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Abstract: T-cell acute lymphoblastic leukemia is an aggressive neoplasia due to hyper-proliferation
of lymphoid progenitors and lacking a definitive cure to date. Notch-activating mutations are the
most common in driving disease onset and progression, often in combination with sustained activity
of NF-κB. Myeloid-derived suppressor cells represent a mixed population of immature progenitors
exerting suppression of anti-cancer immune responses in the tumor microenvironment of many
malignancies. We recently reported that in a transgenic murine model of Notch3-dependent T-
cell acute lymphoblastic leukemia there is an accumulation of myeloid-derived suppressor cells,
dependent on both Notch signaling deregulation and IL-6 production inside tumor T-cells. However,
possible interaction between NF-κB and Notch in this context remains unexplored. Interestingly,
we also reported that Notch3 transgenic and NF-κB1/p50 deleted double mutant mice display
massive myeloproliferation. Here, we demonstrated that the absence of the p50 subunit in these mice
dramatically enhances the induction and suppressive function of myeloid-derived suppressor cells.
This runs in parallel with an impressive increase in IL-6 concentration in the peripheral blood serum,
depending on IL-6 hyper-production by tumor T-cells from double mutant mice. Mechanistically,
IL-6 increase relies on loss of the negative control exerted by the p50 subunit on the IL-6 promoter.
Our results reveal the Notch/NF-κB cross-talk in regulating myeloid-derived suppressor cell biology
in T-cell leukemia, highlighting the need to consider carefully the pleiotropic effects of NF-κB-based
therapy on the tumor microenvironment.
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1. Introduction

T-cell acute lymphoblastic leukemia (T-ALL) represents an uncommon aggressive
hematological malignancy, caused by oncogenic transformation of developing T-cell pro-
genitors [1–3]. It includes about 10–15% of pediatric and about one-fourth of adult acute
lymphoblastic leukemia patients, and, despite recent progress in the efficacy of conven-
tional therapies, it remains an urgent clinical problem because of the poor survival rate in
cases with relapsed disease (that represent the 40–75% of adult and the 15–20% of pediatric
patients) [4,5].
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The Notch pathway includes membrane receptors (Notch-1 to -4, in mammals) that in-
teract with specific ligands (Jagged-1 and -2; Dll-1, -3, and -4, in mammals) to regulate gene
expression via translocation of the intracellular domain (ICN) into the nucleus, where it acts
inside a transcriptional complex in combination with the DNA-binding factor CSL/RBP-Jk
and other co-factors [6,7]. Though essentially conserved in metazoans, the Notch pathway
is also characterized by highly context-dependent outcomes. In cancer, Notch receptors
could exert a role ranging from that of an oncogene to that of a tumor suppressor [8–10].

Notably, hyper-activating mutations of Notch-1 and/or Notch-3 are events occurring
in the vast majority of T-ALL cases [11–14], reflecting the fact that the two receptors regulate
many decision steps of T-cell development and differentiation [15–18]. Not surprisingly,
Notch signaling has often represented a main target in the search of T-ALL therapies [19,20].
About 30 years of research, since the first association of Notch with ‘rare’ human T lym-
phoblastic neoplasms [21], have led to the description of a plethora of Notch signaling
modulators inside tumor T-cells, mainly through the study of consolidated murine models
of Notch-dependent T-ALL [22,23], but all of them remain necessary but not sufficient to the
onset and/or progression of the disease [20]. Thus, it has acquired increasing importance to
explore the role of the tumor microenvironment (TME) and of non-cell autonomous mecha-
nisms possibly influencing behavior of T-ALL cells (T-ALLs), such as epigenetic regulation
by miRNAs [24–28], chemokine-driven interactions with the stromal compartment [29–32],
and immune-evasion strategies, including immunosuppression, through regulatory T-cells
(Tregs) and myeloid-derived suppressor cells (MDSCs) [33–35].

MDSCs represent a heterogeneous group of immature/precursor cells induced by
various pathways, including that of Notch, that are emerging as a new target of cancer
immunotherapy [36–39]. Inside the TME of many solid and hematological tumors, MDSCs
indeed suppress anti-tumor immune responses, especially those of T-cells and NK-cells,
thus facilitating disease progression. In this context, we have recently demonstrated that the
constitutive activation of Notch inside T-ALL cells, from both mice and humans, can induce
the accumulation in trans of CD11b+GR-1+ MDSCs through a Notch/IL-6-dependent
mechanism [40]. Further, induced MDSCs sustain, in turn, expansion and proliferation
of tumor T-cells [40]. In our transgenic murine model of Notch-dependent T-ALL, the
N3tg mice [23], harboring a lck proximal promoter-driven overexpression of the Notch3
intracellular domain (ICN), targeted to immature T-cells.

