in pure milk culture would identify positive results when
the concentration of P. fluorescens ranged from 107 to 109 CFU/mL. However, advance-
ments in molecular techniques and improvements in filtration methods have enhanced
the sensitivity of PCR, now detecting as few as 104 CFU/mL [58]. This highlights PCR is
a time-saving and highly sensitive method, surpassing the culturing method in various
aspects. However, it has its limitations, among which is its inability to differentiate between
live and dead cells. This lack of discrimination can lead to excessive control measures and
economic losses within the dairy industry. Furthermore, the requirement for thermocycling
to separate DNA strands restricts its usability in resource-limited settings [16].

5.1.2. Real-Time PCR (RT-PCR)

Unlike conventional PCR, real-time PCR, also known as quantitative PCR (qPCR),
eliminates the need for agarose gel electrophoresis to analyze PCR results. Instead, it uti-
lizes the fluorescence intensity that correlates directly with the quantity of PCR amplicons
produced [59–62]. This method is extensively used for detecting and quantifying microor-
ganisms across various research domains [60,63]. Research has shown that TaqMan-based
qPCR offers greater sensitivity compared to SYBR Green I or molecular beacon-based ap-
proaches [12]. In recent applications within food microbiology, qPCR has been extensively
adopted for detecting psychrotrophic bacteria in milk. According to a study by Wang
et al. [64], the minimal detection limit of P. aeruginosa targeting the gene UCBPP-PA14 by
qPCR was identified with 102 CFU/mL, which was significantly more sensitive than end-
point PCR and traditional culturing methods, enhancing sensitivity by one to two orders
of magnitude (Table 2). Consequently, Martinez et al. [65], from their comparison of the
traditional culture method vs. the qPCR method, clearly defined that the time taken from
pre-enrichment, enrichment, and up to detection for microorganisms was around 6 days
and the material required was greater as compared to the qPCR method. For this reason,
qPCR demonstrates greater specificity, sensitivity, and efficiency in microbial detection than
the traditional way and has significant value, proving to be a promising technique for the
rapid identification of milk spoilage microorganisms.

5.1.3. Loop-Mediated Isothermal Amplification (LAMP) Detection

Over the past two decades, numerous innovative isothermal nucleic acid amplification
techniques have been developed to suit low-resource settings and point-of-need applica-
tions [66]. Among these, loop-mediated isothermal amplification (LAMP) stands out as a
significant advancement since its inception by Notomi [67]. LAMP operates through auto-
cycling strand displacement DNA synthesis at isothermal temperatures ranging between
59 and 65 ◦C, utilizing a reaction mixture of nucleotides, Bst DNA polymerase, primer sets,
and reaction buffer containing magnesium ion. The technique employs four sets of primers
with outer forward (F3), inner forward (FIP), outer backward (B3), and inner backward
(BIP) primers to target six specific regions of DNA, enhancing by the addition of a loop
primer pair, which hybridizes facilitating the generation of stem-loop DNAs of various
sizes and complex, cauliflower-like DNA structures with multiple loops [68]. The LAMP
assay has demonstrated its capability to detect a broad spectrum of pathogens, ranging
from simple Escherichia coli to the latest SARS-CoV-2 [69], which can produce a significantly
higher volume of amplicons within 60 min, often more than 103 times that of traditional
PCR. This capacity makes LAMP notably more sensitive and faster, with lower detection
limits for identifying foodborne pathogens than standard PCR methods [70].
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This method has gained significant popularity due to its rapid and cost-effective na-
ture in detecting various food pathogens. The optimized LAMP assay exhibited a lower
detection limit compared to a conventional PCR-based method. In pure culture, the LAMP
assay demonstrated a detection limit of 4.8 × 101 CFU/reaction of template DNA, whereas
the PCR method presented a detection limit of 4.8 × 102 CFU/reaction. The evaluation
of method performance in P. fluorescens-contaminated pasteurized cow milk revealed
the detection limit of real-time LAMP and PCR assay to be 7.4 × 101 CFU/reaction and
7.4 × 103 CFU/reaction, respectively, where the detection limits of the real-time LAMP and
PCR assays were performing using 7.4 × 105 to 7.4 × 10−1 CFU/reaction of the template
DNA, which was two-fold times lower than that of the PCR-based method (Table 2) [71–73].
With further development, the LAMP assay has the potential to provide a favorable on-farm
alternative to existing technologies for the detection of psychotropic bacterial contami-
nation in milk, thereby enhancing the quality control of milk and milk products [71,72].
Therefore, this is to highlight that LAMP assays align with the World Health Organization
(WHO) Affordable, Sensitive, Specific, User-friendly, Rapid, Equipment-free, and Deliv-
erable (ASSURED) criteria, making it an ideal diagnostic tool for use in resource-limited
environments [70,74].

