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Abstract: In the realm of hematopoiesis, hematopoietic stem cells (HSCs) serve as pivotal entities
responsible for generating various blood cell types, initiating both the myeloid and lymphoid
branches within the hematopoietic lineage. This intricate process is marked by genetic variations that
underscore the crucial role of genes in regulating cellular functions and interactions. Recognizing the
significance of genetic factors in this context, this article delves into a genetic perspective, aiming
to unravel the biological factors that govern the transition from one cell’s fate to another within
the hematopoietic system. To gain deeper insights into the genetic traits of three distinct blood cell
types—HSCs, erythroblasts (EBs), and megakaryocytes (MKs)—we conducted a comprehensive
transcriptomic analysis. Leveraging diverse hematopoietic cell datasets from healthy individuals,
sourced from The BLUEPRINT consortium, our investigation targeted the identification of genetic
variants responsible for changes in gene expression levels and epigenetic modifications across
the entire human genome in each of these cell types. The total number of normalized expressed
transcripts includes 14,233 novel trinity IncRNAs, 13,749 mRNAs, and 3092 IncRNAs. This scrutiny
revealed a total of 31,074 transcripts, with a notable revelation that 14,233 of them were previously
unidentified or novel IncRNAs, highlighting a substantial reservoir of genetic information yet to be
explored. Examining their expression across distinct lineages further unveiled 2845 differentially
expressed (DE) mRNAs and 354 DE long noncoding RNAs (IncRNAs) notably enriched among the
three distinct blood cell types: HSCs, EBs, and MKs. Our investigation extended beyond mRNA
to focus on the dynamic expression of IncRNAs, revealing a well-defined pattern that played a
significant role in regulating differentiation and cell-fate specification. This coordination of IncRNA
dynamics extended to aberrations in both mRNA and IncRNA transcriptomes within HSCs, EBs,
and MKs. We specifically characterized IncRNAs with preferential expression in HSCs, as well as in
various downstream differentiated lineage progenitors of EBs and MKs, providing a comprehensive
perspective on IncRNAs in human hematopoietic cells. Notably, the expression of IncRNAs exhibited
substantial cell-to-cell variation, a phenomenon discernible only through single-cell analysis. The
comparative analysis undertaken in this study provides valuable insights into the distinctive genetic
signatures guiding the differentiation of these crucial hematopoietic cell types.
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1. Introduction

Hematopoiesis, the intricate process of generating various blood cell types, is crucial
for maintaining the hematopoietic system’s functionality [1]. This process relies on complex
gene expression patterns and regulatory networks. The coordination between protein-
coding genes and noncoding RNAs plays a pivotal role in shaping the development and
functions of different blood cell lineages [2]. This precise coordination is essential for
maintaining hematopoietic balance and overall health. Hematopoietic stem cells (HSCs)
possess distinct gene expression profiles that maintain their identity and regulate their

Int. . Mol. Sci. 2024, 25, 10073. https:/ /doi.org/10.3390/ijms251810073

https:/ /www.mdpi.com/journal/ijms


https://doi.org/10.3390/ijms251810073
https://doi.org/10.3390/ijms251810073
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-8361-3897
https://orcid.org/0000-0002-0912-5796
https://doi.org/10.3390/ijms251810073
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms251810073?type=check_update&version=1

Int. J. Mol. Sci. 2024, 25, 10073

20f19

differentiation into specific cell types [3]. Long noncoding RNAs (IncRNAs) are known
to influence cell differentiation and development. However, our understanding of the
complete IncRNA transcriptome in human hematopoietic cells is still limited. While a few
IncRNAs have been identified to play roles in differentiation and development within the
hematopoietic system, further research is needed to comprehensively define their functions
and regulatory mechanisms.

Recent whole transcriptome sequencing has revealed a large number of putative
IncRNAs. Notably, Cabezas-Wallscheid et al. [4] recently identified hundreds of IncRNAs
expressed in HSCs. In addition, genomic profiling identified thousands of IncRNAs ex-
pressed in erythroid cells. IncRNA expression is tissue- and cell-type-specific [5-8] but is
less conserved across species than in messenger RNA (mRNA) expression [9,10]. LncR-
NAs have been linked to the development of several lineages in hematopoiesis and in the
immune response. Some IncRNAs were found to be enriched in HSCs [11] or dynami-
cally expressed during erythropoiesis [12,13]. Some of them have been shown to play a
role in erythroid maturation and erythro-MK development [12,13]. Despite these many
examples [14-20] of specific functions for either stem cells or differentiated lineages such
as myeloid and lymphoid cells, the repertoire of IncRNAs in human hematopoietic stem
and progenitor cells has not been fully described.

Whole transcriptome sequencing allows large-scale profiling of IncRNAs in tissues and
diseases, enabling the identification of many putative IncRNAs [8,21,22]. Recent advances
in single-cell transcriptome profiling methods have unveiled unexpected variability in gene
expression within seemingly homogeneous cell populations. Studies profiling IncRNAs
at the single-cell level have revealed their cell-specific expression [8,23-25]. Previously,
IncRNA expression was assessed by averaging transcriptomes of bulk RNA from mixed cell
populations, limiting sensitivity to detect IncRNA expression in small cell populations and
to resolve diversity within a cell type. Recent studies have disclosed IncRNA expression in
purified murine MK-erythroid precursors, MKs, and EBs, as well as in human EBs, using
deep sequencing. While differences in expression and function have not been extensively
reported in HSCs, EBs, and MKs, they still remain largely unknown. Given that IncRNAs
typically exhibit cell type or stage-specific expression and HSCs and MKs are scanty
(~0.01% of bone marrow) compared to EBs, many cell-type-specific IncRNAs may not have
been identified and annotated yet. Therefore, our aim was to identify the full complement
of IncRNAs expressed between HSCs, EBs, and MKs to determine IncRNAs specific to
HSCs relative to representative differentiated lineages of EBs and MKs and to perform an
initial analysis of their relevance to function.