In the search of pathways regulating the Notch/IL-6-dependent induction of MDSCs
in T-ALL, we start considering NF-κB, an inducible transcription factor that regulates
crucial processes (such as differentiation, proliferation, and inflammation) in both physi-
ological and pathological conditions [41]. In mammals, the NF-κB family is activated by
several stimuli and delivers signals through two different pathways: the canonical one,
which comprises the NF-κB1/p50, RelA (p65), and c-Rel subunits, and the non-canonical
pathway, which relies on the NF-κB2/p52 and RelB proteins. In the classical scheme, NF-κB
can regulate transcription at the level of many gene promoters through the binding of
activating p50/p65 and p50/c-Rel heterodimers or inhibitory p50/p50 homodimers [41].
Moreover, NF-κB is one of the most important molecules linking inflammation to can-
cer [42]. Interestingly, it is activated not only inside cancer cells but also in different cell
subsets of the TME. Thus, its final effect on the anti-tumor immune response could be
ambivalent depending on the cellular context [43,44]. Finally, the intimate intersection
between the Notch and NF-κB signaling pathways is well recognized in many contexts,
including the immune system and pathogenesis of Notch-dependent T-ALL [23,45–48]. We
previously demonstrated that the deregulated activation of Notch3 inside thymocytes and
malignant T-cells of our N3tg transgenic murine model of T-ALL induces the constitutive
activation of the NF-κB complex, mainly represented by the p50/p65 heterodimers, via
IKKα-dependent degradation of IκBα. This activation promotes the enhancement of NF-
κB-dependent anti-apoptotic and proliferative pathways, sustaining the survival of tumor
T-cells [23].
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In line with the issues highlighted above, we previously demonstrated that genetic
deletion of the NF-κB1/p50 subunit in the Notch3 transgenic background deeply impacts
the TME, inducing a dramatic expansion of the myeloid compartment in N3tg/p50−/−

double mutant mice, represented by CD11b+GR-1+ cells. This process induces the rise of a
fatal myeloproliferative trait that is T-cell dependent [49]. Additionally, these mice display a
significant delay of T-ALL progression with respect to the N3tg controls, as evidenced by the
reduction in tumor CD4+CD8+ DP T-cell number, due to a cell autonomous enhancement
of their apoptotic rate [49].

Based on the premises above, our aim was to characterize the function of CD11b+GR-
1+ cells from the N3tg/p50−/− model in order to suggest the role of NF-κB as a potential
interactor of Notch signaling in regulating MDSC induction in T-ALL. Now, we report here
that expanded myeloid cells from N3tg/p50−/− mice are indeed functional MDSCs. We
also suggest that the uncontrolled expansion of this subset in double mutant mice derives
from an exacerbation in the production of IL-6 cytokines by immature tumor T-cells. At a
molecular level, we observe an enhanced transcription of the IL-6 promoter in the absence
of inhibitory p50/p50 homodimers. Collectively, our results suggest NF-κB as a modulator
of Notch in influencing MDSC biology in T-ALL.

2. Results

2.1. CD11b+GR-1+ Myeloid Cells Expand Significantly in N3tg/p50−/− Mice at an Initial Stage of
the Disease

Previously, we observed that myeloid cells with a CD11b+GR-1+ phenotype are signif-
icantly increased in N3tg mice with respect to wt controls [40] and even more expanded
in N3tg/p50−/− double mutant mice [49]. These observations were made in mice at an
advanced age (i.e., at an advanced stage of the disease). Further, we demonstrated in vitro
and in vivo that this process depends on non-cell autonomous mechanism/s driven by the
T-cell compartment [49].

Here, we want to check for myeloproliferation in N3tg/p50−/− and N3tg young mice,
starting from an initial stage of the disease, when the secondary effects of the disease
are likely reduced. FACS analysis in the spleen (Figure 1) evidenced that CD11b+GR-1+

cells are significantly increased in double-mutant mice with respect to N3tg littermates
in percentages (Figure 1A; 27.6 ± 5.1% versus 5.0 ± 1.5%, respectively), as well as in
absolute numbers (Figure 1B; 38.0 ± 11.8 × 106 versus 8.9 ± 0.9 × 106, respectively), at
5–6 weeks of age, and they increase progressively with age (Figure 1B, compare red bars at
11–12 versus 5–6 weeks of age: 80.1 ± 25.5 × 106 and 38.0 ± 11.8 × 106, respectively). No
significant differences in absolute numbers of CD11b+GR-1+ cells were observed for both
wt and p50−/− controls at 11–12 weeks of age, with respect to 5–6 weeks of age [49]. More
importantly, in the bar graph of Figure 1B, we also reported that no relevant differences were
present between N3tg mice and wt or p50−/− controls in young animals at 5–6 weeks of age
and that the CD11b+GR-1+ subset starts expanding significantly in N3tg mice at later time
points (Figure 1B, compare black bars at 11–12 versus 5–6 weeks of age: 25.5 ± 4.5 × 106

and 8.9 ± 0.9 × 106, respectively).
In summary, we confirm that myeloproliferation of CD11b+GR-1+ cells is dependent

on Notch3 deregulation, but it appears in N3tg mice only at later time points, whereas
it improves more intensively in the absence of the NF-κB1/p50 subunit in N3tg/p50−/−

double mutant mice, starting from an initial phase of the disease.