5.1.4. Recombinase Polymerase Amplification (RPA) Detection

In recent years, with the continuous development of nucleic acid-based amplification
technology, RPA stands out as a relatively straightforward approach. Commercialized by
TwistDx (www.twistdx.co.uk (accessed on 21 May 2024)), RPA utilizes proteins involved in
cellular DNA synthesis, recombination, and repair. This method of isothermal amplification
has gained significant attention due to its simplicity, rapid performance, and wide appli-
cability with regards to its fast response with time, ability to tolerate specific mismatches,
uncomplicated primer design, and facilitation of multiplex amplification reactions [66,75].

The RPA method is highly sensitive and selective, capable of amplifying 1–10 target
DNA copies within ≤20 min at a range of 37–42 ◦C [76,77]. It has shown excellent compati-
bility with multiplexing and is known for its rapid amplification capabilities, which have
been successfully used to amplify a variety of targets, including RNA, miRNA, ssDNA,
and dsDNA from multiple samples and organisms [78]. Thus, through Mycoplasma bovis
amplification targeting the amplicon uvrC gene dsDNA, using a direct RPA assay and
the rapid detection of the bacterium in bovine milk, it was determined that the limit of
detection was 1.0 × 101 copies per reaction. This is more sensitive to the observed limit of
detection in the endpoint PCR and real-time PCR assay [79–82].

However, RPA also has its limitations, among which the high cost incurred by the
kit is one of them, as the kits are available exclusively from one company. In addition,
there is no dedicated software for designing RPA-specific primers, potentially complicating
the primer design process for sequence specificity and sensitivity. Moreover, RPA is
primarily designated for research purposes as it has not yet received Food and Drug
Administration (FDA) approval. Despite these challenges, it is a new standard set for
nucleic acid amplification in the foreseeable future, with further research likely to enhance
its capabilities and applications [66,75,83]. A comparative summary for the detection limit
sensitivity of each nucleic acid base detection for the spoilage milk microbes is listed in
Table 2.

Table 2. Milk microbial spoilage detection limits based on nucleic acid detection method applications.

Microorganism
Detection Target Gene Sample Type Limit Detection Reference

Endpoint PCR
P. fluorescens aprX Milk 104 CFU/mL [58]

S. aureus UCBPP-PA14 Milk 104 CFU/mL [64]

www.twistdx.co.uk
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Table 2. Cont.

Microorganism
Detection Target Gene Sample Type Limit Detection Reference

qPCR
P. aeruginosa UCBPP-PA14 Milk 102 CFU/mL [64]

B. cereus gyrB Milk 2 × 102 CFU/mL [84]
LAMP

P. fluorescens lipA Pasteurized milk 7.4 × 101 CFU/mL [73]
P. fluorescens aprX Pasteurized milk 3 × 102 CFU/mL [71]

RPA
M. bovis uvrC Milk 101 CFU/mL [79]

E. coli O157:H7 fliC, stx and rfbE Milk and water 101 CFU/mL [82]

5.1.5. Biosensor-Based Method Detection

Compared to traditional detection technology, advanced methods such as test strips
and biosensors offer technological innovation. They are efficient, quick, and convenient
for the detection of foodborne pathogens in both food and the environment [85]. A biosen-
sor is an analytical device consisting of two primary components: a bio-receptor and a
transducer. The bio-receptor is tasked with recognizing specific targets, which include
enzymes, antibodies, proteins, nucleic acids, aptamers, and cell receptors. Upon recogni-
tion, the transducer component converts biological interactions into measurable electrical
signals. This conversion process is foundational for various types of biosensors, including
optical, piezoelectric, immunosensor, and electrochemical biosensors [86,87]. Biosensors
are renowned for providing rapid and real-time detection, capable of monitoring multiple
bacterial targets simultaneously directly at the site of interest [88]. Among them, optical
biosensors stand out for their selectivity and sensitivity, making them exceptionally suitable
for the real-time monitoring of toxins, drugs, and pathogens [55].