In this study, we utilized datasets from the BLUEPRINT consortium, (https:/ /projects.
ensembl.org/blueprint/, accessed on 24 April 2019; fastq.gz format) covering the entire
human genome across three blood cell types: HSCs, EBs, and MKs. Our primary objective
was to analyze the expression profiles of both IncRNAs and mRNAs in these cell types,
aiming to elucidate the potential roles of IncRNAs in HSCs, EBs, and MKs. Through de
novo transcriptome reconstruction, we identified 3092 IncRNAs and discovered 14,233 po-
tential novel trinity mRNAs previously unreported in public databases. Additionally,
we characterized the distinct expression patterns of mRNAs and IncRNAs, constructing
co-expression networks within HSCs, EBs, and MKs to uncover potential functional impli-
cations of mRNA and IncRNA expression in lineage-specific differentiation. Subsequently,
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analyses were performed to explore the functions of differentially expressed genes (DEGs)
in HSCs, MKs, and EBs. Overall, our study provides a comprehensive assessment of
IncRNA biology in the human hematopoietic system, suggesting their potential contribu-
tions to differentiation decisions during hematopoiesis and offering insights into identifying
functional IncRNAs in other differentiation hierarchies.
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2. Results
2.1. Analysis of RNA-Seq Data

To identify DE mRNAs and IncRNAs with expression profiles specific to each cell
type in three different blood cell types: HSCs, MKs, and EBs; we have obtained Data
Access Permission via a DAC agreement for the raw FASTQ mRNA-seq data. Following
the removal of adaptor sequences, ambiguous nucleotides, duplicated sequences, poly-N
reads containing >10% ‘N’, and low-quality bases (<Q30), a total of 1,449,823,626 cleaned
reads (94.00%) were harvested for further analysis. The number of cleaned reads of each
sample ranged from 13.4 to 116.2 million. The mapping ratio ranged from 88.0% to 94.0%
with an average of 91.0%. A summary of read counts for all libraries and the percentage of
reads mapped to the human genome for the biological replicates of HSCs, MKs, and EBs is
tabulated (Supplementary File—Sheet S1).

2.2. Identification of DEGs (mRNAs and IncRNAs)

In order to capture the global gene expression profile associated with three different
blood cell types (HSCs, MKs, and EBs), the BLUEPRINT RNA-seq data were utilized with
a number of biological replicates, respectively. We employed the pipeline to detect and
classify all mRNAs and IncRNAs within the expressed transcriptome [26]. By examining
the expression profiles of three distinct hematopoietic lineages—we identified a total of
13,749 mRNAs and 3092 IncRNAs. Additionally, among these, 14,233 trinity mRNAs
were identified (Supplementary File—Sheet 52). Following these initial examinations, we
focused on the expressed transcriptome, covering 13,749 mRNAs and 3092 IncRNAs, to
study gene expression across the three blood cell types: MKs, HSCs, and EBs. Using a
log? fold changes < —2 or >2 and a p-value cut-off of 0.01, we identified a total of 2845 DE
mRNAs and 354 DE IncRNAs (Supplementary File—Sheet S3). We generated volcano plots
(Figure 1) to provide an overview of the DEG patterns generated to represent upregulated
and downregulated mRNAs/IncRNAs across different blood cell groups. Interestingly, we
observed that in the mRNA data, there was a higher proportion of downregulated genes in
all three blood cell lineages. Conversely, in the case of IncRNAs, the number of upregulated
IncRNAs was higher compared to the number of downregulated IncRNAs across the same
cell lineages (Supplementary File—Sheet S4). A Venn diagram was constructed to ascertain
the overlap among the three DEG profiles of blood lineages (Figure 2).

Moreover, the analysis revealed 263 mRNAs exclusively DE in the HSCs/MKs com-
parison, 983 genes specific to the HSCs/EBs comparison, and 202 mRNAs specific to
the MKs/EBs comparison (Figure 2a). Additionally, the study identified a total of 354
(159 + 48 + 18 + 77 + 23 + 22 + 7) DE IncRNAs (Figure 2b) across the three groups (MKs,
HSCs, and EBs) (Using a log?2 fold changes < —2 or >2 and a p-value cut-off of 0.01). Among
them, 48 IncRNAs were specifically DE in the HSCs/MKSs comparison, 159 IncRNAs were
specific to the HSCs/EBs comparison, and 18 IncRNAs were specific to the MKs/EBs
comparison (Supplementary File—Sheet S5) (Figure 2b). These specific DEGs provide
valuable insights into the unique gene expression patterns characterizing each blood cell
lineage. Venn diagrams provide a visual depiction of both the common and distinct DEGs
among HSCs, MKs, and EBs. This analysis, driven by differential expression, revealed
137 shared mRNAs (Figure 2a) and 7 shared IncRNAs (Figure 2b) in the group of HSCs,
EBs, and MKs. Notably, the discovery of 137 mRNAs/genes and 7 IncRNAs exhibiting
differential expression and shared across all three cell lineages (MKs, HSCs, and EBs) points
towards the existence of a shared regulatory network governing crucial biological processes
in blood cell types.
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Figure 1. Detection of (a) DE mRNAs and (b) DE IncRNAs. DE mRNAs (a) and DE IncRNAs
(b) are depicted in volcano plots. The volcano plots illustrate the dispersion of gene and IncRNA
expression patterns across various blood cell lineages, encompassing HSCs, MKs, and EBs. These
plots were generated based on the correlation between the negative logarithm of the p-value (on
the Y-axis) and the logarithm of the fold change (on the X-axis). Each point on the plot represents
an individual mRNA or IncRNA. Notably, mRNAs and IncRNAs highlighted in orange and blue
indicate substantial fold changes (FC < —2 and >2) and statistical significance (adjusted p < 0.01).
Conversely, genes and IncRNAs represented in gray lack the required level of significance. (i) The
plot showcases the expression profiles of mRNAs and IncRNAs between total HSCs and EBs. (ii) The
plot displays the expression profiles of mRNAs and IncRNAs between total HSCs and MKs. (iii) Plot
demonstrates the mRNAs and IncRNAs expression profiles between total MKs and EBs.