2.2. The Genetic Deletion of the NF-κB1/p50 Subunit in N3tg Mice Enhances the Suppressive
Function of T-ALL-Induced CD11b+GR-1+ MDSCs

Recently, we published that in our N3tg murine model of Notch-dependent T-ALL,
the expanded CD11b+GR-1+ cells are functional MDSCs, induced by the deregulation of
Notch signaling inside T-ALL tumor T-cells through non-cell autonomous mechanisms [40].
These results prompted us to analyze in more detail features of CD11b+GR-1+ cells in
N3tg/p50−/− double mutant mice to assess if they could represent functional MDSCs.
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Figure 1. CD11b+GR-1+ cells accumulate in the spleen of N3tg/p50−/− young mice. (A) Represen-
tative dot plots showing CD11b versus Gr-1 distributions in the spleen of wt, p50−/−, N3tg, and
N3tg/p50−/− mice at 5–6 weeks of age, as measured by FACS analysis. The numbers inside each
cytogram represent percentages of CD11b+Gr-1+ cells. (B) CD11b+Gr-1+ numbers in the spleen from
wt, p50−/−, N3tg, and N3tg/p50−/− mice at 5–6 weeks of age (left part), as well as from N3tg and
N3tg/p50−/− mice at 11–12 weeks of age (right part), as assessed by FACS analysis, as in (A). Data
represent mean ± SD of four independent experiments (n = 4 mice for each genotype and for each
age). ** p ≤ 0.01 and *** p ≤ 0.001 represent significant differences between the indicated groups. ns
= not significant, p > 0.05.

It is well established that the characteristic that serves to classify unequivocally
myeloid cells as MDSCs is their suppressive function [36]. Thus, by an in vitro suppression
assay, we tested the ability of CD11b+GR-1+ cells sorted from the spleen of N3tg/p50−/−

and N3tg young mice, as well as wt or p50−/− littermates, at 5–6 weeks of age, to be
‘suppressors’ of the proliferation of wt spleen T-cells, previously marked with the ‘Car-
boxyfluorescein succinimidyl ester’ (CFSE) fluorescent dye (to measure their proliferation)
and activated with anti-CD3/CD28 antibodies, and then used as ‘responders’ in co-cultures
at the 1:4 or 1:2 (suppressor/responder) ratio (Figure 2).

FACS analysis at 72 h reveals that co-cultures with CD11b+GR-1+ splenocytes from wt
controls or p50−/− mice are both characterized by an unchanged rate of non-proliferating
wt CD4−CD8+ T ‘responders’ (Figure 2A, lower panels: 3.3 ± 0.7% and 3.8 ± 0.9%, respec-
tively, for the 1:2 ratio), compared to that observed in the negative controls, represented
by activated wt CD4−CD8+ T-cells cultured alone (Figure 2A, upper panel: 3.5 ± 0.2%, for
the 0:1 ratio). These results show that CD11b+GR-1+ cells are not functional MDSCs in wt
mice (as expected) and, more importantly, in p50−/− mice, where the NF-κB1/p50 subunit
deletion does not confer any suppressive capacity to double mutant CD11b+GR-1+ cells at
all. Instead, CD11b+GR-1+ cells from N3tg/p50−/− mice exert a dose-dependent immuno-
suppressive function, even more potent than that of their N3tg counterparts (Figure 2B:
59.9 ± 10.5% versus 7.0 ± 1.6, respectively, for the 1:4 ratio in the left panels; 86.5 ± 14.2%
versus 14.4 ± 4.0, respectively, for the 1:2 ratio in the right panels).

To corroborate the results above, we also considered levels of mRNA expression of the
arginase-1 enzyme, which is highly expressed in MDSCs and linked to their suppressive
function in cancer [50]. In purified CD11b+GR-1+ spleen cells, we reported a significant fold
induction of Arg-1 mRNA expression in N3tg mice, that further increase in N3tg/p50−/−

animals, with respect to wt controls (Figure 2C), at 5–6 weeks of age.
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Figure 2. CD11b+GR-1+ cells from N3tg/p50−/− mice are functional MDSCs. Representative FACS
analysis at 72 h of an in vitro suppression assay with activated, CFSE-labeled wt T splenocytes,
CD4−CD8+ gated, used as ‘responders’. In (A), wt T ‘responder’ cells were cultured alone, as a
negative control (((upper panel), at a 0:1 suppressor/responder ratio), or in combination, with
CD11b+GR-1+ cells from the spleen of wt or p50−/− mice, at 5–6 weeks of age ((lower panels), at a 1:2
suppressor/responder ratio), as a control. In (B), ‘responders’ were co-cultured with CD11b+GR-1+

cells from the spleens of N3tg or N3tg/p50−/− mice at 5–6 weeks of age ((left panels), at a 1:4
suppressor/responder ratio; (right panels), at a 1:2 suppressor/responder ratio). The numbers
inside the cytograms represent the percentages of M1 non-proliferating, suppressed wt CD4−CD8+