Electrochemical biosensors, which detect foodborne pathogens through potentiometry,
conductometry, and impedimetry, have become widely used in the fields of food, biology,
and life sciences due to their numerous advantages [85]. These advantages include rapid
processes, high sensitivity, high specificity, low cost, portability, miniaturization, and
point-of-care detection. By providing a fast and efficient alternative method for detecting
foodborne pathogens, electrochemical biosensors contribute to ensuring the safety of ready-
to-eat (RTE) foods. They can also serve as standalone devices for on-site monitoring [89].

According to a study conducted by Alexandre et al., an amperometric biosensor was
used to detect Salmonella Typhimurium in milk. The study demonstrated the biosensor’s
specificity by testing it with pure and mixed samples containing strains of E. coli and
Citrobacter freundii. The biosensor performance was satisfactory in detecting Salmonella
Typhimurium quickly in both skim and whole milk samples without the need for an
enrichment step. The biosensor had a very low limit of detection, 10 CFU/mL, and a
detection time of 125 min. This immunosensor assembly can be further explored in future
studies to detect other bacterial species in different food matrices, making it a valuable tool
for ensuring food safety [90].

5.1.6. Immunological Base Method Detection

Immunological detection represents a cornerstone method for identifying food
pathogens in the food industry, utilizing antigen–antibody binding techniques. These
methods include enzyme-linked immunosorbent assay (ELISA), lateral flow immunoassay,
and immunomagnetic separation assay. Immunoassay has been used in pasteurized milk
and raw milk with a low detection limit of 104 to 106 cells/mL within 30 min to 16 h [91].
Central to these assays is the specific interaction between an antibody and its corresponding
antigen [92]. Various antibodies are utilized across different assays to detect foodborne
pathogens and microbial toxins [93].
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The effectiveness of these antigen–antibody complexes largely depends on the speci-
ficity of the antibodies used. Monoclonal antibodies, which provide a consistent source
of a single type of antibody, are particularly valuable for the specific detection of target
molecules and are often preferred over polyclonal antibodies. The advent of monoclonal
antibodies has enhanced the specificity, sensitivity, reproducibility, and reliability of im-
munological detection. Consequently, numerous commercial immunological assays now
reliably detect a broad range of microorganism and their byproducts [56]. Despite their
specificity and capability for multiplexing across multiple samples, these methods are
occasionally limited by false-negative results and potential cross-reactions with similar
antigens [55].

5.1.7. Mass Spectrometry Method Detection

Mass spectrometry (MS) is a technique utilized for the identification of microorgan-
isms and bacteria by detecting their mass-to-charge ratio (m/z). It is a robust analytical
tool capable of simultaneously detecting multiple targets [57]. Matrix-assisted laser des-
orption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is one MS method
and is a highly effective technique employed for the identification and differentiation of
various microorganisms, including bacteria, viruses, parasites, and fungi [94]. This method
utilizes a laser to ionize molecules within a sample, and the resulting ions are subsequently
analyzed based on their mass-to-charge (m/z) ratios using a time-of-flight detector [95].
The process commences with the sample being mixed with an energy-absorbing matrix,
which facilitates the desorption and ionization of analytes upon laser beam exposure. The
ionized molecules are then accelerated in an electric field within the TOF analyzer, where
they undergo separation based on their m/z ratios, ultimately generating a unique mass
spectrum specific to the microorganism [96]. The identification of microorganisms through
MALDI-TOF-MS involves comparing the obtained mass spectra to an extensive internal
database of known spectra. This comparison necessitates intricate algorithms that match
the experimental spectra to reference spectra, enabling identification at the genus and
species levels. The utility of MALDI-TOF-MS extends beyond clinical diagnostics, finding
applications in environmental monitoring, food safety, and biodefense. The technology has
been utilized for the identification of microbial contaminants in water and food, as well as
potential bioterrorism agents such as Bacillus anthracis and Yersinia pestis [95]. The method
offers advantages due to its ability to handle complex samples with minimal preparation
and the presence of highly conserved protein biomarkers that ensure accurate detection.
Notably, MALDI-TOF-MS boasts expedited processing time, with comparative studies
demonstrating that results can be achieved in as quick as 30 min, significantly faster than
traditional methods requiring 24 to 48 h. Despite these advantages, MALDI-TOF-MS does
face challenges, such as the potential for misidentification caused by database limitations
and the inherent similarity between certain species [96]. However, ongoing updates to
spectral databases and improved algorithms are addressing these concerns, enhancing
the accuracy and reliability of microbial identifications. The future of MALDI-TOF-MS in
microbial detection involves its potential integration with genomic and proteomic data
to further enhance its identification accuracy and ability to directly detect antimicrobial
resistance and virulence factors from clinical specimens [96]. These advancements are
expected to result in more comprehensive and rapid diagnostics, broadening the range of
applications for MALDI-TOF-MS in microbial research and clinical practice. A summary of
the detection methods with their advantages and disadvantages is listed in Table 3.
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Table 3. Summary of the advantages and disadvantages of detection methods.