HSCs_vs s vs MKs HSCs_vs s _vs_MKs

MKs_vs_EBs MKs_vs_EBs
(a) (b)

Figure 2. Identifying (a) DE mRNAs and (b) DE IncRNAs in HSCs, EBs, and MKs. Venn diagrams
depicting the DE analysis of mRNAs and IncRNAs in HSCs, EBs, and MKs. (a) Venn diagram
illustrating the distribution of DE mRNAs in HSCs, EBs, and MKs. Genes exhibiting an FC with an
absolute value greater than 2 (I FC| > 2) and a p-value of <0.01 are highlighted in orange and blue,
representing significant changes. (b) Venn diagram displaying the distribution of DE IncRNAs in
HSCs, EBs, and MKs. Similar to panel (Figure 1a), IncRNAs with a |FC| > 2 and a p-value of <0.01
are shown in orange and blue, signifying significant alterations. The overlap of 137 DE mRNAs and
7 DE IncRNAs across the three datasets is depicted, indicating shared differential expression patterns
among these cell lineages.
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This finding offers valuable insights into the unique gene expression alterations within
each blood cell type. Notably, the majority of mRNAs in HSCs exhibited downregu-
lation, indicating lower expression levels compared to other cell types or conditions
(Supplementary File—Sheet S6). On the one hand, the DE mRNAs that were upregu-
lated in HSCs displayed downregulation in EBs and MKs, indicating higher expression
levels in HSCs but reduced levels in the other two cell types. Conversely, the DE IncRNAs,
such as UCA1, AC100835.2, AC104561.3, LINC01764, and LINC00656, consistently showed
a downregulation pattern across all three cell lineages (MKs, HSCs, and EBs), with the
exception of LINC02573 and AL365361.1 IncRNAs, etc. These two IncRNAs exhibited a
distinct expression pattern compared to the rest. To visually explore the expression patterns
of both unique and common DE mRNAs and DE IncRNAs, unsupervised hierarchical
clustering was employed to generate heatmaps (Figure 3 (Supplementary File—Sheet 57)).
Furthermore, the heatmaps display a cluster of the top 137 mRANSs and 7 IncRNAs that
were DE among all blood cell samples. The analysis revealed that MKs and EBs showed
greater similarity in terms of the genes DE, while the pattern of downregulation of IncRNAs
was more pronounced in HSCs and MKs compared to EBs.

ﬁ LINCOIT64
UCAT 8
LINCO0BS5
ACI04561.3 6
ACI008352
= ___ LiNcazs7s 4
B L3511
,,,,,,, m 2
mmmmmmmmmmmmmmmmmm 0

(b)

Figure 3. Hierarchical clustering of (a) DE mRNAs and (b) DE IncRNAs using their expression
patterns. The presented heatmap illustrates the hierarchical clustering of shared (a) DE mRNAs
and (b) DE IncRNAs, based on their expression profiles within three blood cell types (HSCs, EBs,
and MKs). Across all three blood cell types, a total of 137 DE mRNAs and 7 DE IncRNAs were
identified as differentially expressed (FC < —2 and >2, adjusted p-value < 0.01), forming distinctive
clusters of upregulated and downregulated genes. The Y-axis denotes the DEGs, while the X-axis
represents sample IDs. The color gradient indicates the relative expression levels, where blue signifies
low expression (downregulation), yellow represents moderate expression, and orange signifies
high expression (upregulation). Each row corresponds to an mRNA or IncRNA, and each column
corresponds to a specific blood cell type sample.
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The comparative analysis of blood cells revealed that among the total, 2845 mRNAs
and 354 IncRNAs were differentially expressed between all blood cell lineages. Within this
set, 917 mRNAs and 276 IncRNAs were upregulated, while 2177 mRNAs and 102 IncRNAs
were downregulated (Using a | FC| < —2 or >2 and a p-value cut-off of 0.01). Venn diagrams
were plotted to depict the cumulative count of DE mRNAs and DE IncRNAs (Figure 4),
including upregulated and downregulated instances. The diagram captures variances
across various cell types and within each specific cell type within the blood.

MKs_vs_EBs MKs_vs_EBs

Figure 4. Distribution patterns of significantly upregulated and downregulated mRNAs and IncRNAs.
The Venn diagram analyzed shared and distinct DE mRNAs and DE IncRNAs among HSCs, EBs,
and MKs: (a) upregulated mRNAs, (b) downregulated mRNAs, (c¢) upregulated IncRNAs, and
(d) downregulated IncRNAs. Overlapping circles represent common DE mRNAs and DE IncRNAs.

Additionally, the analysis using the Venn diagram highlights the distribution of DE
mRNAs and DE IncRNAs across distinct blood cell samples, offering insights into the
prevalence of upregulated and downregulated mRNAs/IncRNAs. Between HSCs and
MKs, a total of 1266 mRNAs showed differential expression, with 326 genes upregulated
and 940 mRNAs downregulated. In the comparison between HSCs and EBs, there were
2186 DE mRNAs, including 500 upregulated mRNAs and 1686 downregulated mRNAs.
The MKs vs EBs comparison resulted in 927 DE mRNAs, comprising 364 upregulated
mRNAs and 563 downregulated mRNAs (Supplementary File—Sheet S8).

The highest number of DE mRNAs (2186) was observed between HSCs and EBs,
with 500 genes upregulated and 1686 mRNAs downregulated. The differential expression
between HSCs and MKs (1266 mRNAs) was similar to that between MKs and EBs (927 mR-
NAs), with 326/364 mRNAs upregulated and 940/563 mRNAs downregulated. However,
the number of DE mRNAs increased when comparing EBs with other lineages, as compared
to the comparison between MKs and EBs. Regarding DE IncRNAs, there were 154 common
DE IncRNAs between HSCs and MKs, with 85 upregulated and 69 downregulated. For
the HSCs vs EBs comparison, out of 266 DE IncRNAs, 213 were upregulated and 53 were
downregulated. Between MKs and EBs, 48 DE IncRNAs were upregulated and 22 were
downregulated, out of a total of 70 DE IncRNAs (Supplementary File—Sheet 59).