T ‘responders’. The ratios of CD11b+GR-1+ ‘suppressors’: wt CD4−CD8+ T ‘target’ cells are also
indicated above the panels (0:1, 1:4, or 1:2). (C) RT-qPCR assay of relative arginase-1 (Arg-1) mRNA
expression in CD11b+GR-1+ cells purified from the spleens of N3tg, N3tg/p50−/−, and wt mice at
5–6 weeks of age. The expression level of Arg-1 mRNA in wt CD11b+GR-1+ controls was set to 1.
Data represent the mean ± SD of three independent experiments (n = 3 mice for each genotype), each
in triplicate. In (A,B), ns = not significant, p > 0.05, and * p ≤ 0.05 represents significant differences
with respect to the negative control with wt T-cells cultured alone (the upper panel in (A)). ++ p ≤ 0.01
represents significant differences with respect to the N3tg counterparts (comparing the lower versus
upper panels in (B)). In (C), * p ≤ 0.05 and ** p ≤ 0.01 represent significant differences between the
indicated groups.

Collectively, our observations demonstrate that the NF-κB1/p50 subunit deletion in
N3tg young mice significantly increases suppressive function of Notch-induced CD11b+GR-
1+ MDSCs.

2.3. The Enhanced Expansion of CD11b+GR-1+ MDSCs in N3tg/p50−/− Double Mutant Mice
Correlates with the Significant Increase in the IL-6 Cytokine

In our recent publication, we demonstrated that the accumulation of MDSCs driven
by Notch signaling deregulation in our N3tg model depends on the IL-6 cytokine, which
significantly increases in the peripheral blood serum of these mice at an advanced age and
is primarily produced by CD4+CD8+ DP T-ALL cells [40].

Thus, we checked IL-6 protein levels in N3tg/p50−/− double mutant mice (Figure 3),
in search of its possible involvement in the dramatic expansion of this suppressor cell
subset reported above for double mutant mice.

We noted that the IL-6 protein is virtually absent in the peripheral blood serum of both
wt and p50−/− controls at 5–6 weeks of age, whereas it reaches appreciable but low levels
in N3tg mice and, notably, a considerable increase in N3tg/p50−/− double mutant mice
(Figure 3A).
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Figure 3. N3tg/p50−/− mice display enhanced production of the IL-6 cytokine. IL-6 protein concen-
trations (pg/mL) assessed by ELISA (A) in peripheral blood serum from N3tg/p50−/− and N3tg mice,
at 5–6 weeks of age, compared to those of their wt or p50−/− controls and (B) in the supernatant
medium of CD4+CD8+ DP T splenocytes derived from N3tg/p50−/− and N3tg mice, at 5–6 weeks of
age, cultured alone for 48 h, compared to DP T thymocytes from their wt littermates. Data represent
the mean values ± SDs of three independent experiments (n = 3 mice for each genotype), each in
triplicate. nd, not determined; * p ≤ 0.05, ** p ≤ 0.01, and *** p ≤ 0.001 represent significant differences
between the indicated samples.

Then, we cultured in vitro CD4+CD8+ DP T-cells, purified from the spleens of N3tg
and N3tg/p50−/− young mice, at 5–6 weeks of age, as well as from the thymuses of wt mice,
as a control, alone and without any external stimuli, in order to check for the concentration
of IL-6 released in the supernatant at 48 h (Figure 3B). We reported that wt DP T thymocytes
produce a very low level of IL-6 (<6.0 pg/mL). Instead, the enhancement of the IL-6 protein
released into the medium was significant in samples from N3tg mice and very impressive
for cultures of DP T splenocytes from N3tg/p50−/− double mutant mice, with respect to
their relative controls.

In sum, we can conclude that an enhanced release of the IL-6 protein, as specifically
documented for CD4+CD8+ DP T-cells, correlates with the early expansion of functional
MDSCs in N3tg/p50−/− young mice when compared to the N3tg counterpart.

2.4. The Genetic Ablation of the NF-κB1/p50 Subunit Enhances the Transcription of the IL-6
Promoter in CD4+CD8+ DP T-Cells from N3tg/p50−/− Mice

In the attempt to elucidate at molecular level a mechanism that could explain the
enhanced expression of the IL-6 cytokine and the increased accumulation of MDSCs in
N3tg/p50−/− double mutant mice, we start considering possible Notch-mediated alteration
in transcriptional control of the IL-6 promoter. During the T-cell activation process, Notch is
able to interact directly with NF-κB, facilitating its retention inside the nucleus and activity
on the IFN-γ promoter [51]. In another context, it was reported that the NF-κB1/p50
subunit is a direct negative regulator of IL-6 promoter transcription in follicular B cells
from wt mice, and its deletion could release this block, thus favoring an enhanced release
of IL-6 in the microenvironment of p50−/− aged mice [52].