Detection Method Biomarker Advantages Disadvantages

1 Traditional
culture-dependent –

- Considered as the “gold
standard” for many
applications

- Ability to detect a single
bacterial strain

- Recognition of viable cells
- Appropriate for selective

media

- Material-consuming
- Time-consuming, often requiring

several days to obtain results
- They may also fail to detect viable

but non-culturable bacteria
- Risk of contamination

2

Advanced detection
culture-independent

DNA/RNA,
protein and

enzymes

- Time-saving
- Material-saving
- Can detect viable but

non-culturable bacteria
- Multiple target detection

and quantification

- They often require specialized
equipment and expertise

- More expensive
- Less accessible in remote areas

A. Nucleic acid base
detection method

DNA/RNA
- High specificity
- High sensitivity
- Fast community profiling

- Require sample storage and
processing

- Require DNA/RNA extraction,
which can cause RNA/DNA loss

- Sensitive to inhibitors
- High cost for large number of

samples
- Usually need specialized

instruments

B. Immunology-based
methods

Protein
- Cost-effective
- Can be automated
- Can detect bacterial toxins

- Require pre-enrichment
- Low sensitivity
- Require labeling of antibodies

and antigens

C. Biosensor-based
methods

DNA/RNA,
protein, and

chemicals

- High sensitivity
- Real-time detection
- Label-free

- High cost
- Require specialized instrument
- Low specificity
- Not suitable for simultaneous

detection of virous organisms
- Low reproducibility and

insufficient stability

D. Mass spectrometry
(MALDI-TOF)

DNA, protein, and
macromolecules

- Fast detection time of
30 min

- Cost-effective

- Misidentification of data
limitation

- Inherent similarity of species

6. Control Strategies of Psychrotrophic Bacteria in Milk

Ensuring that raw milk is obtained under sanitary conditions is imperative to reduce
the initial contamination by psychrotrophic bacteria. This involves cleaner cows, the better
sanitary design of equipment, enclosed pipeline milk systems, and more rigorous clean-
ing methods. The quality of dairy products is significantly impacted by the presence of
microorganisms and their thermostable enzymes, leading to substantial global economic
losses due to product deterioration. Raw milk can be contaminated from various sources,
making it challenging to control bacterial entry and subsequent enzyme production in un-
processed milk [8,97]. Moreover, a comprehensive understanding of the entire microbiotic
diversity in fresh milk is essential to prevent bacterial contamination during the storage,
transportation, and milking processes. The dairy industry frequently contends with issues
caused by psychrotrophic bacteria and their heat-resistant enzymes. Even a low bacterial
count, such as 1.3 × 105 CFU/mL before processing, can lead to technological problems,
including milk gelation, formation, and yield losses in cheese production and other milk
products [23,50]. Several strategies can be employed, some of which are discussed below,
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from the time of milking at the farm level to the final packaging process to limit the growth
of spoilage-causing psychrotrophic bacteria [33].

6.1. Temperature

Various temperature treatments are applied to control and reduce the levels of psy-
chrotrophic bacteria and their enzymes, which compromise the quality of unprocessed
milk. The rapid pre-cooling and pre-thermalization of fresh milk are crucial since the tem-
perature of milk at udder excretion is approximately 35 ◦C, an ideal condition for microbial
growth [98]. The combination of pre-heating for a specific duration (such as 72 ◦C for 15 s)
followed by cooling to 2 ◦C (plus or minus 1 ◦C) has proven effective in maintaining the
quality of stored milk for 2 to 5 days before further processing. This approach significantly
enhances the quality of the final dairy product [8]. Otherwise, storing warm milk directly
from the udder could dramatically increase the temperature within silos, fostering bacterial
growth and enzymatic activity. The other critical point we should consider is the time
before the start of cooling not exceeding 1 h, as in [99].

6.2. Modification of Atmospheric Packaging

Another effective technique for preserving milk and inhibiting microbial growth is
modified atmospheric packaging, which includes the addition of food additives and flush-
ing with nitrogen and carbon dioxide. This method is particularly significant in limiting
the growth of psychrotrophic bacteria [100]. By replacing oxygen with nitrogen in packag-
ing, oxygen-induced rancidity is prevented, and the growth of aerobic microorganisms is
inhibited, leading to a reduction in microbial growth in unprocessed milk.