It’s worth noting that despite the presence of several thousand IncRNAs showing
differential expression within each cell lineage; only 7 IncRNAs were common among all
three blood cell types. The fewest common DE IncRNAs were observed between MKs and



Int. J. Mol. Sci. 2024, 25, 10073

7 of 19

Pathways

EBs, followed by HSCs and MKs, and HSCs and EBs. Therefore, the differential expression

of mRNAs/IncRNAs was more pronounced in the comparisons between HSCs vs EBs and
HSCs vs MKs than in MKs vs EBs.

2.3. DEGs Functional Enrichment Analysis

We performed functional enrichment analyses of GO and KEGG pathways using the
bioinformatics resource DAVID. The goal was to gain insights into the biological processes
and molecular functions influenced by the DEGs under investigation, as well as their
cellular localization are presented in Figure 5a (Supplementary File—Sheet 510). The DEGs
were classified into three primary categories: molecular function, biological process, and
cellular component. Specifically, 177 DEGs were assigned to biological process terms,
143 DEGs to molecular function terms, and 153 DEGs to cellular component terms.
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Figure 5. Enhancing understanding of DEGs in blood cell lineages: (a) GO (Supplementary File—
Sheets S10 and S11). The varying shades of red and green colors signify different p-values (lower to
higher) and (b) KEGG analysis. (a) Functional annotation was conducted using the bioinformatics tool
DAVID. Flower plots reveal GO terms were categorized into molecular function, cellular component,
and biological process. The most significantly enriched GO terms (FDR < 0.05) in each branch are
displayed. (b) The multi-group bubble plot represents top enriched KEGG pathways for DEGs in
blood cell lineages (Supplementary File—Sheet 512). The varying shades of red and green in node
colors signify different p-values (lower to higher), while the varying sizes of the nodes indicate
varying numbers of genes. The most significantly altered pathways (FDR < 0.05) include those
associated with asthma, Staphylococcus aureus infection, platelet activation, and coagulation cascades.
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In the biological process category, the DEGs were categorized into various functional
subcategories. Among these, the most abundant GO terms were associated with essential
cellular processes, including metabolic processes, cellular component organization and
biogenesis, regulation of biological quality, cell cycle processes, and response to external
stimuli. Particularly interesting were the upregulated genes that encoded cyclins, which are
key players in regulating the progression of the cell cycle, particularly during the G1-to-S
and G2/M phase transitions. These genes likely play crucial roles in maintaining cellular
homeostasis in response to chemical signals and external stimuli during cell division.

Regarding the molecular function term, the majority of the identified unigenes ex-
hibited functions related to protein binding and carbohydrate derivative binding. Several
genes within this category were both upregulated and downregulated, suggesting their
involvement in essential cellular processes. Some of these genes were associated with
receptor binding, anion binding, enzyme binding, small molecule binding, purine ribonu-
cleoside triphosphate binding, enzyme regulator activity, and protein dimerization activity,
highlighting their significance in cellular functions and interactions.

In the cellular component category, the DEGs were found to be associated with specific
cellular locations, including the cytoplasm, cytoplasmic part, membrane, intracellular
organelle lumen, and membrane-enclosed lumen. These findings provide insights into the
cellular compartments where the genes of interest are predominantly active.

In Figure 5b, which illustrates the KEGG-pathway-enrichment analysis, we identified
matches for 44 unigenes associated with 17 KEGG pathways. Our KEGG-pathway analysis
unveiled 17 pathways enriched with our identified partner mRNAs, which were likely
influenced by the activity of the 7 DE IncRNAs. Overall, the functional enrichment analysis
revealed essential biological processes, molecular functions, and cellular localizations
associated with the DEGs. The identification of key pathways involved in hematopoietic
cell lineage.

2.4. Correlation between Coding Genes and IncRNAs

We examined the impact of IncRNAs on mRNA expression and their associated
biological functions across three distinct cell lineages: HSCs, MKs, and EBs. To uncover
significant interactions, we constructed correlation matrices between DE IncRNAs and DE
mRNAs. These matrices are visualized as heatmaps for individual cells. We focused on
interactions with a Pearson correlation coefficient (1r|) exceeding 0.9 and a p-value less
than 0.05 (depicted in Figure 6 (Supplementary File—Sheet 513)). From these analyses, we
identified 225 IncRNA-mRNA interactions with notable binding potential. Employing gene
ontology and KEGG-pathway assessments, we focused on DE mRNAs and DE IncRNAs
displaying significant correlations. Specifically, we investigated 225 target genes derived
from the seven most prominent and recurrently observed IncRNAs to gain insights into
their biological implications.

To visually illustrate the IncRNA-mRNA interactions and their functions, we con-
structed a co-expression alluvial plot (Figure 6a). This plot provided a clear representation
of the predominant interactions between the identified IncRNAs and their corresponding
mRNA targets, based on the frequency of interactions with each mRNA partner. Ninety-one
target mRNAs have been prominently correlated with IncRNAs and ranked and are listed in
detail (Supplementary File—Sheet 510). These mRNAs play essential roles in a wide array
of molecular functions, including binding and activity functions. This diversity encom-
passes various types of bindings, such as protein, anion, carbohydrate-derivative, enzyme,
and receptor bindings, among others. Additionally, activities such as protein dimerization,
enzyme regulation, cytokine response, peptide interactions, and amide functions are also
prevalent among these identified targets. Furthermore, the mRNAs that exhibit frequent
correlations are associated with key biological processes, including anatomical structure
development, animal organ development, biological regulation, cell communication, cell
surface receptor signaling pathways, cellular processes, cellular response to stimuli, devel-
opmental processes, and more. Likewise, these mRNAs are implicated in various essential
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cellular processes, including the cell periphery, cytoplasmic vesicles, cytoplasm and its
components, endomembrane systems, extracellular regions and parts, cytosol, intracellular
non-membrane-bounded organelles, membrane-bounded organelles, membrane-enclosed
lumens, as well as organelle parts and lumens, among other crucial cellular contexts.