On these premises, we tested the possible binding of the NF-κB1/p50 subunit at each
of the four κB-consensus sites, previously described inside the murine IL-6 promoter [44], by
a ChIP assay on samples of CD4+CD8+ DP T thymocytes from wt young mice at 5–6 weeks
of age. As depicted in Figure 4A, the p50 subunit binds to Site 1 and Site 3 of the murine
IL-6 promoter, whereas the binding of the RELA/p65 subunit is virtually absent. Thus, the
prevalence of an inhibitory effect of the p50 subunit on IL-6 promoter transcription could
account for the production of the IL-6 protein at a very low level, if any, as we reported
above for the culture medium of wt DP thymocytes and blood serum from wt young mice
(see Figure 3, above).
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Figure 4. The NF-κB1/p50 subunit represses the transcription of the IL-6 promoter in CD4+CD8+

DP T-cells. (A) The binding of the NF-κB1/p50 or RELA/p65 subunit to the κB-consensus Site1
and Site3 of the murine IL-6 promoter [44], analyzed by ChIP-qPCR in cross-linked protein–DNA
complexes of CD4+CD8+ DP T thymocytes from wt mice, at 5–6 weeks of age. Fold enrichment of
target region in p50-IP, p65-IP, or control IgG-IP is shown, and data are normalized to binding at the
β-actin promoter (negative control). The values of IgG-IP controls were set to 1. (B) The binding of the
RELA/p65 subunit to Site1 and Site3 of the murine IL-6 promoter, as in (A), analyzed by ChIP-qPCR
in cross-linked protein–DNA complexes of CD4+CD8+ DP T splenocytes from N3tg or N3tg/p50−/−

mice, compared to wt DP T thymocyte controls, at 5–6 weeks of age. Fold enrichment of target region
in p65-IP versus control IgG-IP is shown, and data are normalized to binding at the β-actin promoter
(negative control). The values in wt DP T thymocyte controls were set to 1. In (A,B), data represent
the mean values ± SDs of three independent experiments (n = 3 mice for each genotype), each in
triplicate. ns = not significant, p > 0.05. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, and **** p ≤ 0.0001
represent significant differences between the indicated samples. (C) Working hypothesis on how
the NF-κB1/p50 subunit can regulate IL-6 transcription and then MDSC differentiation in mice of
different genotypes (see the text for an exhaustive explanation). In the left parts, x = no transcription,
++ = enhanced transcription and ++++ = very high transcription of the IL-6 promoter; vertical black
arrows of different thickness indicate differences in the strength of p65 binding to the IL-6 promoter;
blunt arrows of different thickness indicate differences in the inhibition of IL-6 transcription, that
lacks in the panel 3 due to the absence of p50/p50 homodimers, as indicated by the red X over them.
In the right parts, the triple red arrow indicates very high levels of IL-6 production by DP T cells;
blunt arrows of different thickness indicate differences in the inhibition of CD8+ cells exerted by
MDSCs, that lacks in the panel 1 due to the absence of IL-6 and MDSCs, as indicated by the red X
over them. Created with BioRender.com.
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In Figure 4B, we explored in more detail the binding of the activatory p65 subunit to
those sites of the IL-6 promoter in DP T-cells from the spleens of different genotypes at
5–6 weeks of age (i.e., at an early phase of T-ALL development). We observed an increase
in p65 binding to both Site 1 and Site 3 in tumor DP T-cells from N3tg mice, that is in line
with the constitutive activation of the NF-κB canonical pathway, originally described
in tumor T-cells from the N3tg transgenic model [23], as well as with the significant
increase in IL-6 protein levels described before with respect to their wt counterparts (see
Figure 3B, above). Surprisingly, the genetic ablation of the NF-κB1/p50 subunit in the
N3tg genetic background causes an even more sustained increase in the binding of the p65
subunit to those sites, which, again, corresponds to the dramatic enhancement of the IL-6
protein in DP T splenocytes and blood serum from N3tg/p50−/− double mutant mice (see
Figure 3, above).

In conclusion, as shown in our working model in Figure 4C, we suggest that under
normal conditions, as for wt DP T-cells that are confined into the thymus (Figure 4C, upper
panel, #1), the NF-κB1/p50 subunit represses transcription from the IL-6 promoter, and
consequently, we do not observe any release of the IL-6 protein in the microenvironment
and myeloid precursors do not differentiate into MDSCs. Instead, the increase in the NF-
κB/p65 binding to the IL-6 promoter observed in DP T-ALL cells from N3tg mice (Figure 4C,
middle panel, #2) stimulates the transcription of IL-6 and its release in the TME, sustaining
the differentiation of functional MDSCs. Finally, the absence of negative regulation exerted
by the NF-κB1/p50 subunit on the IL-6 promoter, as observed in DP T-ALL cells from
N3tg/p50−/− double mutant mice (Figure 4C, lower panel, #3), induces a further increase
in the p65 binding to the IL-6 promoter. Eventually, this results in the enhancement of
IL-6 transcription and release in the TME, thus improving the accumulation and function
of MDSCs.

3. Discussion

The poor clinical outcomes of relapsing T-ALL patients have led us to consider the
emerging role of Notch in the TME and cancer immunotherapy [53] as a new underexplored
target of innovative approaches for the definitive cure of this aggressive T-cell leukemia.
Focusing our attention on MDSCs for their crucial ability to impair anti-tumor immune
responses, we have reported that the Notch/IL-6 axis inside tumor T-cells is necessary but
not sufficient for the in trans induction of functional MDSCs in the TME of our murine
model of Notch-dependent T-ALL, as well as in human PBMCs [40].