Modifying the atmospheric composition surrounding the milk, particularly through
flushing with nitrogen gas and storing at low temperatures, has shown a strong inhibitory
effect on bacterial growth [63]. Additionally, the use of carbon dioxide in treating raw milk
has proven effective in reducing microbial activity. This approach has been thoroughly
researched and demonstrates substantial potential for restricting microbial growth and
enzyme production [18]. When raw milk is flushed with pure nitrogen gas, there is a signif-
icant reduction in bacterial growth, particularly of Pseudomonas, and a decrease in lipolysis
and proteolysis during cold storage, creating an environment unfavorable for anaerobes.
Moreover, the introduction of carbon dioxide after storing raw milk for 120 days not only re-
duces lipolysis and proteolysis but also preserves the microbiological and physicochemical
properties of the milk. This treatment facilitates the production of ultrahigh-temperature
(UHT) milk with an extended shelf life and reduced proteolysis [101].

6.3. Hygiene

Dairy farms encounter multiple sources of contamination, which can adversely affect
milk quality. Water serves as a predominant source of microbial contamination, requiring
stringent monitoring to ensure bacteriological quality during production. Other significant
contamination sources include spoiled silage, improperly cleaned milking equipment, and
fecal matter from dairy cows [102]. The means of milking significantly impacts the level of
contamination in dairy farms. Proper udder hygiene and the use of disinfectants are critical
during milking to minimize bacterial growth. Techniques such as foremilk stripping into
clean cups can help detect abnormalities, including mastitis, thereby reducing the risk of
cross-contamination. However, contaminated milking equipment and inadequate hygiene
practices can lead to elevated bacterial counts in milk [103]. Psychrotrophic bacteria and
their enzymes have the potential to cause defects in dairy products. To prevent these
defects, various measures have been taken to limit bacterial growth and the formation of
biofilm [104].

These measures include effective cleaning and sanitation practices, vital in reduc-
ing psychrotrophic bacteria, which compromise milk quality. The regular sanitization
of milking equipment, storage tanks, and surfaces is essential for preventing bacterial
contamination. Best practices include flushing equipment with lukewarm water to remove
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milk debris, conducting hot alkaline washes to eliminate bacteria, and finishing with warm
acid rinses to lower pH, which discourages bacterial growth [103]. Adhering to a compre-
hensive cleaning routine and implementing rigorous quality control protocols that include
continuous monitoring and sampling can significantly mitigate the risks associated with
spoilage in milk production [105]. Some advanced dairy farm management systems, such
as good hygiene practice (GHP) and good manufacturing practice (GMP), are also em-
ployed to minimize the initial number of microorganisms in unpasteurized milk. However,
the impact of these sophisticated management systems on thermoresistant enzymes is still
unknown [106]. Additionally, the formation of biofilm on stainless steel surfaces by milk
microorganisms presents a hygiene challenge in milk processing. Efforts are being made to
address this issue through the use of different chemicals and detergents [107].

6.4. Physical Preservation

High-pressure processing (HPP) is a food preservation technique that employs ex-
treme pressure to destroy microorganisms in food. For milk, HPP is advantageous because
it enables the inactivation of spoilage organisms and pathogens, guaranteeing food safety
while extending shelf life. This method stands out as it maintains the organoleptic and
nutritional properties of milk, which can be compromised by traditional thermal pasteur-
ization methods [108]. HPP operates by applying isostatic pressure to milk within its final
packaging. This process typically operates at pressures between 300 and 700 MPa, which
helps to inactivate a wide range of pathogenic and spoilage microorganisms without caus-
ing significant thermal damage. The high-pressure environment disrupts cellular structures
within bacteria, leading to the loss of viability while preserving the non-covalent bonds
integral to milk’s sensory properties [109]. The primary benefit of HPP in milk processing
is that it can extend the shelf life of milk products by weeks or even months, reducing the
frequency of spoilage. It can also preserve nutritional quality unlike thermal pasteurization,
whereby HPP retains more nutrients and bioactive compounds, such as immunoglobulins
and lactoferrin, which are critical for health [110]. Having minimal sensor changes, HPP
preserves the taste, color, and texture of milk, making it a preferred method for many
producers [108]. Despite its potential, the application of HPP in the dairy industry faces sig-
nificant hurdles. Regulatory frameworks in various regions, including stringent definitions
of “raw” milk, can limit marketing possibilities for HPP-treated products. For instance,
in the European Union, HPP is often equated with heat pasteurization, complicating how
HPP milk can be labeled.