Pathways

(b)

Figure 6. Correlation heatmaps between IncRNAs and their target genes and targeted pathways in
blood cell lineages. (a) Cluster heatmaps of DE mRNA and DE IncRNA expression data. Hierarchical
clustering utilized PCCs of log2-transformed FPKM expression values. (i) Correlation between
IncRNAs and DE mRNAs in EBs, (ii) Correlation between IncRNAs and DE mRNAs in HSCs,
and (iii) Correlation between IncRNAs and DE mRNAs in MKs. Colors on the scale represent
correlation strength (BLUE: low correlation; RED: high correlation). (b) An alluvial plot reveals the
compound-target-pathway network, highlighting common IncRNAs with significant correlations to
their respective mRNAs or target genes. The plot consists of three columns: the left column represents
IncRNAs, the middle column signifies significant interacting genes and the right column symbolizes
pathways. Connections between them are represented by edges, with wider edges indicating a higher
number of pathways-linked systems.
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2.5. Analysis of a Co-Expression Correlation Modules Using WGCNA

We employed the “WGCNA (v1.72-1)” R package (v4.3.1) to associate DEGs exhibit-
ing comparable expression patterns with modules using the method of average linkage
clustering. Utilizing the principles regarding cluster dendrograms, the analysis of the
dendrogram reveals distinctive gene clusters organized based on their shared expression
patterns, enabling the identification of co-regulated gene groups. In this specific inves-
tigation, the dendrogram resulting from cluster analysis, computed through correlation
coefficients distance (depicted in Figure 7 panels), encompasses the dataset of samples
from three distinct blood cell lineages. The analysis distinctly segregates genes into three
primary clusters, employing a complete linkage method with a correlation coefficients
distance, setting the similarity threshold at 70%. Among the co-expressed genes, three
distinct clusters are discerned: the first cluster (brown), the second cluster (green), and the
third cluster (blue).
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Figure 7. Multi-lineage WGCNA module analysis. (a) A cluster dendrogram is presented to illustrate
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the relationships among samples from the three cell lineages. The X-axis represents the height of the
dendrogram, while the Y-axis displays the outcomes of two distinct clustering algorithms: dynamic
tree cut and merged dynamic. Different colors indicate the clusters generated by these algorithms.
Sample clustering was executed to identify outliers, and all samples were found within clusters,
meeting the predefined cut-off thresholds. (b) Analysis of scale independence and mean connectivity
was conducted to determine the appropriate soft-threshold power in WGCNA. The soft-thresholding
power analysis aimed to achieve a scale-free fit index for network topology. The scale-free topology
index and the mean connectivity for power values ranging from 1 to 20 are depicted in panels (i) and
(ii), respectively. (c) The Eigen gene adjacency heatmap presents the relationships among various
gene co-expression modules within blood cell lineages, revealing the connections between all the
modules. (d) A heatmap showcasing the topological overlap within the gene network helps identify
groups of correlated modules.
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Notably, the second and third clusters exhibit significantly heightened interrelation-
ships among the samples derived from the three cell lineages, in contrast to the first cluster.
The first cluster (brown) embodies a similarity level exceeding 80%, consolidating samples
that are closely grouped alongside genes displaying a similarity level of approximately 70%.
This grouping is founded on the akin characteristics observed in terms of the correlation
coefficients distance of their co-expression parameters. “Akin characteristics” refers to
similarities or resemblances between different elements. In the context of the sentence, it
means that the genes in the first cluster are grouped together because they share similar or
comparable characteristics in terms of their correlation coefficients distance of co-expression
parameters. These genes likely exhibit common patterns of expression or behavior, which is
why they are clustered together based on their shared traits. Cluster 2 (green) encompasses
samples that are grouped together in a cohesive manner, representing an extraordinary
similarity level surpassing 95%.

Similarly, Cluster 3 (blue) includes samples that are clustered in a concerted manner,
indicative of a similarity level surpassing 95%. The amalgamation of samples in these
clusters underscores their shared co-expression traits and highlights the coherent patterns
present within their expression profiles. As shown in Figure 7a, by sample clustering, no
outliers were observed in the respective samples, thus all samples were included in the
further analysis.

In this study, we undertook comprehensive co-expression analyses using samples
derived from three distinct blood lineages, each complemented by its corresponding
clinical data. To precisely establish the co-expression relationships, we navigated through a
process that hinged upon both scale independence and mean connectivity analyses. This
exploration was conducted across modules, utilizing a spectrum of power values spanning
from 1 to 20. The crux of this analysis lies in the astute selection of a soft-threshold power
value, B = 10, which yielded a crucial outcome—a scale-free R? value of 0.00. This R? value
is pivotal as it mirrors the underlying structure of our analysis, and this significant interplay
is graphically depicted in Figure 7b. Our investigations ventured into understanding the
interplay between scale independence and mean connectivity—a representation of gene
connections within the co-expression network. Within this framework, a distinct set of
patterns unfurled. Specifically, as we set the power value at 1 and 2, the corresponding scale
independence values attained —0.01. Concurrently, the mean connectivity value rested at
1. This pattern signifies the effectiveness of these threshold values in approximating the
desired scale-free structure.

Notably, this observation accentuates certain genes’ or gene groups’ remarkable inter-
connectedness despite a relatively low threshold power. This phenomenon alludes to the
formation of dense interconnected clusters within the network. At threshold values of 3
and 4, the scale-free topology values manifested within the range of —0.05, coinciding with
a mean connectivity value of 2. This alignment with scale-free distribution illustrates the
potency of these thresholds in structuring the network differently. The mean connectivity
value of 2 corresponds to a moderate level of connectivity, maintaining a balance between
threshold power and average connections. However, for other threshold values, the sce-
nario shifts. The absence of consistent or desired scale-free topology, within the range of
—0.08 to 0.00, confines the mean connectivity values below 6. This observation holds signif-
icance, signifying that, as the co-expression threshold tightens, numerous genes fall short of
meeting the criteria for robust connections. This intriguing trend underscores the intricate
relationship between threshold power, connectivity, and network structure. In essence, our
systematic investigation highlights the nuanced interplay between soft-threshold power,
mean connectivity, and the formation of meaningful co-expression relationships among
genes within diverse blood lineages. This exploration enriches our understanding of the
intricate dynamics governing gene interactions and regulatory mechanisms within distinct
biological contexts.