Now, in the attempt to individuate partners of Notch signaling in this context, we
highlight in this paper the important role of its interaction with the NF-κB pathway. The
genetic ablation of the NF-κB1/p50 subunit in T-cells of the N3tg background (i.e., the
coexistence of the two mutations) significantly anticipates the accumulation and strongly
improves the suppressive function of induced MDSCs in the TME of N3tg/p50−/− double
mutant mice with respect to the N3tg controls. Importantly, no ectopic expression of the
Notch3 transgene was reported in the myeloid compartments of these mice [49], and any
MDSC expansion or suppressive function was observed in p50−/− single knock-out controls
at all (see Figures 1 and 2, above). The other group suggested, rather, that accumulation of
the p50 subunit into the nucleus of myeloid cells positively controls MDSC differentiation
and function, and its deficiency (as in the p50−/− model) or exclusion from the nucleus
impaired MDSC action in a cancer setting [54–56].

Interestingly, a role of the Notch or NF-κB signaling pathway, either positive or
negative, in the differentiation and function of cancer-associated MDSCs was reported
many times, as reviewed in [34,53,57]. However, very often, the suggested roles were
intrinsic to MDSCs or their myeloid precursor, and they implicated cell autonomous
mechanisms. Here, for the first time to our knowledge, we emphasize a cross-talk between
Notch and the NF-κB1/p50 subunit inside tumor T-cells that improves MDSC induction
and activity inside the TME of T-ALL in trans through a non-cell autonomous mechanism.
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In the attempt to shed light on the process involved in Notch/NF-κB combined
enhancement of MDSCs, we observed that it coincided with the considerable increase in the
level of IL-6, which represents a major regulator of MDSC activity in cancer [58]. Indeed, we
evidenced higher concentrations of IL-6 in both blood serum and supernatant of CD4+CD8+

DP T-cells cultured alone from N3tg/p50−/− double mutant versus N3tg mice, whereas very
low levels, if any, were observed in samples from wt and p50−/− controls (see Figure 3). Of
note, it is known that progressive and uncontrolled levels of IL-6 production by follicular
B-cells led to the development of chronic inflammation and multiorgan autoimmunity
in aging p50−/− mice [52]. However, significant increase in systemic IL-6 and signs of
inflammatory pathology became evident in p50−/− mice only at 36 weeks of age, compared
to wt controls [59]. On the contrary, in N3tg/p50−/− mice, the improvement of MDSC
accumulation and function, as well as high IL-6 concentration in the serum, were already
present at a very early stage, at 5–6 weeks of age (see Figures 1–3).

In further detail, we unveiled that the huge amount of IL-6 produced by DP T-cells
from N3tg/p50−/− mice depends at molecular level by the negative role exerted by the
NF-κB1/p50 subunit on IL-6 promoter transcription (see Figure 4). This mechanism was
firstly proposed in murine follicular B cells [52]. Of interest, following the original ob-
servation demonstrating that the NF-κB family of proteins is a key regulator of IL-6 tran-
scription [60,61], a Notch/NF-κB cross-talk in this process was later described in murine
macrophages [62]. In this manuscript, as depicted in our model (Figure 4C), we propose
that in physiological conditions (as in wt DP T thymocytes), the p50 subunit binds two sites
on the murine IL-6 promoter and inhibits the binding of the p65 subunit, which is normally
included in transcriptional active heterodimers of NF-κB. In N3tg DP tumor T-cells, the
constitutive activation of canonical NF-κB [23] allows a stronger binding of the p65 subunit
to the IL-6 promoter, thus enhancing its transcription. At the opposite side, the absence of
the NF-κB1/p50 subunit (as in N3tg/p50−/− DP T-cells) does release the repression on the
IL-6 promoter, further improving its transcription.

It is noteworthy that several polymorphisms have been defined that cause decreased
expression of NF-κB1 in different human malignancies, such as epithelial tumors [63] and
gastric cancer [64], as well as in autoimmune diseases [65]. Notably, a subset of diffuse
large B-cell lymphomas (DLBCLs) can be characterized by a polymorphism in the NF-κB1
gene, with decreased expression of the p50 monomer, and constitutive activation of the
NF-κB pathway, associated with higher levels of IL-6 in patients [66].

We are conscious that our study presents important limitations. First, the validation
of our results through the use of NF-κB inhibitors in our model would represent a more
definitive proof of the NF-κB role as modulator of MDSC functions. However, NF-κB
signaling modulation, in addition to the impact in trans on MDSCs, as reported here, can
have a high negative side effect in cis on the fitness of T-ALL tumoral cells [23,49], as well as
on other TME cell subsets, including MDSCs (see [57] and references therein), with a high
risk to obtain confounding results from this kind of experiment. Moreover, N3tg/p50−/−

mice develop a rapidly progressive myeloproliferative disease [49], which could limit
in part the windows for the in vivo administration of NF-κB inhibitors. Second, though
immature CD4+CD8+ DP T tumor cells are one of the most represented cell subsets in the
spleen and bone marrow of N3tg/p50−/− young mice [49], we cannot exclude that other
cell types (including MDSCs themselves) contribute to IL-6 production and release in the
TME, thus sustaining the establishment of an immunosuppressive environment.