Additionally, concerns over the recovery of injured bacteria after HPP treatment
necessitate ongoing research to ensure the complete safety of HPP milk. HPP presents a
promising alternative to conventional pasteurization, significantly contributing to food
safety and the preservation of milk quality [111]. Continued innovation and refinement
of HPP techniques could alleviate current regulatory burdens and improve adoption in
the dairy industry. Furthermore, research into the long-term effects of HPP on various
milk components will be essential for optimizing its application [112]. HPP stands as a
transformative technology, offering the potential to redefine milk preservation practices
while maintaining quality and safety.

6.5. Natural Preservatives

Natural preservatives derived from milk, such as enzymes and specific compounds,
significantly extend the shelf life of dairy products. They exert their effects through various
mechanisms, primarily by inhibiting microbial growth, and have practical applications in
food preservation processes [113]. The growing consumer demand for safer and cleaner
food products has prompted an increased focus on natural preservatives in the dairy indus-
try. Natural preservatives in milk include various organic acids, proteins, and enzymes,
contributing to its antimicrobial properties. Specific compounds such as lactoperoxidase,
lactoferrin, and antimicrobial peptides (AMPs) are derived from milk and play an essential
role in inhibiting microbial growth [114]. The most notable chemical preservatives used in
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dairy products are potassium sorbate, sodium benzoate, natamycin, and nisin, which are
recognized for their efficacy in preventing spoilage while maintaining product quality [115].

Their mechanism of action for milk-derived natural preservatives is primarily based
on their ability to inhibit microbial growth through various pathways. For instance, lac-
toperoxidase catalyzes the oxidation of substrates in the presence of hydrogen peroxide,
creating inhibitory conditions for bacteria. Meanwhile, lactoferrin binds to iron, depriv-
ing bacteria of the essential nutrients they require for growth. Moreover, AMPs disrupt
microbial cell membranes, leading to cell lysis and death. Collectively, these mechanisms
ensure food safety and prolong the shelf life of dairy products [115]. When we look into its
practical applications of natural preservatives in milk, it includes fermentation processes
that enhance microbial stability and the use of cultured dextrose and cultured skim milk to
inhibit mold growth in dairy products. For example, natamycin is commonly used in cheese
production due to its effectiveness against molds and yeasts. Natural preservatives like
these not only contribute to food safety but also meet consumer demands for clean labels
and sustainable practices [116,117]. They help reduce waste and enhance the nutritional
profile of dairy products by incorporating beneficial probiotics [116].

6.6. Microbial Enzymes

Lactase oxidase (LO) is a microbially derived enzyme naturally present in milk used
to inhibit spoilage microorganisms in raw milk with antimicrobial properties. It oxidizes
lactose into lactobionic acid and reduces oxygen, generating H2O2, which activates the
lactoperoxidase system (LPS) [118–120]. In a report by Flynn et al. [118], 19 L of pilot raw
milk polluted with a Pseudomonas cocktail was treated with a concentration of 0.24 g/L LO
for 3 days, then processed at UHT, resulting in monitoring for gelation. Ultimately, there
was a significant difference in the particle size between the LO-treated milk and the control,
observed as early as one month after processing, and gelation was not detected in LO-
treated samples after 6 months of storage. Thus, using enzymes to inhibit thermostability-
producing psychrotrophic bacteria will ensure milk quality and reduce post-production
losses in the shelf-stable milk market sector [118]. A summary illustration of microbial milk
control is shown in Figure 3.
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7. Conclusions and Future Perspectives

In light of the evolving landscape of microbial detection technologies, safeguarding the
quality of dairy products against psychrotrophic bacterial contamination and the spoilage
they cause remains imperative. With psychrotrophic bacteria’s ability to produce heat-
stable enzymes posing a significant threat to dairy economics and product integrity, future
research must be directed towards the early detection and comprehensive characterization
of these bacteria and their enzymatic profiles at the farm level. This proactive approach
will help to mitigate economic losses and enhance the safety and quality of milk products.
Implementing stringent hygiene practices remains the cornerstone of preventing contami-
nation. Additionally, exploring innovative packaging solutions, such as nano-antibacterial
materials, could offer new avenues for effectively controlling bacterial growth. Adopting
such advanced methodologies beyond traditional culture methods will be vital in saving
time, improving specificity and efficiency, and moving towards the goal of high-quality
and safe dairy product production.
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