Upon computation, it is our assertion that for a correlation coefficient of 0.00 (with
a soft threshold (3 of 10), the co-expression network exhibits a heightened correlation,
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rendering it more apt for the creation of distinct gene modules (depicted in Figure 7b).
Utilizing both the TOM and the hierarchical average linkage clustering method, gene
modules within each gene network were identified (using parameters deep split = 2,
cut height = 0.4). The ensuing heatmap, presented in Figure 7c, visually represents these
findings. Furthermore, the gene cluster tree was computed and the outcomes are showcased
in Figure 7d. The network heatmap displays the relationships between different gene
modules. Each row and column in the heatmap correspond to different gene modules.
The shading within each cell reflects the degree of correlation or co-expression potency
between the modules. Deeper hues denote heightened correlations, signifying a more
frequent tendency for genes from those modules to be co-expressed jointly. Conversely,
lighter shades or unoccupied cells imply diminished co-expression significance. This
pattern becomes apparent in the MEbrown module, where genes inclined towards co-
expression manifest as more robust connections. Meanwhile, genes associated with the
MEturquoise and MEblue colors exhibit less pronounced or absent co-expression, resulting
in weaker interconnections.

To conclude, the eigengene heatmap and network heatmap plots within the frame-
work of WGCNA vyield invaluable insights into the foundational gene expression patterns
and inter-module connections. The eigengene heatmap elucidates how gene modules
react under varying conditions, while the network heatmap exposes the interwoven na-
ture of distinct modules, casting illumination upon plausible regulatory associations and
biological mechanisms.

3. Discussion

To the best of our knowledge, this report represents the first catalog of the repertoire
of protein coding and IncRNA elements underlying three blood cell lineages (HSCs, MKs,
and EBs) in humans.

A recent evolutionary study revealed differences in the patterns of mouse IncRNAs
between HSCs and differentiated lineages such as B cells and granulocytes. Recent whole
transcriptome sequencing has unveiled a plethora of putative IncRNAs. The function of
some IncRNAs has been established in a limited scope of biological processes, such as cell
cycle regulation, embryonic stem cell pluripotency, lineage commitment and differentiation,
and cancer progression [27-30]. In the hematopoietic system, only a few IncRNAs have
been identified to be involved in the differentiation or development of hematopoietic
lineages [31]. The roles of numerous IncRNNAs have been explored in vitro models of
hematopoietic multi-lineage differentiation, including granulocyte differentiation [17,32],
eosinophil differentiation [15], and erythropoiesis [14].

Considering that IncRNAs usually exhibit cell type or stage-specific expression and
(HSCs, MKs, and EBs) are rare (0.05% of bone marrow), we reasoned that many HSC-
specific IncRNAs may not have been identified and annotated yet in humans.

Notably, Cabezas-Wallscheid et al. [4] recently identified hundreds of IncRNAs ex-
pressed in HSCs and compared their expression with that in lineage-primed progenitors.
However, the current GENCODE annotation for IncRNAs predominantly relies on easily
cultured cell lines or whole organisms, lacking many cell-type-specific hematopoietic tran-
scripts. To address this limitation, certain research groups have compiled annotations for
subsets of the hematopoietic lineage or specific differentiation models [11-13]. In a recent
endeavor, a robust annotation was developed, encompassing cell types ranging from HSCs
to differentiated cells, spanning both myeloid and lymphoid lineages, as well as blood
cancers [33].

This study conducted an in-depth analysis of RNA-Seq data to identify DE mRNAs
and IncRNAs in three distinct blood cell types: HSCs, MKs, and EBs. The goal was to
unravel unique expression profiles specific to each cell type and gain insights into the
regulatory networks governing their functions. Studying HSCs, MKs, and EBs presents
numerous challenges due to their extremely low abundance and the absence of favorable
culture conditions for their proliferation. In addition to this, BLUEPRINT was a cornerstone
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consortium. This consortium has devised protocols tailored for analyzing single or ex-
tremely small quantities of cells, facilitating the examination of rare to ultra-rare cell types,
including clinically significant materials like biopsies. Consequently, BLUEPRINT has
amassed approximately 3500 datasets encompassing healthy and diseased cell types [34].

Raw data from the BLUEPRINT epigenome project for HSCs, EBs, and MKs as healthy
controls were accessed for this study. Through an in-depth RNA-Seq data analysis, we
found 13,749 mRNAs and 3092 IncRNAs. Deep RNA-Seq data analysis followed by de novo
transcriptome reconstruction was adopted for genome-wide annotation and functional
characterization of novel IncRNAs. Among these, 14,233 trinity mRNAs, 120 were found,
contributing to a comprehensive total of 31,074 transcripts in the expressed 121 transcrip-
tome. We have uncovered several hundred newly discovered IncRNAs, with a significant
portion showing high expression levels in the respective cell lineage, particularly in MKs.
However, this combination of differential expression, synteny, and conserved expression is
broadly applicable to other cell types in the hematopoietic lineage or other tissues. This list
contains a number of IncRNAs not reported in a previous study but is more comprehensive.
Furthermore, we performed a series of bioinformatics analyses to define those IncRNAs,
including analysis of global IncRNA expression profiles, examining their conservation,
overlap with repeats, and high correlation or anti-correlation with IncRNA expression with
gene expression and marks in the current study.