Finally, to complete the picture of the regulation of IL-6 promoter transcription in
T-ALL cells, it remains to specify the possible role of the alternative pathway of NF-κB, as
well as of other subunits, such as c-Rel, in the absence of the NF-κB1/p50 subunit. Certainly,
all these aspects need to be explored in future studies.

Overall, we believe that our data contribute to delineating NF-κB as an important
partner of Notch in driving MDSC induction inside the TME of T-ALL. They may offer the
rationale for testing in our pre-clinical setting a combined therapy aiming to hit proliferation
and survival of T-ALL cells but also to inhibit the induction of immunosuppression by
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using highly selective NF-κB inhibitors (such as p65 subunit inhibitors). Additionally, our
conclusions represent, on the one hand, a strong premise for including in future analysis of
human T-ALL patients the potential influence on the immune environment exerted by the
combined deregulation of the Notch and NF-κB signaling pathways inside tumor T-cells.
The balance between activating p50/p65 heterodimers and inhibitory p50/p50 homodimers
on the IL-6 promoter of T-ALL cells could be explored as a potential prognostic factor in
patients. On the other hand, our observations reinforce once again the concern, already
reported in other cancer settings [44,67], that the design and testing of a multitarget therapy
for Notch-dependent T-ALL, focused on NF-κB, should carefully consider the pleiotropic
effects of systemic and unspecific NF-κB inhibitors, such as the IKK inhibitors [68–71]. The
therapeutic use of any NF-κB inhibitor should be evaluated not only for its effectiveness on
tumor T-cells but also for its possible side effects on MDSCs.

In this context, we now cannot avoid taking seriously into account the consequences
on MDSCs and other immune cell subsets of the T-ALL tumor microenvironment.

4. Materials and Methods
4.1. Mice

The generation and typing of N3tg mice have been described elsewhere [23]. The
N3tg/p50−/− mice have been generated by the intercross between p50−/− [72] and N3tg
mice, as previously described [49]. N3-tg, N3tg/p50−/−, p50−/−, and wt mice were all
maintained on a C57BL/6 background. Mice were bred and housed in the institute’s animal
care facilities. Mice were monitored daily and euthanized when they displayed excessive
discomfort. All experiments involving animals described in this study were conducted in
compliance with the animal welfare Italian National Laws (D.lgs. 116/1992 and 26/2014)
and were approved by the local Animal Welfare Committee at Sapienza University and by
the Italian Ministry of Health (authorization protocol #1/2012 and #C1386.17).

4.2. Cell Culture

CD4+CD8+ DP T-cells were sorted, as described from the spleens of N3tg and N3tg/p50−/−

mice, as well as from the thymuses of wt controls, and were cultured in 6-well plates
(2 × 106 cells/well). All the cell culture samples were cultured at 37 ◦C and 5% CO2 in
complete medium, that is, RPMI-1640 medium (GIBCO, ThermoFisher, Waltham, MA,
USA), supplemented with 10% FBS, 10 U/mL penicillin and streptomycin, and 2 mM
glutamine. At 48 h, the supernatants from culture samples were collected by centrifugation
at 1000× g for 15 min at +4 ◦C, and assayed for IL-6 concentration by ELISA.

4.3. Flow Cytometry and Cell Sorting

Freshly isolated cell samples from the spleen and/or thymus of N3tg, N3tg/p50−/−,
p50−/−, and wt mice were resuspended in PBS 1×, 2% FBS, and after erythrocyte lysis with
ammonium chloride–potassium buffer, they were stained with surface marker detection
for 30 min on ice, using anti-CD4-PerCPCy5.5 (RM4-5), anti-CD8-APC (53-6.7), anti-CD11b-
FITC (M1/70), and anti-Gr-1-PE (RB6-8C5) antibodies (all from BD Bioscience, La Jolla, CA,
USA). Samples were run on a FacsCalibur (BD Bioscience, La Jolla, CA, USA) and analyzed
with CellQuest Pro v6.0 software (BD Bioscience, La Jolla, CA, USA).

For FACS-assisted cell sorting experiments [49], cell suspensions from the spleen
and/or thymus of N3tg, N3tg/p50−/−, p50−/−, and wt mice were stained with anti-CD11b,
anti-Gr-1, anti-CD4, and anti-CD8 antibodies, as above, to isolate CD11b+Gr-1+ putative
MDSCs and/or CD4+CD8+ double-positive (DP) T-cells with a purity ≥98%, using a
FACSAriaIII sorter equipped with BD FACSDiva v6.1.3 software (both from BD Bioscience,
La Jolla, CA, USA).

4.4. In Vitro Suppression Assay with Murine MDSCs

To assay the inhibitory function of putative MDSCs, the suppression assay was per-
formed, as previously described [40]. Briefly, total wt T splenocytes were used as the target,
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after isolation by negative selection with the Pan T Cell Isolation Kit II (Miltenyi Biotec,
Bergisch Gladbach, Germany) and staining with 2.5 µM CFSE (Sigma Aldrich, St. Louis,
MO, USA), which allows measurement of the proliferation rate of the labeled cells. A total
of 3.0 × 105 of CFSE-labeled wt T-cells (‘responders’) were activated with coated 3 µg/mL
anti-CD3 and with 2 µg/mL of soluble anti-CD28 (both from BD Bioscience, San Diego, CA,
USA) and were co-cultured with graded numbers of CD11b+Gr-1+ cells (‘suppressors’),
sorted from the spleens of N3tg, N3tg/p50−/−, wt, or p50−/− mice, as described above.
Co-cultures were performed for 72 h in 96-well plates; then, samples were collected and
appropriately stained, and inhibition of proliferation of CFSE-labeled T-cells was assessed
by FACS analysis on gated CD4−CD8+ T subsets.

4.5. ELISA

Samples were obtained from culture supernatants, as described above, or from the
serum of mice with different genotypes. For serum isolation, whole blood was allowed to
clot for 20 min at RT, and supernatant (serum) was collected after centrifugation at 1000× g
for 15 min at +4 ◦C. All samples were stored at −80 ◦C. IL-6 concentrations were assayed,
in triplicates, by using the mouse IL-6 Quantikine ELISA kit (R&D Systems, Minneapolis,
MN, USA), following the manufacturer’s instructions.

4.6. Chromatin Immunoprecipitation Assay (ChIP-Assay)

The chromatin immunoprecipitation assay (ChIP-Assay) was carried out through the
use of the “EZ Chip Chromatin Immunoprecipitation Kit” (17-371, Sigma-Aldrich, St. Louis,
MO, USA), following the manufacturer’s instructions. Briefly, samples of CD4+CD8+ DP
T-cells from the spleen of N3tg and N3tg/p50−/− mice, as well as from the thymus of wt
controls, at 5–6 weeks of age, sorted as above, were treated with formaldehyde at a final
concentration of 1% in order to “cross-link” protein complexes to DNA within the living
nuclei. Then, chromatin immunoprecipitation was carried out with 5 µgr of antibodies
against NF-κB1 p50 (E-10, sc-8414x, Santa Cruz Biotechnology, Santa Cruz, CA, USA),
ChIP-grade antibodies against NF-κB p65/RelA (17-10060, Millipore, Burlington, MA,
USA), or an equivalent amount of normal-mouse IgG (12-371, Sigma-Aldrich) as a negative
control. To measure the relative enrichment on the four κB-consensus regions of the murine
IL-6 promoter, SYBR-greeen qPCR was performed with the specific primers listed below, as
reported in [52]. Reactions were performed in triplicate. Data were normalized to binding
at the β-actin promoter.

1. IL-6/NF-κB Site1: Fw 5′-TGGTAAATACAGAGCATTTGGGTG-3′;
2. Rv 5′-TTGGGATAAAGTTGAGACAGGCT-3′;
3. IL-6/NF-κB Site2: Fw 5′-AGCCATTGCCCCCAGGAT-3′;
4. Rv 5′-GCACATATGTAGCAGAGGACTGT-3′;
5. IL-6/NF-κB Site3: Fw 5′-CCTCTTCCCTGGGGTCTCA-3′;
6. Rv 5′-TCAGAAGTCTCAACTAACCTGGAC-3′;
7. IL-6/NF-κB Site4: Fw 5′-GGGGTTTCCAACTTCAGTCCA-3′;
8. Rv 5′-AGTTGGTCCAATGACTAGCCC-3′.

4.7. RNA Isolation and RT-qPCR of Arginase-1

CD11b+Gr-1+ cells from the spleen of N3tg, N3tg/p50−/− and wt mice, at 5–6 weeks
of age, were purified, as above. Total RNA samples were extracted with TRIzol reagent
(Invitrogen, Waltham, MA, USA). Reverse transcription was performed with the High-
Capacity cDNA Reverse-Transcription Kit, and the expression of murine Arginase-1
(Mm00475988_m1 assay) was determined by TaqMan quantitative real-time RT-PCR, using
the StepOn ePlus™ Real-Time PCR System (all from ThermoFisher, Waltham, MA, USA),
by following instructions from the manufacturer. Data were analyzed by the DDCt method;
murine HPRT was used as a reference.
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4.8. Statistical Analysis

Results are presented as mean values ± SDs (standard deviations). Statistical sig-
nificance was assigned by a two-tailed Student’s t-test (performed with GraphPad Prism
v.7.0a software, San Diego, CA, USA). A value of p ≤ 0.05 was assumed as indicative of a
significant difference between groups. All data shown are representative of at least three
independent experiments, meaning a total of n = 3 mice for each genotype and for each age
where appropriate, unless otherwise specified. The number of used mice is also reported in
each figure legend. Technical triplicates were performed where appropriate, as indicated in
the relative figure legend.
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