The present results provide a comprehensive overview of the findings from the RNA-
Seq data analysis conducted on the BLUEPRINT Consortium dataset. It effectively commu-
nicates the DE patterns observed in both mRNAs and IncRNAs across various blood cell
types. The comparison between HSCs, MKs, and EBs sheds light on the dynamic regulation
of gene expression during hematopoiesis. Additionally, highlighting the commonalities
and exceptions within the expression patterns of both mRNAs and IncRNAs enhances
the depth of understanding gained from the analysis. With a focus on IncRNA-mediated
phenotype regulation, we examined RNA-Seq data from the BLUEPRINT Consortium. The
analysis identified 1448 DE mRNAs (983 in HSCs, 263 in MKs, and 202 in EBs) and 225 DE
IncRNAs (159 in HSCs, 48 in MKs, and 18 in EBs) across HSCs, MKs, and EBs. Within
these cell types, we found 137 common mRNAs and 7 common IncRNAs. The majority
of common mRNAs displayed upregulated expression, especially during differentiation
from HSCs to EBs or MKs. However, the comparison between MKs and EBs revealed an
irregular pattern of differential mMRNA expression. Among the 7 common DE IncRNAs,
downregulation predominated during the transition from HSCs to EBs or MKs. Notably;
exceptions were observed with two IncRNAs, LINC02573 and AL365361.1, displaying
irregular expression patterns across all cell types. We further investigated the expression
correlation between 7 IncRNAs and their putative 137 mRNA targets, recognizing the
regulatory role IncRNAs play in modulating mRNA expression [35].

Functional validation presents a formidable obstacle owing to the abundance of
both annotated and novel IncRNAs. To explore the biological roles of these IncRNAs
and their associated mRNAs, we have constructed the INcRNA-mRNA co-expression
network and then conducted GO term and pathway-enrichment analyses for the highly co-
related mRNAs. It is long acknowledged that the RN A-seg-based IncRNA-mRNA network
has become a useful tool to predict functional IncRNAs and their potential functional
mechanisms [36]. Of these interactions, most mRINAs are associated with distinct IncRNAs
such as LINC02573 [37], AL365361.1 [38], LINC00656 [39], AC104561.3 [40], AC100835.2,
LINCO01764 [41], and UCAL1 [42] (Supplementary File—Sheet S6). The upregulated mRNAs
were significantly enriched in the enzyme binding process, carbohydrate derivative binding,
purine ribonucleoside triphosphate binding, protein binding, enzyme regulator activity,
developmental and biological regulation including cell-cycle cell communication, and
response to various stimuli like stress, oxygen-containing compounds, etc. indicating
that a variety of development-related genes were aberrantly upregulated and participated
in the cellular biogenesis/organization process. The KEGG-pathway analysis unveiled
that several of our DE IncRNAs and their mRNAs partners are prominently engaged in
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pathways related to cytokine—cytokine receptor interaction and cell adhesion molecules
as well as cell cycle progression through p53 mediated [19] and NF-kappa B signaling
pathways [43] which indicates that IncRNAs were also involved in the crucial regulating
mechanism of hematopoietic cell lineage differentiation and development.

Certainly, the overarching challenges in IncRNA biology persist, particularly con-
cerning the precise mechanisms by which noncoding RNAs regulate the differentiation,
developmental potential, and metabolic capacity of hematopoiesis. Leveraging bioinfor-
matics analysis of the transcriptome, we offer a comprehensive database poised to underpin
future investigations into IncRNA biology within the human hematopoietic system. To-
gether with the IncRNA-mRNA co-expression network, we believe that a comprehensive
understanding of the complex networks of interactions that these DE RNAs coordinate
would provide a unique opportunity for better therapeutic interventions.

4. Materials and Methods
4.1. Datasets Gathering

Unveiling the intricate process of hematopoietic cell differentiation involves observing
gene expression changes as cells progress through maturation within the hematopoietic
system’s hierarchical structure. To explore this, we accessed expression profiles from three
distinct blood cell types—HSCs, MKs, and EBs—via the publicly available BLUEPRINT
consortium (https://projects.ensembl.org/blueprint/). On 24 April 2019, we secured data
access permission for the raw FASTQ datasets pertaining to MKs, HSCs, and EBs under
the BluePrint Epigenome project. Our objective was to align these datasets with the latest
annotations of IncRNAs and protein-coding sets. In the present study, a total of eight blood
cell samples, including three MKs, two HSCs, and three EBs, spanning various ages and
genders (male/female) were utilized for mRNA and IncRNA profiling. Supplementary
File—Sheet S2 provides the DataSet ID, study ID, sample accession, and raw file accession
ID. Following stringent quality control measures, read mapping, and normalization of
RNA-seq data, we computed the FPKM values for each gene and IncRNA. Additionally,
we employed the Trinity algorithm for de novo discovery of IncRNAs, aiming to predict
novel transcripts within the dataset.

4.2. Data Pre-Processing

In the pre-processing of raw sequencing data, we performed a quality assessment using
FastQC. To improve read quality, we applied Trimmomatic (v.0.35) for adapter removal
and quality trimming based on the FastQC results. The resulting clean reads met quality
conditions (Q20 > 90% and Q30 > 85%). For alignment, we used Hisat2 with the human
reference genome GRCh37 (hg19). BAM files representing mapped reads were generated
using SAM tools (v.1.3.1), and unmapped reads were discarded. HTSeq (v.0.6.1p1) was
then used with a GTF file from Ensembl (v.82) to count the number of reads aligning to
each gene. HTSeq assigns reads to specific genes based on alignment positions, generating
a count matrix with genes as rows and samples as columns. Subsequently, differential
expression analysis was performed using DESeq2, which involved normalizing the counts
and accounting for library size differences and technical biases. The gene expression values
were represented using normalization techniques such as FPKM. Cuffdiff (v2.1.1) was used
to calculate the FPKM of both the IncRNAs and coding genes in each sample [44—46].

4.3. Gene Expression Quantification and Differential Expression Analysis

In this study, we aimed to identify DEGs, including both mRNAs and IncRNAs, among
different blood cell types: HSCs, MKs, and EBs. To achieve this, we utilized the BLUEPRINT
gene expression dataset, which contains gene expression profiles of various hematopoietic
cell lineages and is publicly available from the BLUEPRINT consortium website (https://
projects.ensembl.org /blueprint/, accessed on 24 April 2019). These values were calculated
using the R/Bioconductor (v 4.3.1) and Limma package (v3.26.8) from the GEO2R tool. The
gene expression data sets were analyzed using the R/Bioconductor, specifically the Limma
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package (v3.26.8) from the GEO2R tool (https:/ /bioconductor.org/packages/release/bioc/
html/limma.html, accessed on 28 July 2024). This package provided the necessary tools for
performing differential expression analysis using the ¢-test. The FDR of 5%, was calculated
using the Benjamini and Hochberg method to control for multiple testing [47,48]. The
DEGs were identified based on a log2FC > 2 and a p-value cut-off of <0.01. A volcano
plot is a scatterplot that helps identify significant changes in gene expression between two
groups or conditions (https://www.bioinformatics.com.cn/plot_basic_3_color_volcano_
plot_086_en). It plots the log fold change (X-axis) against the statistical significance (Y-axis),
usually represented as a p-value. This plot helps identify genes that exhibit large fold
changes and significant statistical differences. Bioinformatics and Evolutionary Genomics
online software (https://bioinformatics.psb.ugent.be/webtools/Venn/, accessed on 28
July 2023) was used to obtain the intersection of HSCs/MKs, HSCs/EBs, and MKs/EBs,
and determine the gene expression by analysis between the intersection and union. In
addition to the Venn and volcano plot, we also utilized other visualization techniques
such as a heatmap to visualize the significant DEGs and IncRNAs shared among the three
transgenic and distinct groups corresponding to HSCs, MKs, and EBs. To visually represent
the significant DEGs, a heatmap was generated for each dataset using R. The heatmap is a
visual representation that displays the expression patterns of the identified DEGs using a
color-coding system.

4.4. Functional Enrichment Analysis

In the functional enrichment analysis of DEGs, GO and KEGG were used to identify
biological processes, molecular functions, cellular components (for GO), or metabolic and
signaling pathways (for KEGG) that are statistically over-represented in the set of DEGs.
The principle behind this analysis is to compare the identified DEGs in order to detect
categories that are significantly enriched. By identifying these over-represented categories,
we can infer that certain biological processes or pathways are either activated or suppressed
in the specific experimental condition being studied. The objectives of GO and KEGG
enrichment analyses are to do the following: (i) characterize the biological roles of the
DEGs by mapping them to established functional categories and (ii) identify key biological
processes and pathways that are significantly enriched in the experimental condition,
helping to reveal potential biological mechanisms related to disease progression, treatment
response, or other phenomena. By understanding the biological context of the DEGs, these
analyses provide insights into the functional implications of gene expression changes under
various conditions.

The GO enrichment analysis, accessible at http:/ /geneontology.org/page/go-enrichment-
analysis, and DAVID annotation from https://david.ncifcrf.gov/, accessed on 28 July 2023
for functional annotation and pathway analysis. This allowed them to investigate the MFs,
BPs, and CCs associated with the genes of interest. They considered GO terms to be
significantly enriched within the gene set if they had an FDR of less than 0.05. Moreover,
the distinctively regulated genes were organized into gene pathways through pathway
enrichment analysis utilizing the KEGG. This approach aimed to shed light on the potential
pathways influenced by the genes under investigation. The DEGs found to be statistically
enriched in KEGG pathways were considered significant with a corrected p-value of less
than 0.05.

4.5. Correlation Analysis

Correlation analysis was conducted to examine the relationship between IncRNAs and
mRNAs in blood cell samples. DE IncRNAs were utilized to predict potential target genes.
Normalized counts of these IncRNAs and mRNAs were subjected to Pearson correlation
analysis, yielding the PCC. By calculating the PCC, co-expressed IncRNAs and mRNAs
were identified. Significant IncRNA-mRNA interactions were determined using a threshold
of Pearson’s correlation coefficient |r| > 0.94 and p-values of at least 0.001. The resulting
correlations were visualized in a heatmap using R programming.
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4.6. Co-Expression Network Construction by WGCNA Analysis

A co-expression network for all genes in blood cell samples was constructed using the
“WGCNA (v1.72-1)” R package (v4.3.1). The algorithm filtered out genes with the top 25%
variance for further analysis. One WGCNA analysis was performed on the samples, where
Pearson’s correlation matrices were calculated using Equation (1).

amn = |cmn | (1)

where amn represents the adjacency between gene m and gene 1, cmn denotes Pearson’s
correlation, and 3 represents the soft-power threshold), a weighted adjacency matrix
was created. The power parameter ranging from 1-20 was screened out using the pick
SoftThreshold” (package WGCNA (v1.72-1) function. A suitable soft threshold of 12 was
selected. This matrix was then transformed into a TOM matrix to assess its connectivity
within the network. The TOM matrix was used to construct a clustering dendrogram
using average linkage hierarchical clustering. To ensure appropriate modules, the minimal
gene module size was set to 10, and similar modules were merged if their threshold
exceeded 0.25.

4.7. Statistical Analyses

Statistical analyses were conducted using Microsoft Excel (v2021). Data were presented
as mean + SEM. A p-value of less than 0.01 and an absolute log-fold change (|logFC1)
greater than 2 were considered as indicators of significant differences.

5. Conclusions

Our comprehensive analysis of DEGs and DE IncRNAs in blood cell lineages sheds
light on the unique expression profiles and regulatory networks within each cell type. In-
corporating these studies into the context of our analysis, we emphasize the significance of
deciphering gene expression patterns in distinct blood cell types and their related disorders.
The convergence of findings from various investigations underscores the dynamic and
intricate regulatory networks that govern hematopoiesis and highlights potential avenues
for therapeutic interventions. The amalgamation of diverse studies enhances our under-
standing of the intricate mechanisms governing hematopoiesis and provides a foundation
for future advancements in this field. Studying the roles and interactions of these com-
mon genes can provide valuable insights into the underlying mechanisms that govern the
formation and behavior of different blood cell lineages. Understanding how these genes
contribute to the specialized functions and characteristics of each cell type can deepen
our knowledge of blood cell biology. Moreover, investigating the regulatory mechanisms
of these shared genes may uncover potential therapeutic targets for various hematologi-
cal disorders. Identifying specific genes that are crucial for blood cell development and
function could offer new avenues for developing targeted therapies to treat blood-related
diseases and conditions. Overall, this research has the potential to significantly advance
our understanding of blood cell biology and pave the way for the development of novel
and more effective treatments for hematological disorders, ultimately benefiting patients
and improving their quality of life.
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